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© Computing 2-isogeny chains in any dimension
© The 2-dimensional case

@ Tutorial: how to break SIDH in 4D
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A simplified theory of theta structures

Definition: symplectic isomorphism

o Let A/k be a PPAV of dimension g.

o If ntchar(k), then Aln]=(Z/nz)%8.

e A symplectic isomorphism ¢ : (Z/nZ)& x (mg — A[n] is a group
isomorphism satisfying:

e ——

Vx,y €(Z/nZ)% x(Z/nZ)8, en(@(x),@(y))=en(xy),

where the first pairing is the Weil-pairing and the second one is
given by:

(i, x), (1) € (2/nZ)8 x (Z]nZ)%,  en((iv1), (i',2)) = ' (D (i) .
@ Such a symplectic isomorphism is determined by a ({-)symplectic
basis (S1,-++,Sg, T1,--+, Tg) of A[n] i.e. a basis such that:
Vis<ij<g, enS,S)=eT,Tj)=1 and en(S; T;) =0,

where { is a primitive n-th root of unity.
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A simplified theory of theta structures

Definition: theta structure

Definition (Mumford, Duparc)

Let A be a PPAV of dimension g. A (symmetric) theta structure of level
nis a map

o(n):A — Pl
x — (0i(x))ie(z/nz)e
along with a symplectic isomorphism:
0(n):(2/nZ)& x (Z/nZ)8 = Aln]

satisfying the theta group action relation:

0i(x+0(n)(j,x)) = x(i +j)0i1(x),

for all xe A, i,j€(Z/nZ)€ and y€(Z/nZ)8.
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A simplified theory of theta structures

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (©(n),0(n)) on a PPAV A is fully determined by
a symplectic isomorphism ©(2n) : (Z/2nZ)& x (Z/2nZ)8 — A[2n]
inducing ©(n) i.e. by a symplectic basis of A[2n] inducing ©(n).

Theta structures and theta null points:

o When 4|n, the marked AV (PPAV and theta structure)
(A,©(n),0(n)) is determined by the theta null point (0;(04));.

@ In other cases, we still use the theta null point as a representative of
a marked AV.

@ This is enough for arithmetic operations.
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A simplified theory of theta structures

Theta structures of level 2

Let (A,©(n),0(n)) be a marked AV of level n and dimension g. Then:
© [Mum74] If n=3, then ©(n): A— P™~1 is an embedding.

@ [BL04] If n=2 and A is not a product, then ©(2) defines an
embedding A/+ — P21,

© [BLO4] If n=2 and A= A1 x---x A, then ©(2) defines an
embedding

Al/ix---xAm/i‘—>|]:°2g_l.
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Computing 2-isogeny chains in any dimension @i 2y A

Gluing 2-isogenies

d-isogenies between PPAVs

o Let f: (A Aa) — (B,Ag) be an isogeny between PPAVs.

o Then we define its polarised dual f:(B,Ag) — (A,A4) as the
composition:

AB 3 /1;\1

B B A A

o fis a d-isogeny if fof =[d]a.

@ This is automatically true in dimension one but not always in
dimensions = 2.
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Computing 2-isogeny chains in any dimension @i 2y A

Gluing 2-isogenies

Our goal

Goal: Given the kernel K c A[2¢] of a 2¢-isogeny between PPAVs
f:A— B, compute f in level 2 theta coordinates:

(efq(X))ie(Z/M)g — (ef(f(x)))ie(z/m)g

Method:
@ Decompose f as a chain of 2-isogenies:
f f2
Ag=A ——+ A ——Ay - Aeq —> Ac=B

o Compute every 2-isogeny iteratively, using:

ker(f;) =[2°7"]fi_y 0-+-0 fi(ker(f)).

Technicality: We need more torsion K < A[26*2] above the kernel.
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Computing 2-isogeny chains in any dimension @i 2y A
@it Aremee

Computing a 2-isogeny: change of level

o Let f: A— B be a 2-isogeny.

(A,04(4),8%(4))

isogeny theorem
change of level

(A,04(2),8%(2)) (B,68(2),8°(2))

@ The level 4 theta structure (A,@A(4),@A(4)) is induced by a
symplectic basis of A[8].

o For that reason, we need 8-torsion points T1,---, T such that
ker(f)=<([4]T1,---,[4] Tg) to compute f.

e With this data, we compute the codomain theta-null point (6;(05));.
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Computing 2-isogeny chains in any dimension @i 2y A

Gluing 2-isogenies

2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

aB .
(07 () A s £y JELCD LB

where:
o H:(xj)j— (Zie(z/zz)g(—l)mﬁxi)j (Hadamard).
o S:(xi)i— (x?)i-
o (xi)i* (yi)i = (xiyi)i-
e (5,5(08))/: H((QIB(OB)),-) (dual theta null point).
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Computing 2-isogeny chains in any dimension @iy & ey A

Gluing 2-isogenies

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing f: A1 x Ap, — B.

Jacobian of a hyperelliptic

curve
Elliptic product

Figure: A gluing isogeny in dimension 2
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Computing 2-isogeny chains in any dimension @iy & ey A

Gluing 2-isogenies

Issues with the first 2-isogeny in the chain

Issue 1:

o The starting domain theta structure ©41%42 is the product
041 x ©42;
A1 xA A A
02 5,y) =07 ()-07°().
@ The isogeny formulas only work when

e

8™ (10} x (Z/22)E) = ker(f).
e This is usually not the case when ©@41*42 = @41 x @42,

1A1x A2

Solution 1: Compute a new theta structure © such that

0" (10) x (Z/22)8) = ker(F).
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Computing 2-isogeny chains in any dimension @iy & ey A

Gluing 2-isogenies

Change of coordinate formulas

) ) Change of basis ) )
{-symplectic basis {-symplectic basis
matrix M € Spp,(2/42)

P of Al4] P of A[4]
Theta structure Theta structure
(04,87 @48
l Change of coordinates l
Initial theta > New theta

matrix N({, M)

coordinates (HI.A),- coordinates (gl;f\)i

*( is a primitive 4-th root of unity given by the Weil-pairings of symplectic basis.
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Computing 2-isogeny chains in any dimension et Sty dirhe
Gluing 2-isogenies

The right choice of theta structure

Definition
Let f: A— B be a d-isogeny and #:=(S51,-+-,5g, T1,-+, T¢) be a
{-symplectic basis of A[4d]. We say that % and its associated theta
structure are adapted to f if:

ker(f) = ([4] Ty, [4] Ty).

If B is adapted to f, then the theta structure induced on its codomain B
is induced by the {9-symplectic basis of B[4]:

£ (#) = ([d]f(S1), -, [d]F (Sg) F(T1), -+ F(Tg))-

We call it the theta structure induced by f and 2.
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Computing 2-isogeny chains in any dimension @iy & ey A

Gluing 2-isogenies

The right choice of theta structure propagates

@ When there is only one gluing isogeny, only 2 change of theta
structures are needed

f f2
Ag=A — A ——+Ay - Aeq—> A.=B
Change of theta Change of theta
coordinates coordinates

@ Change of theta structure on A:

Initial (product) > Theta structure ®/,

theta structure ©4 adapted to f;
induced by [2°]%

@ Change of theta structure on B:
Theta structure Op Final (product)
induced by f.(%) Theta structure O'g
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Computing 2-isogeny chains in any dimension @iy & ey A

Gluing 2-isogenies

Evaluating a gluing 2-isogeny

Issue 2:

@ The evaluation algorithm:

nB .
(0A(x)); o v S OO 08 (£ (x));

no longer works because the 515(05) may vanish.

@ Why? Because level 2 theta coordinates encode points up to a sign,
we are computing:

(£x,2y) — f(x,y)

@ We need additional information to lift the sign indetermination.

Solution 2: Using x and translates x+ T where [2] T € ker(f), we can
evaluate f(x).
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

A 2-dimensional 2-isogeny chain

Goal: compute a 2¢%-isogeny F : E1 x Ep — E3 x E4 between elliptic
products (obtained via Kani's lemma, e.g. in SQIsign).

We can decompose F into a chain of 2-isogenies:

1 fa fe
EyxEp ——A1——>Ax o Ae1 — E3xEy
gluing splitting

Two cases:

e We know Ty, T» € (Ey x Ep)[2¢*?] forming an isotropic subgroup
such that ker(F) = ([4] T1,[4] T2).

e We only know T3, Tp € (E1 x E»)[2¢] such that ker(F)=(Ty, Tp).

Pierrick Dartois Completing the Bordeaux cycle in HD 20/36



The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

Step 1: change of coordinates

Step 1: from Montgomery (x : z)-coordinates to theta coordinates
adapted to f1.

e Method 1: successive change of coordinates [Dar25, § 6.5.1]

(x1:21),(x0:20) ————>0OF, xOp, ————» ®,Ele2

(x1x2 1 x122: 21%0 1 2122) — (000 : 0101001 :011)

@ Method 2: direct theta group action on global sections a.k.a.
Damien Robert’s method [DMPR23] (see also [Dup25])

theta group action

(x1:21),(x2: 22) OF <k,

! .n/ ali Yali
(x1x0 1 x122: 21%0 : 2122) T (0001010001 :011)
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

Step 2: gluing isogeny f;: E; x E; — A

@ By generic algorithms, we obtain the dual codomain theta null point
(a.B,7,0).
@ Its last coordinate is always 6 = 0.

Generic evaluation algorithm would require to divide by § =0.

Instead, we use x and x+ T with [2] T € ker(f1) to evaluate f1(x).

See Superglue algorithms for new formulas exploiting symmetries
[Dup25].
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

Completing the chain computation

Assumption: we are given Ty, T» € (Ey x E»)[26*2] forming an isotropic
subgroup such that ker(F) = ([4] T1,[4] T2).

Step 4: For all i =2, compute each generic 2-isogeny f;: Aj_1 — A;
from the evaluation of:

(257110 A(T1),[25 iy 0+ A(T2))

Step 5: Compute the splitting change of theta coordinates on E3 x E4
induced by a choice of basis (51, 52, T1, T2) adapted to F.
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

Square root computations needed

Assumption: we are only given Ty, To € (E7 x Ep)[2€] such that
ker(F) =(T1, T).

Step 4: For all 2<i<e-2, compute each generic 2-isogeny
fi - Ai_1 — A; from the evaluation of:

(257 2)fiy 0 A(T1), 22772 iy 0+ i T2))

Step 5: Compute the 2-isogeny fe_1: Ae—p — Ae_1 from fo_po---f1(T1)
and 2 square roots.

Step 6: Compute the 2-isogeny fo: Ae—_1 — Ae using 3 square roots.
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The gluing
The 2-dimensional case Chain computation and splitting
Uncomplete torsion case

How to split with incomplete torsion

Assumption: we are only given Ty, T € (E1 x E2)[2€] such that
ker(F) ={(T1, T).

Step 7: Recovering a product theta structure on B:= E3 x E4.
@ We try several change of theta coordinates.
@ 10 tries at most are necessary.

@ We try several change of theta coordinates until:

01111(08):= X (—1)t1+t295+1,t2+1(08)9t81,t2(OB)
t1,t2€Z/2Z

is zero.
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Tutorial: how to break SIDH in 4D
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

The interpolation problem

Problem

Let o : E; — E> be a g-isogeny and (P, Q) be a basis of E1[2f].
Given P,Q,0(P),a(Q) and q, evaluate a anywhere in polynomial time.
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Point interpolation
Gluings and splittings

Tutorial: how to break SIDH in 4D The main steps

A solution from Kani's lemma

@ Find aj,a2€Z and e+4 <2f such that q+a%+a§ =2¢,
o Consider the 4-dimensional 2¢-isogeny:
ay a 0 0
| 2 a 0 o 2. 2
F=| 2200 2 5 |cEd(EF<ED).
0 -0 a a1

Its kernel is given by:

ker(F) ={([a1]R - [a2]S,[a2]R + [21]S,0(R),0(S)) I R, S € E1[2°]}.

From e, a1, as, P,Q,0(P),a(Q), one can compute F.
Then for all Pe Eq:

F(P,0,0,0) = ([a1]P,—[a2]P,—0o(P),0).
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Do we have enough torsion?

o If f=e+2, we can directly compute Ty,---, Ta € (E12 x E22)[2e+2]
such that ker(F)=([4]T1,---,[4] Ta).

@ But this is not the case in practice...

o If e/2+2<f<e+2, we divide F in two parts.

@ Let e:=e;+e such that ¢, +2 <.
F

/\

2. 2 2. 2
E; < E5 Ef xE;
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Do we have enough torsion?

o If f=e+2, we can directly compute Ty,---, Ta € (E12 x E22)[2e+2]
such that ker(F) =<{[4] T1,---,[4] Ta).

@ But this is not the case in practice...

If e/2+2<f <e+2, we divide F in two parts.
o Let e:=e1 +ep such that ¢, +2<f.

F
E12XE22 C - E12><E22
Fl F2

Consider 2¢-isogenies F; such that F:=FyoFy.
o We use e1,€,a1,a2,P,Q,0(P),0(Q) to compute F; and F> and
then F:= ?QOF]_.
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

The first isogenies of the chain

o Let m:=max(wa(a1),va(a2)).

@ Then the first isogenies in the 2-isogeny chain F is of the form:

Ep —

2D gluings 2D isogenies 4D gluing Bpi1 — Bma2

Ey —
Ez/'Al R Am

@ This is the same holds for both F; and F».
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Steps to compute F: adapted basis

Step 1: Build matching symplectic basis adapted to Fi and Fo:

(F2)(B2) «----------- %2
Hadamard i
By - £ (F1)«(%1) 2
E12><E22 L C -« 2 E12><E22

i.e. basis B;:=(Si1,---,5i4, Ti1,--+, Tia) of (El2 x E22)[26i+2] such that:
o ker(F1)=([4]T11,-,[4] T1,4).
o ker(F2)=([4]T21, -, [4] Toa).
o [2%2]Fy(52) = F1(T1y ) and Fo(T2;) = ~[2%]F(51).
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Steps to compute F: computing F;

Step 2: Compute the m starting 2-dimensional isogenies:

Step 3: Computing the change of theta coordinates:

Product theta Theta structure ©4,,xA,,
structure ©4, x04, ——— adapted to fr,1: A2, — Byl
induced by @mo---0@ induced by %

Step 4: Computing the gluing isogeny fii1: A2, — Bpmy1.

Step 5: Computing the generic isogenies f;: Bj_1 — B; for all
m+2<i<e;.
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Steps to compute F: computing F>

Step 2: Compute the m starting 2-dimensional isogenies:

V1
El\“A’ Y2 A
E2/ 1 m

Step 5: Computing the change of theta coordinates:

Product theta Theta structure G);\,

/
m*Am
!

a2
structure © 4 x O, —— adapted to g1 AL, — Bl .1

induced by ypo0---0wy induced by %>

Step 6: Computing the gluing isogeny gm.1: A’%q — B’

m+1-

Step 7: Computing the generic isogenies g;: B!_; — B! for all
m+2<i<es.
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Point interpolation
Gluings and splittings
Tutorial: how to break SIDH in 4D The main steps

Steps to compute F: final matching

Step 8: Check that codomains match Be, = Bg, by checking that:

G)Bl :HOGBéz'

5

Step 9: Compute Fp =gj0---0&e,. This is immediate by Hadamard
transform: if f: A— B is a 2-isogeny, then

Ho®g(f(x))x Ho®p(0g) = HoS0®a(x)

becomes: B
©a(f(y))*©4a(04) =HoSoHoBp(y).

Finally, F = Fpo F; can be evaluated.
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Conclusion

Conclusion and future works

@ The theory is getting more accessible.

@ Formulas are really practical to implement.

Future/ongoing works:

@ What about odd degrees?
o Constant time algorithms.

@ New gluing formulas in dimension 4.
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