Revenge of the 4D: Can 4-dimensional isogenies become practical?

Pierrick Dartois

2025, December 9

Isogenies and the Deuring correspondence From 1D to 4D to 2D: a brief history of SQIsign The 4D revival: (qt-)Pegasis and MIKE Computing higher dimensional isogenies Conclusion

- 1 Isogenies and the Deuring correspondence
- 2 From 1D to 4D to 2D: a brief history of SQIsign
- 3 The 4D revival: (qt-)Pegasis and MIKE
- 4 Computing higher dimensional isogenies

Overview of my contributions involved in this presentation

On SQIsign:

- SQIsignHD: New Dimensions in Cryptography, with Antonin Leroux, Damien Robert and Benjamin Wesolowski. EUROCRYPT 2024.
- SQIsign2D-West: The Fast, the Small and the Safer, with Andrea Basso, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert and Benjamin Wesolowski. ASIACRYPT 2024.

Overview of my contributions involved in this presentation

On new 4D applications:

- PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies, with Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert, Ryan Rueger, Frederik Vercauteren and Benjamin Wesolowski. CRYPTO 2025.
- qt-Pegasis: Simpler and Faster Effective Class Group Actions, with Jonathan Komada Eriksen, Riccardo Invernizzi and Frederik Vercauteren. Preprint, 2025.
- Implementation of MIKE *in preparation*, with Jonathan Komada Eriksen, Krijn Reijnders, Damien Robert and Ryan Rueger.

Overview of my contributions involved in this presentation

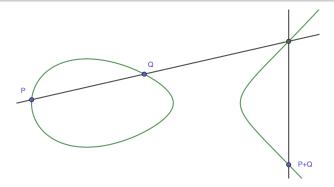
On 4D computations:

- Fast computation of 2-isogenies in dimension 4 and cryptographic applications, single author, Journal of Algebra, 2025.
- Improving 4-dimensional isogeny formulae in preparation, with Max Duparc.

Isogenies The Deuring correspondence

Isogenies and the Deuring correspondence

Elliptic curves



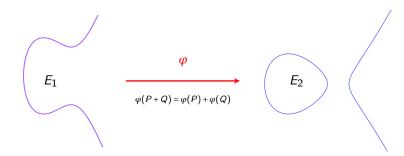
• An elliptic curve E/\mathbb{F}_q is defined by:

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_a$

with an infinite element 0_E .

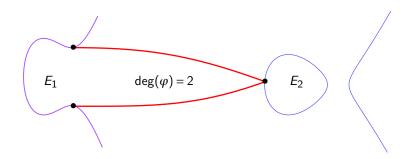
• E is equipped with a commutative group law.

Isogenies



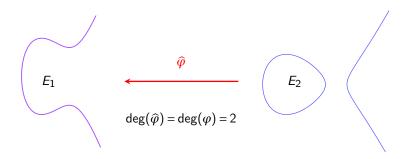
$$\varphi(x,y) = \left(\frac{p(x)}{q(x)}, y \frac{r(x)}{s(x)}\right)$$

Isogenies - degree



An isogeny of degree n is called an n-isogeny.

Isogenies - the dual isogeny



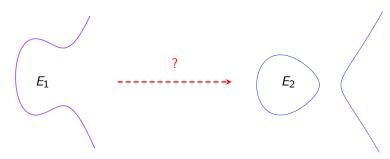
An *n*-isogeny φ satisfies $\widehat{\varphi} \circ \varphi = [n]$.

Isogeny chains

$$\deg(\varphi_n\circ\cdots\circ\varphi_1)=\prod_{i=1}^n\deg(\varphi_i)$$

Why are isogenies interesting in cryptography?

The isogeny problem: Given two elliptic curves $E_1, E_2/\mathbb{F}_q$, find an isogeny $E_1 \longrightarrow E_2$.



This problem is assumed to be hard for both classical and quantum computers.

Definition (Efficient representation)

Let $\varphi: E \longrightarrow E'$ be a *d*-isogeny over \mathbb{F}_q . An <u>efficient representation</u> of φ with respect to an algorithm $\mathscr A$ is some data $D_{\varphi} \in \{0,1\}^*$ such that:

- **1** D_{φ} has size poly(log(d), log(q)).
- ② For all $P \in E(\mathbb{F}_{q^k})$, $\mathscr{A}(D_{\varphi}, P)$ returns $\varphi(P)$ in time poly(log(d), $k \log(q)$).

Examples of efficient representations:

• If $deg(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:

Examples of efficient representations:

• If $deg(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:

• If $\deg(\varphi)$ is smooth, a generator $P \in E(\mathbb{F}_q)$ s.t. $\ker(\varphi) = \langle P \rangle$ (Vélu).

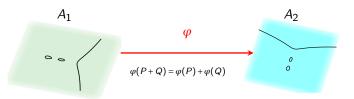
Examples of efficient representations:

• If $deg(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:

- If $\deg(\varphi)$ is smooth, a generator $P \in E(\mathbb{F}_q)$ s.t. $\ker(\varphi) = \langle P \rangle$ (Vélu).
- New: If $\deg(\varphi) < 2^e$ is odd and $E[2^e] = \langle P, Q \rangle$, the image points $(\varphi(P), \varphi(Q))$ (higher dimensional interpolation).

Isogenies between abelian varieties

- Abelian varieties are projective abelian group varieties, generalizing elliptic curves.
- Between abelian varieties, isogenies are morphisms which are surjective and of finite kernel.



An isogeny between abelian surfaces

n-isogenies in higher dimension and their degree

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.

n-isogenies in higher dimension and their degree

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.
- φ is an *n*-isogeny if $\widetilde{\varphi} \circ \varphi = [n]$.

n-isogenies in higher dimension and their degree

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.
- φ is an *n*-isogeny if $\widetilde{\varphi} \circ \varphi = [n]$.
- 1 True between elliptic curves but not a general fact.
- n-isogenies have degree n^g (with $g = \dim(A) = \dim(B)$).

The Endomorphism ring

Definition (Endomorphism ring)

$$End(E) = \{0\} \cup \{Isogenies \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

The Endomorphism ring

Definition (Endomorphism ring)

$$End(E) = \{0\} \cup \{Isogenies \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/\mathbb{F}_q $(p = \operatorname{char}(\mathbb{F}_q))$. Then $\operatorname{End}(E)$ is either isomorphic to:

- An order in a quadratic imaginary field. We say that E is ordinary.
- A maximal order in the quaternion algebra ramifying at p and ∞ . We say that E is supersingular.

• Quaternion algebra ramifying at p and ∞ : A 4-dimensional non commutative division algebra over \mathbb{Q} :

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

 Quaternion algebra ramifying at p and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathscr{O} \subset \mathscr{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.

 Quaternion algebra ramifying at p and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathscr{O} \subset \mathscr{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.
- Left Ideal: A left \mathscr{O} -ideal I is a full rank lattice $I \subset \mathscr{B}_{p,\infty}$ such that $\mathscr{O} \cdot I = I$.
- **Right Ideal:** A right \mathscr{O} -ideal I is a full rank lattice $I \subset \mathscr{B}_{p,\infty}$ such that $I \cdot \mathscr{O} = I$.

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

• **Norm:** $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

- **Norm:** $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2)$.
- **Ideal norm:** $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate: $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$.

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

- **Norm:** $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2)$.
- **Ideal norm:** $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate: $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$.
- Equivalent left \mathscr{O} -ideals: $I \sim J \Longleftrightarrow \exists \alpha \in \mathscr{B}_{p,\infty}^*$, $J = I\alpha$.

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O} \cong \operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathscr{B}_{p,\infty})$

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty})$
\widehat{arphi}	$\overline{I_{arphi}}$

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \left(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \right)$
\widehat{arphi}	$\overline{\mathit{I}_{arphi}}$
$\varphi \circ \psi$	$l_{\psi}\cdot l_{\varphi}$

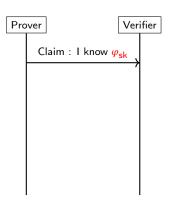
Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty})$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$l_{m{\psi}} \cdot l_{m{\phi}}$
$deg(\varphi)$	$nrd(\mathit{I}_{oldsymbol{arphi}})$

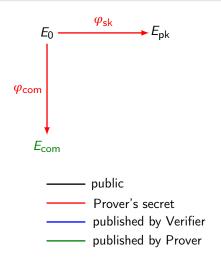
Isogenies and the Deuring correspondence From 1D to 4D to 2D: a brief history of SQIsign The 4D revival: (qt-)Pegasis and MIKE Computing higher dimensional isogenies Conclusion

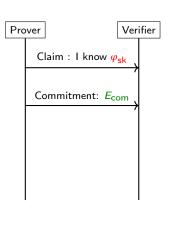
SQIsign SQIsignHD and SQIsign2D*

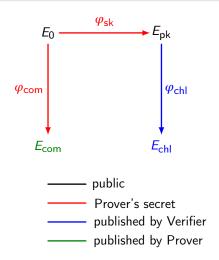
From 1D to 4D to 2D: a brief history of SQIsign

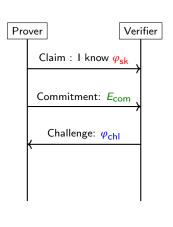
The SQIsign identification scheme

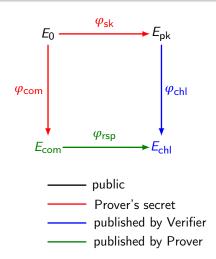


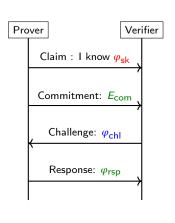


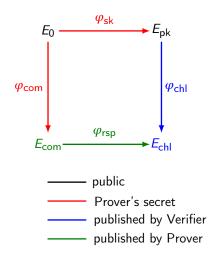


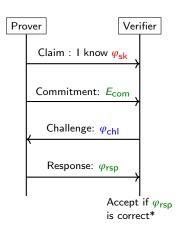




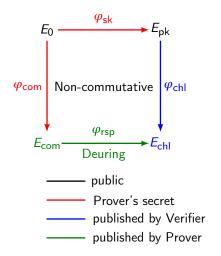


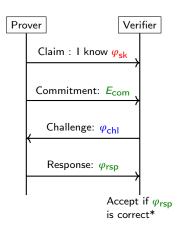






^{*} $\varphi_{\rm rsp}$ should not factor through $\varphi_{\rm chl}$.





^{*} $\varphi_{\rm rsp}$ should not factor through $\varphi_{\rm chl}$.

Goal: In SQIsign, we know $\operatorname{End}(E_{\operatorname{com}})$ and $\operatorname{End}(E_{\operatorname{chl}})$ and we want an isogeny $\varphi_{\operatorname{rsp}}: E_{\operatorname{com}} \longrightarrow E_{\operatorname{chl}}$.

Goal: In SQIsign, we know $\operatorname{End}(E_{\operatorname{com}})$ and $\operatorname{End}(E_{\operatorname{chl}})$ and we want an isogeny $\varphi_{\operatorname{rsp}}: E_{\operatorname{com}} \longrightarrow E_{\operatorname{chl}}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate *J* into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.

Goal: In SQIsign, we know $\operatorname{End}(E_{\operatorname{com}})$ and $\operatorname{End}(E_{\operatorname{chl}})$ and we want an isogeny $\varphi_{\operatorname{rsp}}: E_{\operatorname{com}} \longrightarrow E_{\operatorname{chl}}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- \checkmark Becomes hard when End(E_1) or End(E_2) is unknown.

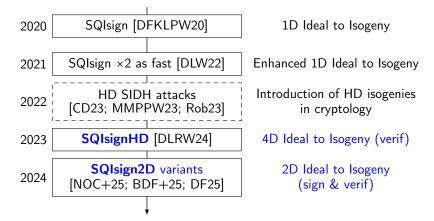
Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.
- X Slow in practice because of the red steps.

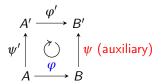
HD techniques for the Deuring correspondence

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute J~I random of smooth norm via [KLPT14] of (small) norm.
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$ using dimension 2 or 4 interpolation techniques.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.
- √ Faster than the previous method.

A brief history of SQIsign

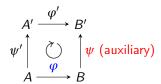


Consider the commutative diagram:



where φ and φ' are q-isogenies and ψ and ψ' are r-isogenies.

Consider the commutative diagram:



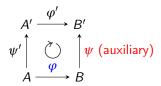
where φ and φ' are q-isogenies and ψ and ψ' are r-isogenies.

• Assume that gcd(q, r) = 1and $q + r = 2^e$. Then

$$F := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : A \times B' \longrightarrow B \times A'$$

is a 2^e -isogeny, i.e. $\widetilde{\Phi} \circ \Phi = [2^e]$.

Consider the commutative diagram:



where φ and φ' are q-isogenies and ψ and ψ' are r-isogenies.

• Assume that gcd(q, r) = 1and $q + r = 2^e$. Then

$$F := \begin{pmatrix} \boldsymbol{\varphi} & \widehat{\boldsymbol{\psi}} \\ -\boldsymbol{\psi}' & \widehat{\boldsymbol{\varphi}}' \end{pmatrix} : A \times B' \longrightarrow B \times A'$$

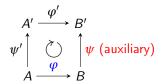
is a 2^e -isogeny, i.e. $\widetilde{\Phi} \circ \Phi = [2^e]$.

• Its kernel is:

$$\ker(F) = \{([q]P, \psi \circ \varphi(P)) \mid P \in A[2^e]\},\$$

so F can be computed from q and $\psi \circ \varphi(A[2^e])$.

Consider the commutative diagram:



where φ and φ' are q-isogenies and ψ and ψ' are r-isogenies.

• Assume that gcd(q, r) = 1and $q + r = 2^e$. Then

$$F := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : A \times B' \longrightarrow B \times A'$$

is a 2^e -isogeny, i.e. $\widetilde{\Phi} \circ \Phi = [2^e]$.

• Its kernel is:

$$\ker(F) = \{([q]P, \frac{\psi}{\varphi}(P)) \mid P \in A[2^e]\},$$

so F can be computed from q and $\psi \circ \varphi(A[2^e])$.

F efficiently represents φ:

$$F(P,0) = (\varphi(P), -\psi'(P)).$$

Goal: How to efficiently represent $\varphi = \varphi_{rsp} : E_{com} \rightarrow E_{chl}$?

Goal: How to efficiently represent $\varphi = \varphi_{rsp} : E_{com} \rightarrow E_{chl}$?

SQIsignHD:

• The auxiliary isogeny is:

$$\psi := \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix} : E_{\text{chl}}^2 \to E_{\text{chl}}^2,$$

with
$$r = 2^e - q = a_1^2 + a_2^2$$
.

• $F: E_{\text{com}}^2 \times E_{\text{chl}}^2 \to E_{\text{com}}^2 \times E_{\text{chl}}^2$ is 4-dimensional and embeds $\text{Diag}(\varphi, \varphi)$.

Goal: How to efficiently represent $\varphi = \varphi_{rsp} : E_{com} \rightarrow E_{chl}$?

SQIsignHD:

The auxiliary isogeny is:

$$\psi := \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix} : E_{\text{chl}}^2 \to E_{\text{chl}}^2,$$

with
$$r = 2^e - q = a_1^2 + a_2^2$$
.

- $F: E_{\text{com}}^2 \times E_{\text{chl}}^2 \rightarrow E_{\text{com}}^2 \times E_{\text{chl}}^2$ is 4-dimensional and embeds $\text{Diag}(\varphi, \varphi)$.
- \checkmark Signature: $\varphi(E_{com}[2^e])$ and q easy to compute.
- Costly 4-dimensional verification.

Goal: How to efficiently represent $\varphi = \varphi_{rsp} : E_{com} \to E_{chl}$?

SQIsignHD:

• The auxiliary isogeny is:

$$\psi := \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix} : E_{\mathsf{chl}}^2 \to E_{\mathsf{chl}}^2,$$

with
$$r = 2^e - q = a_1^2 + a_2^2$$
.

- $F: E_{\text{com}}^2 \times E_{\text{chl}}^2 \rightarrow E_{\text{com}}^2 \times E_{\text{chl}}^2$ is 4-dimensional and embeds Diag (φ, φ) .
- $\sqrt{\text{Signature: } \varphi(E_{\text{com}}[2^e])}$ and q easy to compute.
- Costly 4-dimensional verification.

SQIsign2D*:

- The auxiliary isogeny is ψ : $E_{chl} \rightarrow E_{aux}$ of degree $r = 2^e q$.
- $F: E_{com} \times E_{aux} \rightarrow E_{chl} \times E'$ is 2-dimensional.

Goal: How to efficiently represent $\varphi = \varphi_{rsp} : E_{com} \to E_{chl}$?

SQIsignHD:

The auxiliary isogeny is:

$$\psi := \begin{pmatrix} a_1 & -a_2 \\ a_2 & a_1 \end{pmatrix} : E_{\text{chl}}^2 \to E_{\text{chl}}^2,$$

with
$$r = 2^e - q = a_1^2 + a_2^2$$
.

- $F: E_{\text{com}}^2 \times E_{\text{chl}}^2 \to E_{\text{com}}^2 \times E_{\text{chl}}^2$ is 4-dimensional and embeds Diag (φ, φ) .
- $\sqrt{\text{Signature: } \varphi(E_{\text{com}}[2^e])}$ and q easy to compute.
- Costly 4-dimensional verification.

SQIsign2D*:

- The auxiliary isogeny is ψ : $E_{chl} \rightarrow E_{aux}$ of degree $r = 2^e q$.
- $F: E_{com} \times E_{aux} \rightarrow E_{chl} \times E'$ is 2-dimensional.
- X Signature: $\psi \circ \varphi(E_{com}[2^e])$ and q more tricky to compute (2D computation).
- Fast 2-dimensional verification.

Timings

Table: Comparison of time performance in ms of SQIsign-v1 (NIST round 1), SQIsignHD and SQIsign2D-West on an Intel Core i5-1335U 4600MHz CPU. These variants have been implemented in C, except SQIsignHD verification (starred) that has been implemented in Python/Sagemath.

		NIST I	NIST III	NIST V
	Key Gen.	355.72	5 625.72	22 445.3
SQIsign 1.0	Signature	554.78	10 553.18	41 322.21
	Verification	7.77	195.86	571.77
	Key Gen.	14	46	109
SQIsignHD	Signature	8	24	52
	Verification	710.63*	1 308.14*	2 037.14*
	Key Gen.	16.53	52.24	113.18
SQIsign2D-West	Signature	58.17	220.26	413.46
	Verification	2.53	9.77	23.57

Isogenies and the Deuring correspondence From 1D to 4D to 2D: a brief history of SQIsign The 4D revival: (qt-)Pegasis and MIKE Computing higher dimensional isogenies Conclusion

Ideal class group action on oriented curves (qt-)Pegasis The module action on oriented abelian varieties MIKE

The 4D revival: (qt-)Pegasis and MIKE

Ideal class group action [CK20]

- Let \mathfrak{O} be a quadratic imaginary order.
- A (primitively) \mathfrak{D} -oriented curve is a supersingular elliptic curve $E/\overline{\mathbb{F}}_p$ with a maximal embedding $\iota: \mathfrak{D} \hookrightarrow \operatorname{End}(E)$.

Ideal class group action [CK20]

- Let $\mathfrak D$ be a quadratic imaginary order.
- A (primitively) \mathfrak{D} -oriented curve is a supersingular elliptic curve $E/\overline{\mathbb{F}}_p$ with a maximal embedding $\iota : \mathfrak{D} \hookrightarrow \operatorname{End}(E)$.

Theorem (Belding, Colò, Kohel)

 $Cl(\mathfrak{O})$ acts freely on \mathfrak{O} -oriented curves and admits at most two orbits.

Ideal class group action on oriented curves (qt-)Pegasis The module action on oriented abelian varieties MIKE

Ideal class group action [CK20]

D-ideals	D-oriented curves and isogenies				
Ideal $\mathfrak{a} \subseteq \mathfrak{O}$	$\varphi_{\mathfrak{a}}: E \longrightarrow E_{\mathfrak{a}}:= \mathfrak{a} \cdot E$				
b ~ a	$a \cdot E \simeq b \cdot E$				
αΩ	$\iota(\alpha): E \longrightarrow E$				
$\overline{\mathfrak{a}}$	$\widehat{arphi}_{\mathfrak{a}}$				
ab	$arphi_{\mathfrak{b}}\circarphi_{\mathfrak{a}}$				
$N(\mathfrak{a})$	$deg(arphi_\mathfrak{a})$				

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- **2** Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **3** One way: given x and $g \cdot x$, $g \in G$ is hard to find.

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- ② Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **3** One way: given x and $g \cdot x$, $g \in G$ is hard to find.
- With effective group actions, we can derive many schemes (including key exchange, signatures and more).

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- ② Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **1** One way: given x and $g \cdot x$, $g \in G$ is hard to find.
 - With effective group actions, we can derive many schemes (including key exchange, signatures and more).
 - Actually, group actions based on orientations are *restricted* effective group actions. We can act by ideals of small norms l_1, \dots, l_t that generate $Cl(\mathfrak{O})$.
 - Issue: This makes schemes less efficient and less scalable to bigger parameters.

Ideal class group action on oriented curves (qt-)Pegasis The module action on oriented abelian varieties MIKE

The Clapoti method [PR23]

Clapoti: CLass group Action in POlynomial TIme. Generic method that also applies to SQIsign2D.

Goal: Given an \mathfrak{D} -oriented curve E and **any** ideal $\mathfrak{a} \subseteq \mathfrak{D}$, compute $E_{\mathfrak{a}} := \mathfrak{a} \cdot E$.

The Clapoti method [PR23]

Clapoti: CLass group Action in POlynomial TIme. Generic method that also applies to SQIsign2D.

Goal: Given an \mathfrak{D} -oriented curve E and **any** ideal $\mathfrak{a} \subseteq \mathfrak{D}$, compute $E_{\mathfrak{a}} := \mathfrak{a} \cdot E$.

• **Step 1:** Solve a norm equation:

$$\sum_{i} u_{i} N(\mathfrak{b}_{i}) = 2^{e} \quad (\star)$$

involving equivalent ideals $\mathfrak{b}_i \sim \mathfrak{a}$ and $u_i \in \mathbb{N}^*$.

- Step 2: Use the solution to (\star) and Kani's lemma [Kan97] to compute a higher dimensional 2^e -isogeny F.
- **Step 3:** Extract E_{α} from the codomain of F.

qt-Pegasis [DEIV25]

• **Step 1:** Find $\mathfrak{b}_1,\mathfrak{c}_1,\mathfrak{b}_2,\mathfrak{c}_2 \sim \mathfrak{a}$ such that

$$N(\mathfrak{b}_1) + N(\mathfrak{c}_1) + N(\mathfrak{b}_2) + N(\mathfrak{c}_2) = 2^e$$

with $N(\mathfrak{b}_i)$ odd and $N(\mathfrak{c}_i)$ even.

• Step 2: Compute $F: E^4 \to \underline{E_a} \times E_{\overline{a}} \times A$ given by ([Kan97] ×2):

In 2D
$$E_{\overline{\mathfrak{a}}} \xrightarrow{\varphi'_{\mathfrak{b}_{i}}} E$$

$$\widehat{\varphi'}_{\mathfrak{c}_{i}} \xrightarrow{\varphi_{\mathfrak{b}_{i}}} E_{\mathfrak{a}}$$

$$\Phi_{i} := \begin{pmatrix} \varphi_{\mathfrak{b}_{i}} & \varphi_{\mathfrak{c}_{i}} \\ -\widehat{\varphi}'_{\mathfrak{c}_{i}} & \widehat{\varphi}'_{\mathfrak{b}_{i}} \end{pmatrix} : E^{2} \to \underline{E}_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}} \qquad F := \begin{pmatrix} \Phi_{1} & \Phi_{2} \\ -\Psi_{2} & \widetilde{\Psi}_{1} \end{pmatrix} : E^{4} \to \underline{E}_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}} \times A$$

$$F := \begin{pmatrix} \Phi_1 & \Phi_2 \\ -\Psi_2 & \widetilde{\Psi}_1 \end{pmatrix} : E^4 \to E_{\mathfrak{a}} \times E_{\overline{\mathfrak{a}}} \times A$$

Comparison with state of the art

Paper	$\log_2(\Delta_{\mathfrak{O}})$	500	1000	1500	2000	4000
SCALLOP [FFK+23]*	C++	35s	12m30s	_	_	_
SCALLOP-HD [CLP24]*	Sage	88s	19m	-	-	_
PEARL-SCALLOP [ABE+24]	C++	30s	58s	12m	-	_
KLaPoTi [PPS24]	Sage	200s	-	-	_	_
KLai 011 [i 1 324]	Rust	1.95s	-	-	_	_
Pegasis [DEF+25]	Sage	1.53s	4.21s	10.5s	21.3s	122s
qt-Pegasis (This work)	Sage	0.85s	2.48s	5.54s	9.69s	47.6s

Table: Comparison between (qt-)Pegasis and other effective group actions in the literature. The last 5 columns gives the timings corresponding to the different security levels, where s/m gives the number of seconds/minutes in wall-clock time. SCALLOP and SCALLOP-HD are starred because they were measured on a different hardware setup.

The module action on abelian varieties [Rob24]

- An abelian variety A is \mathfrak{O} -oriented if there is a maximal embedding $\iota : \mathfrak{O} \hookrightarrow \operatorname{End}(A)$.
- If M is a finitely presented projective \mathfrak{D} -module, $M \cdot A$ defines an \mathfrak{D} -oriented abelian variety of dimension:

$$\dim(M \cdot A) = \operatorname{rank}(M) \cdot \dim(A).$$

The module action on abelian varieties [Rob24]

- An abelian variety A is \mathfrak{O} -oriented if there is a maximal embedding $\iota : \mathfrak{O} \hookrightarrow \operatorname{End}(A)$.
- If M is a finitely presented projective \mathfrak{D} -module, $M \cdot A$ defines an \mathfrak{D} -oriented abelian variety of dimension:

$$\dim(M \cdot A) = \operatorname{rank}(M) \cdot \dim(A).$$

- An injective homomorphism $M_2 \rightarrow M_1$ with finite cokernel induces an isogeny $M_1 \cdot A \rightarrow M_2 \cdot A$.
- Hence, if $M \subseteq \mathfrak{O}^n$ is a submodule of rank n, $M \cdot A$ can be computed via an isogeny $\mathfrak{O}^n \cdot A = A^n \to M \cdot A$.

The module action on abelian varieties [Rob24]

- An abelian variety A is \mathfrak{O} -oriented if there is a maximal embedding $\iota : \mathfrak{O} \hookrightarrow \operatorname{End}(A)$.
- If M is a finitely presented projective \mathfrak{D} -module, $M \cdot A$ defines an \mathfrak{D} -oriented abelian variety of dimension:

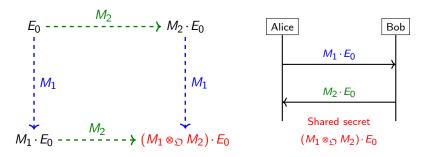
$$\dim(M \cdot A) = \operatorname{rank}(M) \cdot \dim(A).$$

- An injective homomorphism $M_2 \rightarrow M_1$ with finite cokernel induces an isogeny $M_1 \cdot A \rightarrow M_2 \cdot A$.
- Hence, if $M \subseteq \mathfrak{O}^n$ is a submodule of rank n, $M \cdot A$ can be computed via an isogeny $\mathfrak{O}^n \cdot A = A^n \to M \cdot A$.

Theorem (Page, Robert, 2023)

This defines an anti-equivalence of categories between finitely presented projective \mathfrak{D} -modules and \mathfrak{D} -oriented abelian varieties \mathfrak{D} -isogenous to a product of supersingular elliptic curves.

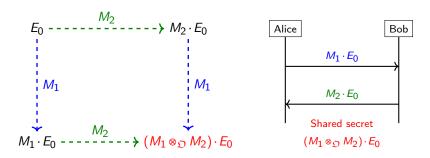
Module isogeny key exchange (MIKE) [Rob24]



• Exploits the commutativity of the module action:

$$M_2 \cdot (M_1 \cdot E_0) = (M_1 \otimes_{\mathfrak{O}} M_2) \cdot E_0 = M_1 \cdot (M_2 \cdot E_0)$$

Module isogeny key exchange (MIKE) [Rob24]

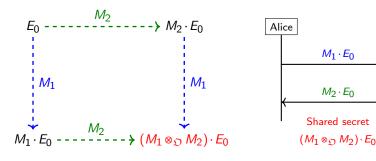


• Exploits the commutativity of the module action:

$$M_2 \cdot (M_1 \cdot E_0) = (M_1 \otimes_{\Sigma} M_2) \cdot E_0 = M_1 \cdot (M_2 \cdot E_0)$$

 Similar to (C)SIDH but without the torsion points vulnerability or Kuperberg's subexponential attack.

Module isogeny key exchange (MIKE) (Ongoing)



- Assume $rank(M_1) = rank(M_2) = 2$.
- Alice computes a 2-dimensional isogeny $E_0^2 \rightarrow M_1 \cdot E_0$.
- Then she computes a 4-dimensional isogeny

$$(M_2 \cdot E_0)^2 \to M_1 \cdot (M_2 \cdot E_0) = (M_1 \otimes_{\Sigma} M_2) \cdot E_0.$$

Bob

Isogenies and the Deuring correspondence From 1D to 4D to 2D: a brief history of SQlsign The 4D revival: (qt-)Pegasis and MIKE Computing higher dimensional isogenies Conclusion

Theta structures Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

Computing higher dimensional isogenies

Theta structures

Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

Definition: theta structure

Definition (Mumford, Duparc)

Let A be a PPAV of dimension g. A theta structure of level n is a map

$$\Theta(n): A \longrightarrow \mathbb{P}^{n^g - 1}$$

$$x \longmapsto (\theta_i(x))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$$

along with a symplectic isomorphism (i.e. that respects pairings):

$$\overline{\Theta}(n): (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g} \stackrel{\sim}{\longrightarrow} A[n]$$

satisfying the theta group action relation:

$$\theta_i(x + \overline{\Theta}(n)(j,\chi)) = \chi(i+j)^{-1}\theta_{i+j}(x),$$

for all $x \in A$, $i,j \in (\mathbb{Z}/n\mathbb{Z})^g$ and $\chi \in \widehat{(\mathbb{Z}/n\mathbb{Z})^g}$.

Theta structures Computing 2-isogeny chains

Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

The case of level n = 2

- We use theta structures of level n = 2.
- This gives the minimal number of coordinates (2^g) that is arithmetically relevant.

Theta structures

Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

The case of level n=2

- We use theta structures of level n = 2.
- This gives the minimal number of coordinates (2^g) that is arithmetically relevant.
- If A is not a (polarised) product, a level 2 theta structure induces an embedding of the Kummer variety:

$$\Theta(2): A/\pm \longrightarrow \mathbb{P}^{2^g-1}$$

• Points are represented up to sign: $\Theta(2)(P)$ represents $\pm P \in A/\pm$.

The case of level n=2

- We use theta structures of level n=2.
- This gives the minimal number of coordinates (2^g) that is arithmetically relevant.
- If A is not a (polarised) product, a level 2 theta structure induces an embedding of the Kummer variety:

$$\Theta(2): A/\pm \longrightarrow \mathbb{P}^{2^g-1}$$

- Points are represented up to sign: $\Theta(2)(P)$ represents $\pm P \in A/\pm$.
- Analogue of working with (x:z)-coordinates over elliptic curves, e.g. we have differential addition formulas

$$(\pm P, \pm Q, \pm (P-Q)) \longmapsto \pm (P+Q).$$

Theta structures
Computing 2-isogeny chains
Computing a generic 2-isogeny
Non-generic 2-isogenies

Computing a 2^e -isogeny in dimension g

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Computing a 2^e -isogeny in dimension g

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Method:

• Decompose f as a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$

• Compute every 2-isogeny iteratively, using:

$$\ker(f_i) = [2^{e-i}]f_{i-1} \circ \cdots \circ f_1(\ker(f)).$$

• The number of duplications and evaluations is $O(e\log(e))$.

Computing a 2^e -isogeny in dimension g

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Method:

• Decompose f as a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$

Compute every 2-isogeny iteratively, using:

$$\ker(f_i) = [2^{e-i}]f_{i-1} \circ \cdots \circ f_1(\ker(f)).$$

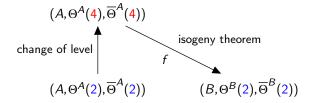
• The number of duplications and evaluations is $O(e \log(e))$.

Technicality: We need more torsion $K \subset A[2^{e+2}]$ above the kernel.

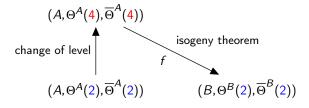
Theta structures
Computing 2-isogeny chains
Computing a generic 2-isogeny
Non-generic 2-isogenies

Computing a 2-isogeny: change of level

Computing a 2-isogeny: change of level

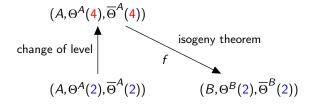


Computing a 2-isogeny: change of level



- The level 4 theta structure $(A, \Theta^A(4), \overline{\Theta}^A(4))$ is induced by a symplectic isomorphism $(\mathbb{Z}/8\mathbb{Z})^g \times (\overline{\mathbb{Z}/8\mathbb{Z}})^g \xrightarrow{\sim} A[8]$.
- For that reason, we need 8-torsion points T_1, \dots, T_g such that $\ker(f) = \langle [4]T_1, \dots, [4]T_g \rangle$ to compute f.

Computing a 2-isogeny: change of level



- The level 4 theta structure $(A, \Theta^A(4), \overline{\Theta}^A(4))$ is induced by a symplectic isomorphism $(\mathbb{Z}/8\mathbb{Z})^g \times (\overline{\mathbb{Z}/8\mathbb{Z}})^g \xrightarrow{\sim} A[8]$.
- For that reason, we need 8-torsion points T_1, \dots, T_g such that $\ker(f) = \langle [4]T_1, \dots, [4]T_g \rangle$ to compute f.
- With this data, we compute the codomain theta-null point $(\theta_i(0_B))_i$.

2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

$$(\theta_i^A(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\overline{\theta}_i^B(0_B))_i} * \xrightarrow{H} (\theta_i^B(f(x)))_i$$

where:

•
$$H: (x_i)_i \longmapsto \left(\sum_{i \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{\langle i|j \rangle} x_i\right)_i$$
 (Hadamard).

•
$$S:(x_i)_i \longrightarrow (x_i^2)_i$$
.

$$(x_i)_i \star (y_i)_i := (x_i y_i)_i.$$

•
$$(\widetilde{\theta}_i^B(0_B))_i = H((\theta_i^B(0_B))_i)$$
 (dual theta null point).

Theta structures Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

Computational cost [DMPR25; Dar25]

	dim. 2	dim. 4	
	[DMPR25]	Old [Dar25]	New (in progress)
Codomain	6M + 8S + 16a	87M + 64S + 64a	62M + 64S + 64a
Evaluation	4S + 4M + 16a	16M + 16S + 128a	

Table: Computational cost of codomain theta null-point computation and isogeny evaluation in dimensions 2 and 4. M, S and a are respectively the cost of one multiplication, squaring and addition/subtraction over the base field.

Non-generic 2-isogenies in the beginning of the chain

When $A = B_1 \times B_2$ is a product, non-generic isogenies appear in the beginning of the chain:

$$A_0 = A \xrightarrow{f_1} A_1 \cdots A_2 \xrightarrow{f_{e-1}} A_{e-1} \xrightarrow{f_e} A_e = B$$

Non-generic Generic isogenies

Non-generic 2-isogenies in the beginning of the chain

When $A = B_1 \times B_2$ is a product, non-generic isogenies appear in the beginning of the chain:

$$A_0 = A \xrightarrow{f_1} A_1 \cdots A_2 \xrightarrow{f_{e-1}} A_{e-1} \xrightarrow{f_e} A_e = B$$

Non-generic Generic isogenies

Common non-generic isogenies:

Non-gluing isogenies (computed in lower dimension):

- Diagonal isogenies $f:(x,y) \in B_1 \times B_2 \longrightarrow (\varphi(x),\psi(y)) \in C_1 \times C_2$.
- Special endomorphisms, e.g. $f:(x,y) \in B^2 \longrightarrow (x+y,x-y) \in B^2$.

Gluing isogenies $f: B_1 \times B_2 \to C$ where C is not a product.

Theta structures Computing 2-isogeny chains Computing a generic 2-isogeny Non-generic 2-isogenies

Evaluating a gluing 2-isogeny

• The evaluation algorithm no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.

Evaluating a gluing 2-isogeny

- The evaluation algorithm no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.
- Why? Because level 2 theta coordinates embeds product of Kummers:

$$\Theta(2): A_1/\pm \times A_2/\pm \longrightarrow \mathbb{P}^{2^g-1}$$

So we are computing:

$$(\pm x, \pm y) \longmapsto \pm f(x, y)$$

• We need additional information to lift the sign indetermination.

Evaluating a gluing 2-isogeny

- The evaluation algorithm no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.
- Why? Because level 2 theta coordinates embeds product of Kummers:

$$\Theta(2): A_1/\pm \times A_2/\pm \longrightarrow \mathbb{P}^{2^g-1}$$

So we are computing:

$$(\pm x, \pm y) \longmapsto \pm f(x, y)$$

• We need additional information to lift the sign indetermination.

Solution: Using x and translates x + T where $[2]T \in \ker(f)$, we can evaluate f(x).

Evaluating a gluing 2-isogeny

- The evaluation algorithm no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.
- Why? Because level 2 theta coordinates embeds product of Kummers:

$$\Theta(2): A_1/\pm \times A_2/\pm \longrightarrow \mathbb{P}^{2^g-1}$$

So we are computing:

$$(\pm x, \pm y) \longmapsto \pm f(x, y)$$

We need additional information to lift the sign indetermination.

Solution: Using x and translates x + T where $[2]T \in \ker(f)$, we can evaluate f(x).

Ongoing work: new formulas in dimension 4 using x + T and x - T, extending a previous work in dimension 2 [Dup25].

Thank you for listening

- 4-dimensional isogenies have been introduced to attack SIDH and accelerate SQIsign signature.
- Despite the existence of 2-dimensional competitors (e.g. for SQIsign), they are still relevant (Pegasis, MIKE).

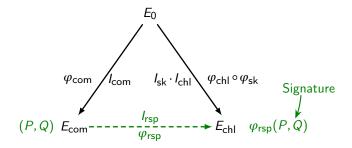
Future works:

- Research to lower the dimension (e.g. 2-dimensional Pegasis) .
- Keep improving the formulae, e.g. with uniform formulae for generic and non-generic isogenies (for simplicity, constant time).

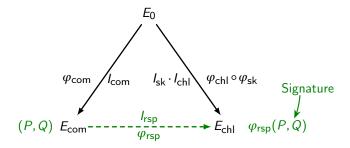
My works can be found on my webpage:

Appendix: more on SQIsgnHD and SQIsign2D*

Signature in SQIsignHD: evaluate torsion points



Signature in SQIsignHD: evaluate torsion points



Via the Deuring correspondence: If $P \in E_{com}[2^e]$, then

$$\varphi_{\mathsf{rsp}}(P) = [\mu] \varphi_{\mathsf{chl}} \circ \varphi_{\mathsf{sk}} \circ \widehat{\alpha} \circ \widehat{\varphi}_{\mathsf{com}}(P),$$

with $\mu \equiv (\deg(\varphi_{sk}) \deg(\varphi_{com}) \deg(\varphi_{chl}))^{-1} \mod 2^e$ and $\alpha \in \mathcal{O}_0$ such that $I_{sk} \cdot I_{chl} \cdot \bar{I}_{rsp} \cdot \bar{I}_{com} = \mathcal{O}_0 \cdot \alpha$.

Pierrick Dartois

• Find $a_1, a_2 \in \mathbb{Z}$ such that $\operatorname{nrd}(I_{rsp}) + a_1^2 + a_2^2 = 2^e$.

- Find $a_1, a_2 \in \mathbb{Z}$ such that $nrd(I_{rsp}) + a_1^2 + a_2^2 = 2^e$.
- Consider the 4-dimensional isogeny:

$$F := \begin{pmatrix} a_1 & a_2 & \widehat{\varphi}_{\mathsf{rsp}} & 0 \\ -a_2 & a_1 & 0 & \widehat{\varphi}_{\mathsf{rsp}} \\ -\varphi_{\mathsf{rsp}} & 0 & a_1 & -a_2 \\ 0 & -\varphi_{\mathsf{rsp}} & a_2 & a_1 \end{pmatrix} \in \mathsf{End}(E_{\mathsf{com}}^2 \times E_{\mathsf{chl}}^2).$$

It is a 2^e -isogeny *i.e.* $\tilde{F} \circ F = [2^e]$ (4D Kani's lemma [Kan97]).

- Find $a_1, a_2 \in \mathbb{Z}$ such that $nrd(I_{rsp}) + a_1^2 + a_2^2 = 2^e$.
- Consider the 4-dimensional isogeny:

$$F := \begin{pmatrix} a_1 & a_2 & \widehat{\varphi}_{\mathsf{rsp}} & 0 \\ -a_2 & a_1 & 0 & \widehat{\varphi}_{\mathsf{rsp}} \\ -\varphi_{\mathsf{rsp}} & 0 & a_1 & -a_2 \\ 0 & -\varphi_{\mathsf{rsp}} & a_2 & a_1 \end{pmatrix} \in \mathsf{End}(E_{\mathsf{com}}^2 \times E_{\mathsf{chl}}^2).$$

It is a 2^e -isogeny i.e. $\tilde{F} \circ F = [2^e]$ (4D Kani's lemma [Kan97]).

• Its kernel is given by:

$$\ker(F) = \left\{ ([a_1]R - [a_2]S, [a_2]R + [a_1]S, \varphi_{\mathsf{rsp}}(R), \varphi_{\mathsf{rsp}}(S)) \mid R, S \in E_1[2^e] \right\}.$$

- Find $a_1, a_2 \in \mathbb{Z}$ such that $nrd(I_{rsp}) + a_1^2 + a_2^2 = 2^e$.
- Consider the 4-dimensional isogeny:

$$F := \begin{pmatrix} a_1 & a_2 & \widehat{\varphi}_{\mathsf{rsp}} & 0 \\ -a_2 & a_1 & 0 & \widehat{\varphi}_{\mathsf{rsp}} \\ -\varphi_{\mathsf{rsp}} & 0 & a_1 & -a_2 \\ 0 & -\varphi_{\mathsf{rsp}} & a_2 & a_1 \end{pmatrix} \in \mathsf{End}(E^2_{\mathsf{com}} \times E^2_{\mathsf{chl}}).$$

It is a 2^e -isogeny i.e. $\widetilde{F} \circ F = [2^e]$ (4D Kani's lemma [Kan97]).

• Its kernel is given by:

$$\ker(F) = \left\{ ([a_1]R - [a_2]S, [a_2]R + [a_1]S, \varphi_{\mathsf{rsp}}(R), \varphi_{\mathsf{rsp}}(S)) \mid R, S \in E_1[2^e] \right\}.$$

• From $a_1, a_2, P, Q, \varphi_{rsp}(P), \varphi_{rsp}(Q)$, one can compute F.

- Find $a_1, a_2 \in \mathbb{Z}$ such that $nrd(I_{rsp}) + a_1^2 + a_2^2 = 2^e$.
- Consider the 4-dimensional isogeny:

$$F := \begin{pmatrix} a_1 & a_2 & \widehat{\varphi}_{rsp} & 0 \\ -a_2 & a_1 & 0 & \widehat{\varphi}_{rsp} \\ -\varphi_{rsp} & 0 & a_1 & -a_2 \\ 0 & -\varphi_{rsp} & a_2 & a_1 \end{pmatrix} \in \operatorname{End}(E_{com}^2 \times E_{chl}^2).$$

It is a 2^e -isogeny *i.e.* $\widetilde{F} \circ F = [2^e]$ (4D Kani's lemma [Kan97]).

• Its kernel is given by:

$$\ker(F) = \{([a_1]R - [a_2]S, [a_2]R + [a_1]S, \varphi_{\mathsf{rsp}}(R), \varphi_{\mathsf{rsp}}(S)) \mid R, S \in E_1[2^e]\}.$$

- From $a_1, a_2, P, Q, \varphi_{rsp}(P), \varphi_{rsp}(Q)$, one can compute F.
- Then F efficiently represents φ_{rsp} : for all $P \in E_{com}$,

$$F(P,0,0,0) = ([a_1]P, -[a_2]P, -\varphi_{rsp}(P), 0).$$

Pierrick Dartois

Checking the validity of a signature:

- From $(\operatorname{nrd}(I_{rsp}), \varphi_{rsp}(P, Q))$, compute $F : E_{com}^2 \times E_{chl}^2 \to C$.
- F can be computed as a chain of 2-isogenies of length e in theta coordinates:

$$E_{\text{com}}^2 \times E_{\text{chl}}^2 \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{f_e} C.$$

Checking the validity of a signature:

- From $(\operatorname{nrd}(I_{rsp}), \varphi_{rsp}(P, Q))$, compute $F: E_{com}^2 \times E_{chl}^2 \to C$.
- F can be computed as a chain of 2-isogenies of length e in theta coordinates:

$$E_{\text{com}}^2 \times E_{\text{chl}}^2 \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} C.$$

• Check that $C \stackrel{?}{=} E_{com}^2 \times E_{chl}^2$.

Checking the validity of a signature:

- From $(nrd(I_{rsp}), \varphi_{rsp}(P, Q))$, compute $F : E_{com}^2 \times E_{chl}^2 \to C$.
- F can be computed as a chain of 2-isogenies of length e in theta coordinates:

$$E_{\text{com}}^2 \times E_{\text{chl}}^2 \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} C.$$

- Check that $C \stackrel{?}{=} E_{com}^2 \times E_{chl}^2$.
- For a point $P \in E_{com}$ of big order, check that:

$$F(P,0,0,0) \stackrel{?}{=} ([a_1]P,-[a_2]P,*,0).$$

Consider the following commutative diagram:

s.t. $\deg(\varphi) = \deg(\varphi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime and $q + r = 2^e$.

Consider the following commutative diagram:

$$E_{4} \xrightarrow{\varphi'} E_{3}$$

$$\psi' \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \psi \text{ (auxiliary isogeny)}$$

$$E_{1} \xrightarrow{\varphi} E_{2}$$

s.t. $\deg(\psi) = \deg(\psi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime and $q + r = 2^e$. Then the isogeny:

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

is a 2^e -isogeny, i.e. $\widetilde{\Phi} \circ \Phi = [2^e]$, and its kernel is:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

Pierrick Dartois

- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \mathbf{\psi} \circ \boldsymbol{\varphi}(P)) \mid P \in E_1[2^e]\}.$$

- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \mathbf{\psi} \circ \boldsymbol{\varphi}(P)) \mid P \in E_1[2^e]\}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of 2-isogenies of length e:

$$E_1 \times E_3 \xrightarrow{\Phi_1} A_1 \xrightarrow{\Phi_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{\Phi_e} E_2 \times E_4.$$

- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

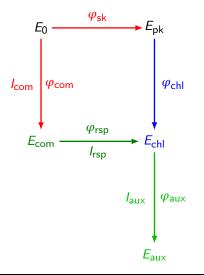
as a chain of 2-isogenies of length e:

$$E_1 \times E_3 \xrightarrow{\Phi_1} A_1 \xrightarrow{\Phi_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{\Phi_e} E_2 \times E_4.$$

• Φ efficiently represents φ : for all $P \in E_1$,

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

SQIsign2D-West: signing in dimension 2 [BDF+25]



Starting from E_0 , we can translate ideals into isogenies in 2D.

- Generate $I_{aux} \subset End(E_{chl})$ of norm $2^e nrd(I_{rsp})$.
- Translate $I_{com} \cdot I_{rsp} \cdot I_{aux}$ into $\varphi_{aux} \circ \varphi_{rsp} \circ \varphi_{com}$ (in 2D).
- **Response:** $\varphi_{\text{aux}} \circ \varphi_{\text{rsp}}(P, Q)$ with $\langle P, Q \rangle = E_{\text{com}}[2^e]$.
- φ_{rsp} can be verified from $\varphi_{aux} \circ \varphi_{rsp}(P,Q)$ (in 2D).