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Definition: symplectic isomorphism
Let A/k be a PPAV of dimension g .
If n ∤ char(k), then A[n]≃ (Z/nZ)2g .
A symplectic isomorphism ϕ : (Z/nZ)g × á(Z/nZ)g ∼−→A[n] is a group
isomorphism satisfying:

∀x ,y ∈ (Z/nZ)g × á(Z/nZ)g , en(ϕ(x),ϕ(y))= en(x ,y),

where the first pairing is the Weil-pairing and the second one is
given by:

∀(i ,χ),(i ′,χ′) ∈ (Z/nZ)g × á(Z/nZ)g , en((i ,χ),(i ′,χ′))=χ′(i)χ(i ′)−1.

Such a symplectic isomorphism is determined by a (ζ-)symplectic
basis (S1, · · · ,Sg ,T1, · · · ,Tg ) of A[n] i.e. a basis such that:

∀1≤ i , j ≤ g , en(Si ,Sj )= en(Ti ,Tj )= 1 and en(Si ,Tj )= ζδi ,j ,
where ζ is a primitive n-th root of unity.
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Definition: theta structure

Definition (Mumford, Duparc)

Let A be a PPAV of dimension g . A (symmetric) theta structure of level
n is a map

Θ(n) :A −→ Pn
g−1

x 7−→ (θi (x))i∈(Z/nZ)g

along with a symplectic isomorphism:

Θ(n) : (Z/nZ)g × á(Z/nZ)g ∼−→A[n]

satisfying the theta group action relation:

θi (x +Θ(n)(j ,χ))=χ(i + j)−1θi+j (x),

for all x ∈A, i , j ∈ (Z/nZ)g and χ ∈ á(Z/nZ)g .
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Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (Θ(n),Θ(n)) on a PPAV A is fully determined by
a symplectic isomorphism Θ(2n) : (Z/2nZ)g × á(Z/2nZ)g ∼−→A[2n]
inducing Θ(n) i.e. by a symplectic basis of A[2n] inducing Θ(n).

Theta structures and theta null points:
When 4|n, the marked AV (PPAV and theta structure)
(A,Θ(n),Θ(n)) is determined by the theta null point (θi (0A))i .
In other cases, we still use the theta null point as a representative of
a marked AV.
This is enough for arithmetic operations.
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Theta structures of level 2

Theorem

Let (A,Θ(n),Θ(n)) be a marked AV of level n and dimension g . Then:
1 [Mum74] If n≥ 3, then Θ(n) :A ,−→Pn

g−1 is an embedding.
2 [BL04] If n= 2 and A is not a product, then Θ(2) defines an

embedding A/± ,−→P2g−1.
3 [BL04] If n= 2 and A≃A1×·· ·×Am, then Θ(2) defines an

embedding
A1/±×·· ·×Am/± ,−→P2g−1.
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Computing 2-isogeny chains
Gluing 2-isogenies

d -isogenies between PPAVs

Let f : (A,λA)−→ (B ,λB) be an isogeny between PPAVs.

Then we define its polarised dual f̃ : (B ,λB)−→ (A,λA) as the
composition:

B
λB

B̂
f̂

Â
λ−1
A

A

f is a d-isogeny if f̃ ◦ f = [d ]A.

This is automatically true in dimension one but not always in
dimensions ≥ 2.
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Computing 2-isogeny chains
Gluing 2-isogenies

Our goal
Goal: Given the kernel K ⊂A[2e ] of a 2e -isogeny between PPAVs
f :A−→B, compute f in level 2 theta coordinates:

(θAi (x))i∈(Z/2Z)g 7−→ (θBi (f (x)))i∈(Z/2Z)g

Method:
Decompose f as a chain of 2-isogenies:

A0 =A
f1

A1
f2

A2 · · · Ae−1
fe

Ae =B

Compute every 2-isogeny iteratively, using:

ker(fi )= [2e−i ]fi−1 ◦ · · · ◦ f1(ker(f )).

Technicality: We need more torsion K ⊂A[2e+2] above the kernel.
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Computing a 2-isogeny: change of level

Let f :A−→B be a 2-isogeny.

(A,ΘA(2),Θ
A
(2))

(A,ΘA(4),Θ
A
(4))

(B ,ΘB(2),Θ
B
(2))

f

isogeny theorem
change of level

The level 4 theta structure (A,ΘA(4),Θ
A
(4)) is induced by a

symplectic basis of A[8].

For that reason, we need 8-torsion points T1, · · · ,Tg such that
ker(f )= 〈[4]T1, · · · , [4]Tg 〉 to compute f .

With this data, we compute the codomain theta-null point (θi (0B))i .
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2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

(θAi (x))i
H−→∗ S−→∗ ⋆(1/θ̃Bi (0B))i−−−−−−−−−−−→∗ H−→ (θBi (f (x)))i

where:
H : (xi )i 7−→

(∑
i∈(Z/2Z)g (−1)〈i |j〉xi

)
j

(Hadamard).

S : (xi )i 7−→ (x2
i )i .

(xi )i ⋆ (yi )i := (xiyi )i .

(θ̃Bi (0B))i =H((θBi (0B))i ) (dual theta null point).
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Issues with the first 2-isogeny in the chain
Usually, the first isogeny of the chain is a gluing f :A1×A2 −→B.

f

E1×E2

J

Elliptic product

Jacobian of a hyperelliptic
curve

Figure: A gluing isogeny in dimension 2
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Issues with the first 2-isogeny in the chain

Issue 1:

The starting domain theta structure ΘA1×A2 is the product
ΘA1 ×ΘA2 :

θ
A1×A2
i ,j (x ,y)= θA1

i (x) ·θA2
j (y).

The isogeny formulas only work when

Θ
A1×A2({0}× á(Z/2Z)g )= ker(f ).

This is usually not the case when ΘA1×A2 =ΘA1 ×ΘA2 .

Solution 1: Compute a new theta structure Θ′A1×A2 such that

Θ′A1×A2
({0}× á(Z/2Z)g )= ker(f ).
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Computing 2-isogeny chains
Gluing 2-isogenies

Change of coordinate formulas

ζ-symplectic basis

B of A[4]

Theta structure

(ΘA,Θ
A
)

Initial theta
coordinates (θA

i
)i

ζ-symplectic basis

B′ of A[4]

Theta structure

(Θ′A,Θ′A)

New theta

coordinates (θ′Ai )i

Change of basis

matrix M ∈Sp2g (Z/4Z)

Change of coordinates

matrix N(ζ,M)

*ζ is a primitive 4-th root of unity given by the Weil-pairings of symplectic basis.
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The right choice of theta structure

Definition

Let f :A−→B be a d-isogeny and B := (S1, · · · ,Sg ,T1, · · · ,Tg ) be a
ζ-symplectic basis of A[4d ]. We say that B and its associated theta
structure are adapted to f if:

ker(f )= 〈[4]T1, · · · , [4]Tg 〉.

Theorem
If B is adapted to f , then the theta structure induced on its codomain B
is induced by the ζd -symplectic basis of B[4]:

f∗(B) := ([d ]f (S1), · · · , [d ]f (Sg ), f (T1), · · · , f (Tg )).

We call it the theta structure induced by f and B.
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The right choice of theta structure propagates
When there is only one gluing isogeny, only 2 change of theta
structures are needed

A0 =A
f1

A1
f2

A2 · · · Ae−1
fe

Ae =B

Change of theta
coordinates

Change of theta
coordinates

Change of theta structure on A:
Initial (product)

theta structure ΘA

Theta structure Θ′
A

adapted to f1
induced by [2e ]B

Change of theta structure on B:
Theta structure ΘB

induced by f∗(B)

Final (product)
Theta structure Θ′

B
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Evaluating a gluing 2-isogeny

Issue 2:
The evaluation algorithm:

(θAi (x))i
H−→∗ S−→∗ ⋆(1/θ̃Bi (0B))i−−−−−−−−−−−→∗ H−→ (θBi (f (x)))i

no longer works because the θ̃Bi (0B) may vanish.

Why? Because level 2 theta coordinates encode points up to a sign,
we are computing:

(±x ,±y) 7−→±f (x ,y)

We need additional information to lift the sign indetermination.

Solution 2: Using x and translates x +T where [2]T ∈ ker(f ), we can
evaluate f (x).
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A 2-dimensional 2-isogeny chain

Goal: compute a 2e -isogeny F :E1×E2 −→E3×E4 between elliptic
products (obtained via Kani’s lemma, e.g. in SQIsign).

We can decompose F into a chain of 2-isogenies:

E1×E2
f1

gluing
A1

f2
A2 · · · Ae−1

fe

splitting
E3×E4

Two cases:
We know T1,T2 ∈ (E1×E2)[2e+2] forming an isotropic subgroup
such that ker(F )= 〈[4]T1, [4]T2〉.
We only know T1,T2 ∈ (E1×E2)[2e ] such that ker(F )= 〈T1,T2〉.
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The gluing
Chain computation and splitting
Uncomplete torsion case

Step 1: change of coordinates

Step 1: from Montgomery (x : z)-coordinates to theta coordinates
adapted to f1.

Method 1: successive change of coordinates [Dar25, § 6.5.1]

(x1 : z1),(x2 : z2) ΘE1 ×ΘE2 Θ′
E1×E2

(x1x2 : x1z2 : z1x2 : z1z2)
linear

(θ′00 : θ
′
10 : θ

′
01 : θ

′
11)

Method 2: direct theta group action on global sections a.k.a.
Damien Robert’s method [DMPR23] (see also [Dup25])

(x1 : z1),(x2 : z2)
theta group action

Θ′
E1×E2

(x1x2 : x1z2 : z1x2 : z1z2)
linear

(θ′00 : θ
′
10 : θ

′
01 : θ

′
11)

Pierrick Dartois Completing the Bordeaux cycle in HD 21 / 36



A simplified theory of theta structures
Computing 2-isogeny chains in any dimension

The 2-dimensional case
Tutorial: how to break SIDH in 4D

Conclusion

The gluing
Chain computation and splitting
Uncomplete torsion case

Step 2: gluing isogeny f1 :E1×E2 −→A1

By generic algorithms, we obtain the dual codomain theta null point
(α,β,γ,δ).
Its last coordinate is always δ= 0.

Generic evaluation algorithm would require to divide by δ= 0.
Instead, we use x and x +T with [2]T ∈ ker(f1) to evaluate f1(x).

See Superglue algorithms for new formulas exploiting symmetries
[Dup25].
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Completing the chain computation

Assumption: we are given T1,T2 ∈ (E1×E2)[2e+2] forming an isotropic
subgroup such that ker(F )= 〈[4]T1, [4]T2〉.

Step 4: For all i ≥ 2, compute each generic 2-isogeny fi :Ai−1 −→Ai

from the evaluation of:

([2e−i ]fi−1 ◦ · · · f1(T1), [2e−i ]fi−1 ◦ · · · f1(T2))

Step 5: Compute the splitting change of theta coordinates on E3×E4
induced by a choice of basis (S1,S2,T1,T2) adapted to F .
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The gluing
Chain computation and splitting
Uncomplete torsion case

Square root computations needed

Assumption: we are only given T1,T2 ∈ (E1×E2)[2e ] such that
ker(F )= 〈T1,T2〉.

Step 4: For all 2≤ i ≤ e−2, compute each generic 2-isogeny
fi :Ai−1 −→Ai from the evaluation of:

([2e−i−2]fi−1 ◦ · · · f1(T1), [2e−i−2]fi−1 ◦ · · · f1(T2))

Step 5: Compute the 2-isogeny fe−1 :Ae−2 −→Ae−1 from fe−2 ◦ · · · f1(T1)
and 2 square roots.

Step 6: Compute the 2-isogeny fe :Ae−1 −→Ae using 3 square roots.
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Uncomplete torsion case

How to split with incomplete torsion

Assumption: we are only given T1,T2 ∈ (E1×E2)[2e ] such that
ker(F )= 〈T1,T2〉.

Step 7: Recovering a product theta structure on B :=E3×E4.
We try several change of theta coordinates.
10 tries at most are necessary.
We try several change of theta coordinates until:

θ̃B11,11(0B) :=
∑

t1,t2∈Z/2Z
(−1)t1+t2θBt1+1,t2+1(0B)θ

B
t1,t2(0B)

is zero.
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Tutorial: how to break SIDH in 4D
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The interpolation problem

Problem

Let σ :E1 −→E2 be a q-isogeny and (P ,Q) be a basis of E1[2f ].
Given P ,Q ,σ(P),σ(Q) and q, evaluate σ anywhere in polynomial time.

E1

(P ,Q)
σ

E2

(σ(P),σ(Q))
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A solution from Kani’s lemma

Find a1,a2 ∈Z and e+4≤ 2f such that q+a2
1+a2

2 = 2e .
Consider the 4-dimensional 2e -isogeny:

F :=


a1 a2 σ̂ 0
−a2 a1 0 σ̂

−σ 0 a1 −a2
0 −σ a2 a1

 ∈End(E2
1 ×E2

2 ).

Its kernel is given by:

ker(F )= {
([a1]R − [a2]S , [a2]R + [a1]S ,σ(R),σ(S)) |R ,S ∈E1[2e ]

}
.

From e,a1,a2,P ,Q ,σ(P),σ(Q), one can compute F .
Then for all P ∈E1:

F (P ,0,0,0)= ([a1]P ,−[a2]P ,−σ(P),0).
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Do we have enough torsion?

If f ≥ e+2, we can directly compute T1, · · · ,T4 ∈ (E2
1 ×E2

2 )[2
e+2]

such that ker(F )= 〈[4]T1, · · · , [4]T4〉.
But this is not the case in practice...

If e/2+2≤ f < e+2, we divide F in two parts.
Let e := e1+e2 such that ei +2≤ f .

E2
1 ×E2

2

F

E2
1 ×E2

2
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Do we have enough torsion?

If f ≥ e+2, we can directly compute T1, · · · ,T4 ∈ (E2
1 ×E2

2 )[2
e+2]

such that ker(F )= 〈[4]T1, · · · , [4]T4〉.
But this is not the case in practice...

If e/2+2≤ f < e+2, we divide F in two parts.
Let e := e1+e2 such that ei +2≤ f .

E2
1 ×E2

2

F

E2
1 ×E2

2
F1

C

F̃2

Consider 2ei -isogenies Fi such that F :=F2 ◦F1.
We use e1,e2,a1,a2,P ,Q ,σ(P),σ(Q) to compute F1 and F̃2 and
then F := ˜̃F2 ◦F1.
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The first isogenies of the chain

Let m :=max(v2(a1),v2(a2)).

Then the first isogenies in the 2-isogeny chain F is of the form:

E1

E2
A1 · · · Am

2D gluings 2D isogenies

E1

E2
A1 · · · Am

4D gluing Bm+1 Bm+2 · · ·

This is the same holds for both F1 and F̃2.

Pierrick Dartois Completing the Bordeaux cycle in HD 31 / 36



A simplified theory of theta structures
Computing 2-isogeny chains in any dimension

The 2-dimensional case
Tutorial: how to break SIDH in 4D

Conclusion

Point interpolation
Gluings and splittings
The main steps

Steps to compute F : adapted basis

Step 1: Build matching symplectic basis adapted to F1 and F̃2:

E2
1 ×E2

2

B1
F1

C

(F1)∗(B1)

Hadamard
(F̃2)∗(B2) B2

F̃2 E2
1 ×E2

2

i.e. basis Bi := (Si ,1, · · · ,Si ,4,Ti ,1, · · · ,Ti ,4) of (E2
1 ×E2

2 )[2
ei+2] such that:

ker(F1)= 〈[4]T1,1, · · · , [4]T1,4〉.
ker(F̃2)= 〈[4]T2,1, · · · , [4]T2,4〉.
[2e2 ]F̃2(S2,j )= F1(T1,j ) and F̃2(T2,j )=−[2e1 ]F1(S1,j ).
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Steps to compute F : computing F1

Step 2: Compute the m starting 2-dimensional isogenies:

E1

E2

ϕ1

A1
ϕ2 · · · Am

Step 3: Computing the change of theta coordinates:

Product theta
structure ΘAm ×ΘAm

induced by ϕm ◦ · · · ◦ϕ1

Theta structure ΘAm×Am

adapted to fm+1 :A
2
m −→Bm+1

induced by B1

Step 4: Computing the gluing isogeny fm+1 :A
2
m −→Bm+1.

Step 5: Computing the generic isogenies fi :Bi−1 −→Bi for all
m+2≤ i ≤ e1.
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Steps to compute F : computing F̃2

Step 2: Compute the m starting 2-dimensional isogenies:

E1

E2

ψ1

A′
1

ψ2 · · · A′
m

Step 5: Computing the change of theta coordinates:

Product theta
structure ΘA′

m
×ΘA′

m

induced by ψm ◦ · · · ◦ψ1

Theta structure Θ′
A′
m×A′

m

adapted to gm+1 :A
′2
m −→B ′

m+1
induced by B2

Step 6: Computing the gluing isogeny gm+1 :A
′2
m −→B ′

m+1.

Step 7: Computing the generic isogenies gi :B
′
i−1 −→B ′

i for all
m+2≤ i ≤ e2.
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Steps to compute F : final matching

Step 8: Check that codomains match Be1 =B ′
e2 by checking that:

ΘBe1
=H ◦ΘB ′

e2
.

Step 9: Compute F2 = g̃1 ◦ · · · ◦ g̃e2 . This is immediate by Hadamard
transform: if f :A−→B is a 2-isogeny, then

H ◦ΘB(f (x))⋆H ◦ΘB(0B)=H ◦S ◦ΘA(x)

becomes:
ΘA(f̃ (y))⋆ΘA(0A)=H ◦S ◦H ◦ΘB(y).

Finally, F =F2 ◦F1 can be evaluated.
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Conclusion and future works

The theory is getting more accessible.

Formulas are really practical to implement.

Future/ongoing works:

What about odd degrees?

Constant time algorithms.

New gluing formulas in dimension 4.
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