#### An introduction to SQIsign

Pierrick Dartois

2025, December 5













A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problems

- A brief introduction to isogenies
- 2 SQIsign and the Deuring correspondence
- 3 New algorithms for ideal-to-isogeny translations
- 4 Improvements in performance and security
- 5 Open implementation problems

#### Contributions covered in this talk

- [DLRW24] SQIsignHD: New Dimensions in Cryptography, Pierrick Dartois, Antonin Leroux, Damien Robert and Benjamin Wesolowski. EUROCRYPT 2024.
- [BFD+24] SQIsign2D-West: The Fast, the Small and the Safer, Andrea Basso, Pierrick Dartois, Antonin Leroux, Luciano Maino, Giacomo Pope, Damien Robert and Benjamin Wesolowski. ASIACRYPT 2024.
- [BSE+25] *Qlapoti: Simple and Efficient Translation of Quaternion Ideals to Isogenies*, Giacomo Borin, Maria Corte-Real Santos, Jonathan Komada Eriksen, Riccardo Invernizzi, Marzio Mula, Sina Scheffler, Frederik Vercauteren. Preprint, 2025.

A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problems

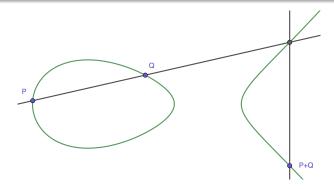
Isogenies The isogeny problem Computing isogenies Higher dimensional isogenies

### A brief introduction to isogenies

A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problem

# Isogenies The isogeny problem Computing isogenies Higher dimensional isogenies

#### Elliptic curves



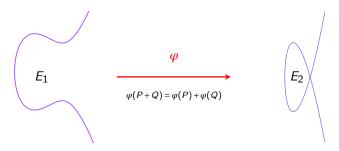
• An elliptic curve  $E/\mathbb{F}_q$  is defined by:

$$y^2 = x^3 + ax + b$$
,  $a, b \in \mathbb{F}_q$ 

with an infinite element  $0_E$ .

• E is equipped with a commutative group law.

#### Isogenies between elliptic curves



$$\varphi(x,y) = \left(\frac{p(x)}{q(x)}, y \frac{r(x)}{s(x)}\right)$$

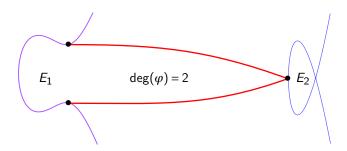
A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security

Open implementation problems

Isogenies

The isogeny problem Computing isogenies Higher dimensional isogenies

## Isogenies - degree



A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Open implementation problems

Improvements in performance and security

#### Isogenies

The isogeny problem Computing isogenies Higher dimensional isogenies

### Isogenies - the dual isogeny



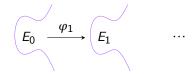
A brief introduction to isogenies SQIsign and the Deuring correspondence

New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problems

#### Isogenies

The isogeny problem Computing isogenies Higher dimensional isogenies

#### Isogeny chains

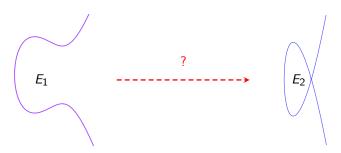


$$E_{n-1} \xrightarrow{\varphi_n} E_n$$

$$\deg(\varphi_n\circ\cdots\circ\varphi_1)=\prod_{i=1}^n\deg(\varphi_i)$$

### Why are isogenies interesting in cryptography?

**The isogeny problem:** Given two elliptic curves  $E_1, E_2/\mathbb{F}_q$ , find an isogeny  $E_1 \longrightarrow E_2$ .



This problem is assumed to be hard for both classical and quantum computers.

#### Path in the supesingular isogeny graph

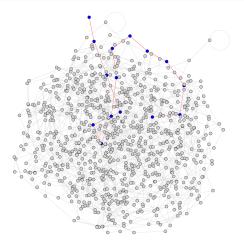


Figure: A  $2^{14}$ -isogeny in the supersingular 2-isogeny graph over  $\mathbb{F}_{10007^2}$ .

Pierrick Dartois

SQIsign

#### Path in the supesingular isogeny graph

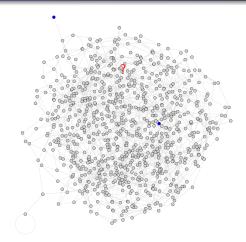


Figure: An instance of the supersingular 2-isogeny path problem over  $\mathbb{F}_{10007^2}$ .

#### Path in the supesingular isogeny graph

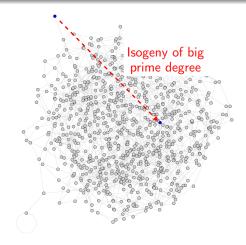


Figure: An instance of the supersingular isogeny problem over  $\mathbb{F}_{10007^2}$ .

Isogenies The isogeny problem Computing isogenies Higher dimensional isogenies

#### What does it mean to "compute" an isogeny?

#### Definition (Efficient representation)

Let  $\varphi: E \longrightarrow E'$  be a *d*-isogeny over  $\mathbb{F}_q$ . An <u>efficient representation</u> of  $\varphi$  with respect to an algorithm  $\mathscr{A}$  is some data  $\overline{D_{\varphi} \in \{0,1\}^*}$  such that:

- **1**  $D_{\varphi}$  has size poly(log(d), log(q)).
- ② For all  $P \in E(\mathbb{F}_{q^k})$ ,  $\mathscr{A}(D_{\varphi}, P)$  returns  $\varphi(P)$  in time poly(log(d),  $k \log(q)$ ).

#### What does it mean to "compute" an isogeny?

#### **Examples** of efficient representations:

• If  $deg(\varphi) = \prod_{i=1}^{r} \ell_i$ , a chain of isogenies:

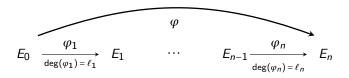
$$E_0 \xrightarrow[\deg(\varphi_1)=\ell_1]{\varphi_1} E_1 \qquad \cdots \qquad E_{n-1} \xrightarrow[\deg(\varphi_n)=\ell_n]{\varphi_n} E_n$$

• If  $\deg(\varphi)$  is smooth, a generator  $P \in E(\mathbb{F}_q)$  s.t.  $\ker(\varphi) = \langle P \rangle$  (Vélu).

#### What does it mean to "compute" an isogeny?

#### **Examples** of efficient representations:

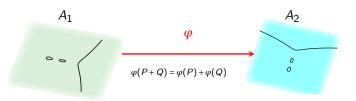
• If  $deg(\varphi) = \prod_{i=1}^{r} \ell_i$ , a chain of isogenies:



- If  $\deg(\varphi)$  is smooth, a generator  $P \in E(\mathbb{F}_q)$  s.t.  $\ker(\varphi) = \langle P \rangle$  (Vélu).
- New: If  $\deg(\varphi) < 2^e$  is odd and  $E[2^e] = \langle P, Q \rangle$ , the image points  $(\varphi(P), \varphi(Q))$  (higher dimensional interpolation).

#### Isogenies between abelian varieties

- Abelian varieties are projective abelian group varieties, generalizing elliptic curves.
- Between abelian varieties, isogenies are morphisms which are surjective and of finite kernel.



An isogeny between abelian surfaces

#### *n*-isogenies in higher dimension

- Let  $\varphi: A \longrightarrow B$  be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny  $\widetilde{\varphi}: B \longrightarrow A$  with  $\deg(\varphi) = \deg(\widetilde{\varphi})$ .

#### *n*-isogenies in higher dimension

- Let  $\varphi: A \longrightarrow B$  be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny  $\widetilde{\varphi}: B \longrightarrow A$  with  $\deg(\varphi) = \deg(\widetilde{\varphi})$ .
- $\varphi$  is an *n*-isogeny if  $\widetilde{\varphi} \circ \varphi = [n]$ .

#### *n*-isogenies in higher dimension

- Let  $\varphi: A \longrightarrow B$  be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contragradient isogeny φ̃: B → A with deg(φ) = deg(φ̃).
- $\varphi$  is an *n*-isogeny if  $\widetilde{\varphi} \circ \varphi = [n]$ .
- 1 This is not a general fact.
- n-isogenies have degree  $n^g$  (with  $g = \dim(A) = \dim(B)$ ).

The Deuring correspondence SQIsign

#### SQIsign and the Deuring correspondence

#### The Endomorphism ring

#### Definition (Endomorphism ring)

$$End(E) = \{0\} \cup \{Isogenies \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

### The Endomorphism ring

#### Definition (Endomorphism ring)

$$End(E) = \{0\} \cup \{Isogenies \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

#### Theorem (Deuring)

Let  $E/\mathbb{F}_q$   $(p = \operatorname{char}(\mathbb{F}_q))$ . Then  $\operatorname{End}(E)$  is either isomorphic to:

- An order in a quadratic imaginary field. We say that E is ordinary.
- A maximal order in the quaternion algebra ramifying at p and  $\infty$ . We say that E is supersingular.

 Quaternion algebra ramifying at p and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if  $p \equiv 3 \mod 4$ ),  $j^2 = -p$  and  $k = ij = -ji$ .

• Quaternion algebra ramifying at p and  $\infty$ : A 4-dimensional non commutative division algebra over 0:

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if  $p \equiv 3 \mod 4$ ),  $j^2 = -p$  and  $k = ij = -ji$ .

- Order: A full rank lattice  $\mathscr{O} \subset \mathscr{B}_{p,\infty}$  with a ring structure.
- Maximal Order: An order  $\mathcal{O} \subset \mathcal{B}_{p,\infty}$  such that for any other order  $\mathcal{O}' \supseteq \mathcal{O}$ . we have  $\mathcal{O}' = \mathcal{O}$ .

 Quaternion algebra ramifying at p and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} k,$$

with

$$i^2 = -1$$
 (if  $p \equiv 3 \mod 4$ ),  $j^2 = -p$  and  $k = ij = -ji$ .

- Order: A full rank lattice  $\mathscr{O} \subset \mathscr{B}_{p,\infty}$  with a ring structure.
- Maximal Order: An order  $\mathcal{O} \subset \mathcal{B}_{p,\infty}$  such that for any other order  $\mathcal{O}' \supseteq \mathcal{O}$ , we have  $\mathcal{O}' = \mathcal{O}$ .
- **Left Ideal:** A left  $\mathscr{O}$ -ideal I is a full rank lattice  $I \subset \mathscr{B}_{p,\infty}$  such that  $\mathscr{O} \cdot I = I$ .
- **Right Ideal:** A right  $\mathscr{O}$ -ideal I is a full rank lattice  $I \subset \mathscr{B}_{p,\infty}$  such that  $I \cdot \mathscr{O} = I$ .

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

• **Norm:**  $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$ 

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

- **Norm:**  $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$
- **Ideal norm:**  $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate:  $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$ .

**SOlsign** 

The Deuring correspondence

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

- **Norm:**  $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2)$ .
- **Ideal norm:**  $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate:  $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$ .
- Equivalent left  $\mathscr{O}$ -ideals:  $I \sim J \iff \exists \alpha \in \mathscr{B}_{p,\infty}^*$ ,  $J = I\alpha$ .

| Supersingular elliptic curves    | Quaternions                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$ |

| Supersingular elliptic curves    | Quaternions                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$ |
| $\varphi: E \longrightarrow E'$  | left $\mathscr{O}$ -ideal and right $\mathscr{O}'$ -ideal $I_{arphi}$             |

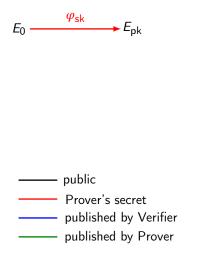
| Supersingular elliptic curves          | Quaternions                                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular       | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$                            |
| $\varphi: E \longrightarrow E'$        | left $\mathscr{O}$ -ideal and right $\mathscr{O}'$ -ideal $\mathit{I}_{arphi}$                               |
| $\varphi, \psi : E \longrightarrow E'$ | $I_{\varphi} \sim I_{\psi} \ \big( I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$ |

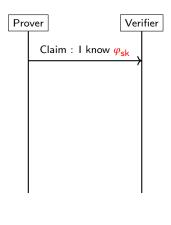
| Supersingular elliptic curves          | Quaternions                                                                                        |
|----------------------------------------|----------------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular       | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$                  |
| $\varphi: E \longrightarrow E'$        | left $\mathscr{O}$ -ideal and right $\mathscr{O}'$ -ideal $\mathit{I}_{arphi}$                     |
| $\varphi, \psi : E \longrightarrow E'$ | $I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty})$ |
| $\widehat{arphi}$                      | $\overline{\mathit{I}_{arphi}}$                                                                    |

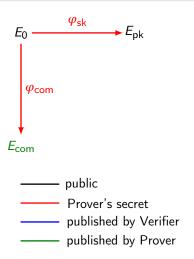
| Supersingular elliptic curves          | Quaternions                                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular       | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$                            |
| $\varphi: E \longrightarrow E'$        | left $\mathscr{O}$ -ideal and right $\mathscr{O}'$ -ideal $\mathit{I}_{arphi}$                               |
| $\varphi, \psi : E \longrightarrow E'$ | $I_{\varphi} \sim I_{\psi} \ \big( I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$ |
| $\widehat{arphi}$                      | $\overline{I_{arphi}}$                                                                                       |
| $\varphi \circ \psi$                   | $l_{\psi}\cdot l_{\varphi}$                                                                                  |

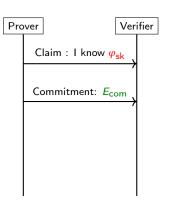
| Supersingular elliptic curves          | Quaternions                                                                                                  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $j(E)$ or $j(E)^p$ supersingular       | $\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$                            |
| $\varphi: E \longrightarrow E'$        | left $\mathscr{O}$ -ideal and right $\mathscr{O}'$ -ideal $I_{arphi}$                                        |
| $\varphi, \psi : E \longrightarrow E'$ | $I_{\varphi} \sim I_{\psi} \ \big( I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$ |
| $\widehat{arphi}$                      | $\overline{I_{arphi}}$                                                                                       |
| $\varphi \circ \psi$                   | $l_{\psi}\cdot l_{\varphi}$                                                                                  |
| $deg(\varphi)$                         | $nrd(\mathit{I}_{arphi})$                                                                                    |

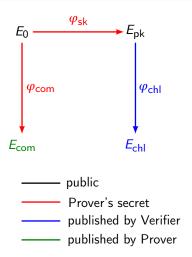
#### The SQIsign identification scheme

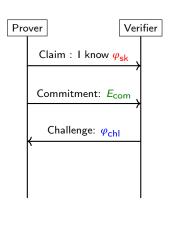


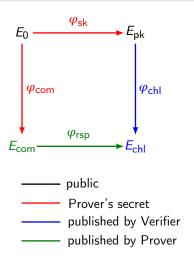


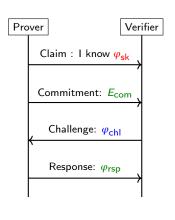


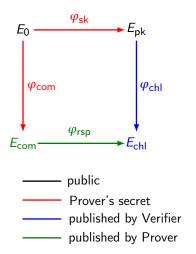


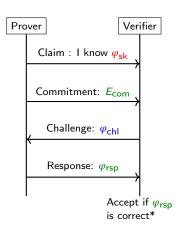






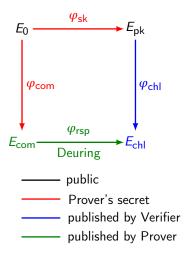






<sup>\*</sup> $\varphi_{\rm rsp}$  should not factor through  $\varphi_{\rm chl}$ .

**SQIsign** 





<sup>\*</sup> $\varphi_{\rm rsp}$  should not factor through  $\varphi_{\rm chl}$ .

**SQIsign** 

The Deuring correspondence SQIsign

## Computing isogenies via the Deuring correspondence

**Goal:** In SQIsign, we know  $End(E_{com})$  and  $End(E_{chl})$  and we want an isogeny  $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$ .

**Goal:** In SQIsign, we know  $End(E_{com})$  and  $End(E_{chl})$  and we want an isogeny  $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$ .

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \operatorname{End}(E_1)$  and  $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  random of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J: E_1 \longrightarrow E_2$ .

**Goal:** In SQIsign, we know  $\operatorname{End}(E_{\operatorname{com}})$  and  $\operatorname{End}(E_{\operatorname{chl}})$  and we want an isogeny  $\varphi_{\operatorname{rsp}}: E_{\operatorname{com}} \longrightarrow E_{\operatorname{chl}}$ .

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \operatorname{End}(E_1)$  and  $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  random of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J: E_1 \longrightarrow E_2$ .
- √ Takes polynomial time.

**Goal:** In SQIsign, we know  $\operatorname{End}(E_{\operatorname{com}})$  and  $\operatorname{End}(E_{\operatorname{chl}})$  and we want an isogeny  $\varphi_{\operatorname{rsp}}: E_{\operatorname{com}} \longrightarrow E_{\operatorname{chl}}$ .

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \operatorname{End}(E_1)$  and  $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  random of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J: E_1 \longrightarrow E_2$ .
- √ Takes polynomial time.
- $\checkmark$  Becomes hard when End( $E_1$ ) or End( $E_2$ ) is unknown.

**Goal:** In SQIsign, we know  $End(E_{com})$  and  $End(E_{chl})$  and we want an isogeny  $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$ .

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \operatorname{End}(E_1)$  and  $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute  $J \sim I$  random of smooth norm via [KLPT14].
- Translate J into an isogeny  $\varphi_J: E_1 \longrightarrow E_2$ .
- √ Takes polynomial time.
- ✓ Becomes hard when  $End(E_1)$  or  $End(E_2)$  is unknown.
- X Slow in practice because of the red steps.

**SQIsign** 

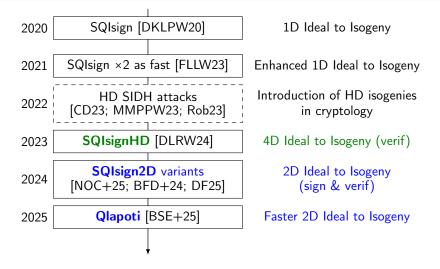
### HD techniques for the Deuring correspondence

**Problem:** How to compute isogenies between elliptic curves of known endomorphism rings?

- Let  $E_1$  and  $E_2$  of known endomorphism rings  $\mathcal{O}_1 \cong \operatorname{End}(E_1)$  and  $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ .
- Compute a connecting ideal I between  $\mathcal{O}_1$  and  $\mathcal{O}_2$  (left  $\mathcal{O}_1$ -ideal and right  $\mathcal{O}_2$ -ideal).
- Compute J~I random of smooth norm via [KLPT14] of (small) norm.
- Translate J into an isogeny  $\varphi_J: E_1 \longrightarrow E_2$  using dimension 2 or 4 interpolation techniques.
- √ Takes polynomial time.
- ✓ Becomes hard when  $End(E_1)$  or  $End(E_2)$  is unknown.
- ✓ Faster than the previous method.

SQIsign

## A brief history of SQIsign



A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problem

Kani's lemma: a new tool for the Deuring correspondence How to translate an ideal into an isogeny Generating a response/signature in SQIsign2D-West

New algorithms for ideal-to-isogeny translations

Consider the following commutative diagram:

$$E_{4} \xrightarrow{\varphi'} E_{3}$$

$$\psi' \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \psi$$

$$E_{1} \xrightarrow{\varphi} E_{2}$$

s.t.  $\deg(\varphi) = \deg(\varphi') = q$  and  $\deg(\psi) = \deg(\psi') = r$  are coprime.

Consider the following commutative diagram:

$$E_{4} \xrightarrow{\varphi'} E_{3}$$

$$\psi' \uparrow \qquad \qquad \downarrow \psi$$

$$E_{1} \xrightarrow{\varphi} E_{2}$$

s.t.  $\deg(\varphi) = \deg(\varphi') = q$  and  $\deg(\psi) = \deg(\psi') = r$  are coprime. Then the isogeny:

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

is a (q+r,q+r)-isogeny, i.e.  $\widetilde{\Phi} \circ \Phi = [q+r]$ , and its kernel is:

$$\ker(\Phi) = \{([q]P, \mathbf{\psi} \circ \varphi(P)) \mid P \in E_1[q+r]\}.$$

- Let  $\varphi: E_1 \longrightarrow E_2$  be an isogeny of odd degree  $q < 2^e$  to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r:=2^e-q$ .

- Let  $\varphi: E_1 \longrightarrow E_2$  be an isogeny of odd degree  $q < 2^e$  to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r:=2^e-q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \mathbf{\psi} \circ \mathbf{\varphi}(P)) \mid P \in E_1[2^e]\}.$$

- Let  $\varphi: E_1 \longrightarrow E_2$  be an isogeny of odd degree  $q < 2^e$  to be computed.
- Let  $\psi: E_2 \longrightarrow E_3$  be an auxiliary isogeny of degree  $r:=2^e-q$ .
- Suppose we know  $\psi \circ \varphi(E_1[2^e])$ .
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \mathbf{\psi} \circ \boldsymbol{\varphi}(P)) \mid P \in E_1[2^e]\}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi}' \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e(2,2)-isogenies [DMPR25]:

$$E_1 \times E_3 \xrightarrow{\Phi_1} A_1 \xrightarrow{\Phi_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{\Phi_e} E_2 \times E_4.$$

### Kani's lemma [Kan97] and efficient representations

• Knowing  $\Phi$ , we can evaluate  $\varphi$  everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

• So  $(\psi \circ \varphi(E_1[2^e]), q, e)$  is an efficient representation of  $\varphi$  (and  $\psi'$ ).

### Kani's lemma [Kan97] and efficient representations

• Knowing  $\Phi$ , we can evaluate  $\varphi$  everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

• So  $(\psi \circ \varphi(E_1[2^e]), q, e)$  is an efficient representation of  $\varphi$  (and  $\psi'$ ).

#### The Power of Kani's lemma:

- A way to interpolate isogenies given their images on torsion points (led to SIDH attacks).
- Provides efficient representations on non-smooth degree isogenies.

#### Set-up:

- $p = c \cdot 2^e 1$ .
- $E_0: y^2 = x^3 + x$  defined over  $\mathbb{F}_p$ .
- $\mathcal{O}_0 \simeq \operatorname{End}(E_0)$  is known and of special form.

#### Set-up:

- $p = c \cdot 2^e 1$ .
- $E_0: y^2 = x^3 + x$  defined over  $\mathbb{F}_p$ .
- $\mathcal{O}_0 \simeq \operatorname{End}(E_0)$  is known and of special form.

**Input:** A left  $\mathcal{O}_0$ -ideal I.

**Output:** An efficient representation of  $\varphi_I: E_0 \longrightarrow E_I$ .

**In practice:**  $(\varphi_I(P_0), \varphi_I(Q_0))$ , where  $(P_0, Q_0)$  is a basis of  $E_0[2^e]$ .

### Set-up:

- $p = c \cdot 2^e 1$ .
- $E_0: y^2 = x^3 + x$  defined over  $\mathbb{F}_p$ .
- $\mathcal{O}_0 \simeq \operatorname{End}(E_0)$  is known and of special form.

**Input:** A left  $\mathcal{O}_0$ -ideal I.

**Output:** An efficient representation of  $\varphi_I : E_0 \longrightarrow E_I$ .

**In practice:**  $(\varphi_I(P_0), \varphi_I(Q_0))$ , where  $(P_0, Q_0)$  is a basis of  $E_0[2^e]$ .



Starting from  $E_0$  is necessary to stay in dimension 2.

### Set-up:

- $p = c \cdot 2^e 1$ .
- $E_0: y^2 = x^3 + x$  defined over  $\mathbb{F}_p$ .
- $\mathcal{O}_0 \simeq \operatorname{End}(E_0)$  is known and of special form.

**Input:** A left  $\mathcal{O}_0$ -ideal I.

**Output:** An efficient representation of  $\varphi_I : E_0 \longrightarrow E_I$ .

In practice:  $(\varphi_I(P_0), \varphi_I(Q_0))$ , where  $(P_0, Q_0)$  is a basis of  $E_0[2^e]$ .



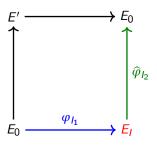
Starting from  $E_0$  is necessary to stay in dimension 2.



We can manage this constraint in SQIsign2D (teasing).

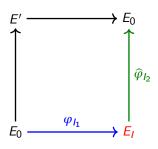
**SQIsign** 

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

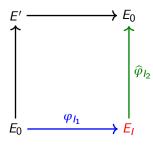
**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find  $I_1, I_2 \sim I$  such that:  $\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e.$ 

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .

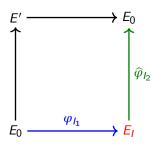


$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find  $I_1, I_2 \sim I$  such that:  $\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e.$ 

- By Kani's lemma, there exists a  $2^e$ -isogeny  $\Phi: E_0^2 \longrightarrow E_l \times E'$  that embeds  $\varphi_{I_2}$  and  $\varphi_{I_2}$ .
- $\ker(\Phi)$  can be computed from  $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$  that generates  $I_1 \cdot \overline{I}_2$ .

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .

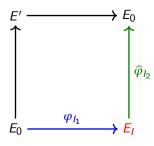


$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

Find I<sub>1</sub>, I<sub>2</sub> ~ I such that:
 nrd(I<sub>1</sub>) + nrd(I<sub>2</sub>) = 2<sup>e</sup>.

- By Kani's lemma, there exists a  $2^e$ -isogeny  $\Phi: E_0^2 \longrightarrow E_l \times E'$  that embeds  $\varphi_{I_2}$  and  $\varphi_{I_2}$ .
- $\ker(\Phi)$  can be computed from  $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$  that generates  $I_1 \cdot \overline{I}_2$ .
- From  $\Phi$ , one can evaluate  $\varphi_{l_1}$  and then  $\varphi_{l}$ .

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

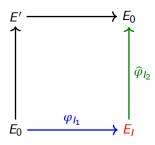
Find I<sub>1</sub>, I<sub>2</sub> ~ I such that:
 nrd(I<sub>1</sub>) + nrd(I<sub>2</sub>) = 2<sup>e</sup>.

Exploits the structure of 
$$\mathcal{O}_0$$

- By Kani's lemma, there exists a  $2^e$ -isogeny  $\Phi: E_0^2 \longrightarrow E_I \times E'$  that embeds  $\varphi_{I_1}$  and  $\varphi_{I_2}$ .
- $\ker(\Phi)$  can be computed from  $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$  that generates  $I_1 \cdot \overline{I}_2$ .
- From  $\Phi$ , one can evaluate  $\varphi_{I_1}$  and then  $\varphi_{I}$ .

### Before Qlapoti

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



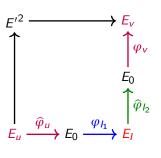
$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find  $l_1$ ,  $l_2 \sim I$  such that:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e$$
.  
How to solve that ?

- By Kani's lemma, there exists a  $2^e$ -isogeny  $\Phi: E_0^2 \longrightarrow E_I \times E'$  that embeds  $\varphi_{I_1}$  and  $\varphi_{I_2}$ .
- $\ker(\Phi)$  can be computed from  $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$  that generates  $I_1 \cdot \overline{I}_2$ .
- From  $\Phi$ , one can evaluate  $\varphi_{I_1}$  and then  $\varphi_{I}$ .

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .

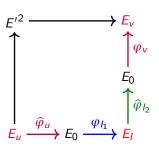


$$\Phi: E_{u} \times E_{v} \longrightarrow E_{l} \times E'$$

• Find u, v > 0 and  $l_1, l_2 \sim l$  such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



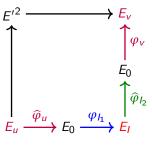
 $\Phi: E_{u} \times E_{v} \longrightarrow E_{l} \times E'$ 

• Find u, v > 0 and  $l_1, l_2 \sim l$  such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

• Use Kani's lemma to compute isogenies  $\varphi_u$  and  $\varphi_v$  of degrees u and v [NO23].

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



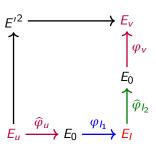
 $\Phi: E_u \times E_v \longrightarrow E_I \times E'$ 

• Find u, v > 0 and  $l_1, l_2 \sim l$  such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

- Use Kani's lemma to compute isogenies  $\varphi_u$  and  $\varphi_v$  of degrees u and v [NO23].
- By Kani's lemma, there exists a 2<sup>e</sup>-isogeny Φ: E<sub>u</sub> × E<sub>v</sub> → E<sub>I</sub> × E' that embeds φ<sub>I1</sub> ∘ φ̂<sub>u</sub> and φ<sub>I2</sub> ∘ φ̂<sub>v</sub>.
- $\ker(\Phi)$  can be computed from  $\varphi_u$ ,  $\varphi_v$  and  $\theta := \widehat{\varphi}_{l_2} \circ \varphi_{l_1}$  that generates  $I_1 \cdot \overline{I}_2$ .
- From  $\Phi$ , one can evaluate  $\varphi_{l_1} \circ \varphi_u$  and then  $\varphi_l$ .

**Goal:** Given  $E_0/\mathbb{F}_{p^2}$  of equation  $y^2 = x^3 + x$  and known endomorphism ring  $\mathcal{O}_0$ , and a left  $\mathcal{O}_0$ -ideal I, compute  $\varphi_I : E_0 \longrightarrow E_I$ .



$$\Phi: E_{IJ} \times E_{V} \longrightarrow E_{I} \times E'$$

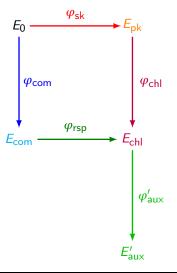


• Find u, v > 0 and  $l_1, l_2 \sim l$  such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

- Use Kani's lemma to compute isogenies  $\varphi_u$  and  $\varphi_v$  of degrees u and v [NO23].
- By Kani's lemma, there exists a  $2^e$ -isogeny  $\Phi: E_u \times E_v \longrightarrow E_l \times E'$  that embeds  $\varphi_{I_1} \circ \widehat{\varphi}_u$  and  $\varphi_{I_2} \circ \widehat{\varphi}_v$ .
- $\ker(\Phi)$  can be computed from  $\varphi_u$ ,  $\varphi_v$ and  $\theta := \widehat{\varphi}_{l_2} \circ \varphi_{l_1}$  that generates  $l_1 \cdot \overline{l}_2$ .
- From  $\Phi$ , one can evaluate  $\varphi_{l_1} \circ \varphi_u$  and then  $\varphi_l$ .

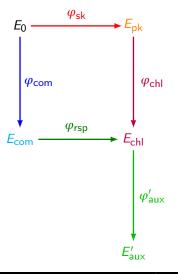
### Response/signature



#### Response:

- Compute I<sub>chl</sub> ⊂ End(E<sub>pk</sub>)
   associated to φ<sub>chl</sub>.
- $J \leftarrow \overline{I}_{com} \cdot I_{sk} \cdot I_{chl}$ .
- Compute  $I_{rsp} \sim J$  random of norm  $q < 2^r \simeq \sqrt{p}$ .
- Sample  $I'_{aux} \subset End(E_{chl})$  at random of norm  $2^r q$ .
- Translate  $I_{com} \cdot I_{rsp} \cdot I'_{aux}$  into  $\varphi'_{aux} \circ \varphi_{rsp} \circ \varphi_{com}$ .

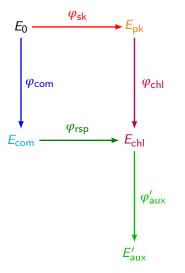
### Response/signature



### Response:

- Compute I<sub>chl</sub> ⊂ End(E<sub>pk</sub>)
   associated to φ<sub>chl</sub>.
- $J \leftarrow \overline{I}_{com} \cdot I_{sk} \cdot I_{chl}$ .
- Compute  $I_{rsp} \sim J$  random of norm  $q < 2^r \simeq \sqrt{p}$ .
- Sample  $I'_{aux} \subset End(E_{chl})$  at random of norm  $2^r q$ .
- Translate  $I_{com} \cdot I_{rsp} \cdot I'_{aux}$  into  $\varphi'_{aux} \circ \varphi_{rsp} \circ \varphi_{com}$ .
- $\checkmark$  Starting from  $E_0$ .

# Response/signature



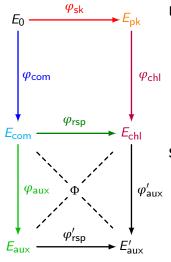
### Response:

- Compute  $I_{chl} \subset End(E_{pk})$  associated to  $\varphi_{chl}$ .
- $J \leftarrow \overline{I}_{com} \cdot I_{sk} \cdot I_{chl}$ .
- Compute  $I_{rsp} \sim J$  random of norm  $q < 2^r \simeq \sqrt{p}$ .
- Sample  $I'_{aux} \subset End(E_{chl})$  at random of norm  $2^r q$ .
- Translate  $I_{com} \cdot I_{rsp} \cdot I'_{aux}$  into  $\varphi'_{aux} \circ \varphi_{rsp} \circ \varphi_{com}$ .
- $\checkmark$  Starting from  $E_0$ .

Signature: Could be

$$(E_{com}, E'_{aux}, \varphi'_{aux} \circ \varphi_{rsp}(E_{com}[2^r])).$$

## Response/signature - commitment recoverability



### Response/signature:

• Compute the  $(2^r, 2^r)$ -isogeny:

$$\Phi: E_{com} \times E'_{aux} \longrightarrow E_{chl} \times E_{aux}$$

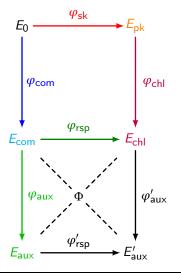
from 
$$\varphi'_{aux} \circ \varphi_{rsp}(\underline{\mathcal{E}}_{com}[2^r])$$
.

• Evaluate  $\Phi$  to compute  $\varphi_{\mathsf{aux}} \circ \widehat{\varphi}_{\mathsf{rsp}}(\underline{\mathcal{E}}_{\mathsf{chl}}[2^r])$ .

#### Signature:

$$(E_{\mathsf{aux}}, \varphi_{\mathsf{aux}} \circ \widehat{\varphi}_{\mathsf{rsp}}(E_{\mathsf{chl}}[2^r])).$$

### Verification



#### Verification:

• Compute the  $(2^r, 2^r)$ -isogeny:

$$\widehat{\Phi}: \underline{E_{\mathsf{chl}}} \times \underline{E_{\mathsf{aux}}} \longrightarrow \underline{E_{\mathsf{com}}} \times E'_{\mathsf{aux}}$$

from 
$$\varphi_{\text{aux}} \circ \widehat{\varphi}_{\text{rsp}}(\underline{E}_{\text{chl}}[2^r])$$
.

• Check its codomain is  $E_{com} \times$  .

A brief introduction to isogenies SQIsign and the Deuring correspondence New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problem

Performance improvements Security improvements

Improvements in performance and security

# Dramatic improvement of time performance

Table: Comparison of time performance in  $10^6$  CPU cycles of SQIsign-v1 (NIST round 1), SQIsign-v2 (NIST round 2) and the Qlapoti version of SQIsign on an AMD Ryzen 7040 Series.

|                 |              | NIST I | NIST III | NIST V  |
|-----------------|--------------|--------|----------|---------|
|                 | Key Gen.     | 2 805  | 18 068   | 72 183  |
| SQIsign-v1      | Signature    | 4 090  | 32 514   | 129 899 |
|                 | Verification | 100.9  | 542.7    | 1 698   |
|                 | Key Gen.     | 121.5  | 303.9    | 530.2   |
| SQIsign-v2      | Signature    | 266.7  | 602.5    | 1355.7  |
|                 | Verification | 19.9   | 26.7     | 53.7    |
|                 | Key Gen.     | 77.0   | 266.3    | 389.0   |
| SQIsign Qlapoti | Signature    | 179.6  | 510.6    | 630.97  |
|                 | Verification | 19.9   | 26.7     | 53.7    |

## Compactness slightly improved

Table: Comparison of key and signature sizes in bytes of SQIsign-v1 (NIST round 1) and SQIsign-v2 (NIST round 2).

|            |           | NIST I | NIST III | NIST V |
|------------|-----------|--------|----------|--------|
| SQlsign-v1 | Pub. key  | 64     | 96       | 128    |
|            | Priv. key | 782    | 1138     | 1509   |
|            | Signature | 177    | 263      | 335    |
| SQIsign-v2 | Pub. key  | 65     | 97       | 129    |
|            | Priv. key | 353    | 529      | 701    |
|            | Signature | 148    | 224      | 292    |

# Security of a Fiat-Shamir signature

### Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:

- Complete: a honest execution is always accepted by the verifier.
- Sound: an attacker cannot "guess" a response.
- **Zero-knowledge:** the response does not leak any information on the secret key.

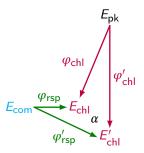
Then the Fiat-Shamir transform of ID is a universally unforgeable signature under chosen message attacks in the random oracle model.

## Special soundness

### Theorem (Special soundness)

From two transcripts  $(E_{com}, \varphi_{chl}, \varphi_{rsp})$   $(E_{com}, \varphi'_{chl}, \varphi'_{rsp})$  with the same commitment  $E_{com}$  but different challenges  $\varphi_{rsp} \neq \varphi'_{rsp}$  one can extract  $\alpha \in \operatorname{End}(E_{pk}) \setminus \mathbb{Z}$  in polynomial time.

**Sketch of proof:** Consider  $\alpha := \widehat{\varphi}'_{chl} \circ \varphi'_{rsp} \circ \widehat{\varphi}_{rsp} \circ \varphi_{chl}$ .



# Special soundness: finding an endomorphism is hard

### Problem (One Endomorphism Problem)

Given a supersingular elliptic curve E, compute  $\alpha \in End(E) \setminus \mathbb{Z}$ .

### Problem (Endomorphism Ring Problem)

Given a supersingular elliptic curve E, compute End(E).

# Special soundness: finding an endomorphism is hard

### Problem (One Endomorphism Problem)

Given a supersingular elliptic curve E, compute  $\alpha \in \text{End}(E) \setminus \mathbb{Z}$ .

### Problem (Endomorphism Ring Problem)

Given a supersingular elliptic curve E, compute End(E).

### Theorem (Wesolowski, 2022)

The Endomorphism Ring Problem and the Supersingular Isogeny Problem are equivalent.

# The zero knowledge property

### Definition (Honest Verifier Zero Knowledge - HVZK)

There exists a polynomial time simulator  $\mathscr{S}$  that produces random transcripts (com', chl', rsp') which are statistically indistinguishable from honest transcripts (com, chl, rsp).

#### Sketch of proof:



• Challenge  $\varphi_{chl}$ :  $E_{pk} \rightarrow E_{chl}$  generated as in SQIsign.

# The zero knowledge property

### Definition (Honest Verifier Zero Knowledge - HVZK)

There exists a polynomial time simulator  $\mathscr{S}$  that produces random transcripts (com', chl', rsp') which are statistically indistinguishable from honest transcripts (com, chl, rsp).

### Sketch of proof:



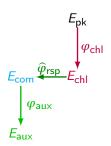
- Challenge  $\varphi_{chl}$ :  $E_{pk} \rightarrow E_{chl}$  generated as in SQIsign.

## The zero knowledge property

### Definition (Honest Verifier Zero Knowledge - HVZK)

There exists a polynomial time simulator  $\mathcal{S}$  that produces random transcripts (com', chl', rsp') which are statistically indistinguishable from honest transcripts (com, chl, rsp).

#### Sketch of proof:



- Challenge  $\varphi_{chl}$ :  $E_{pk} \rightarrow E_{chl}$  generated as in SQIsign.
- Needs an oracle that returns  $\widehat{\varphi}_{rsp} : E_{chl} \rightarrow E_{com}$  of degree  $< 2^r$ .

## Special soundness is still hard with hints

### Problem (One Endomorphism Problem with Hints)

Given a supersingular elliptic curve E, compute  $\alpha \in End(E) \setminus \mathbb{Z}$  with access to "hints".

#### Problem (Endomorphism Ring Problem with Hints)

Given a supersingular elliptic curve E, compute  $\operatorname{End}(E)$  with access to "hints".

## Special soundness is still hard with hints

### Problem (One Endomorphism Problem with Hints)

Given a supersingular elliptic curve E, compute  $\alpha \in End(E) \setminus \mathbb{Z}$  with access to "hints".

#### Problem (Endomorphism Ring Problem with Hints)

Given a supersingular elliptic curve E, compute  $\operatorname{End}(E)$  with access to "hints".

### Theorem ([ABDFPW25])

The Endomorphism Ring Problem with Hints and the Supersingular Isogeny Problem with Hints are equivalent.

## Improvements of SQIsign security assumptions

|           | SQIsign                                | SQIsignHD                      | SQlsign2D             |  |
|-----------|----------------------------------------|--------------------------------|-----------------------|--|
| Soundness | The Endomorphism Ring Problem (strong) |                                |                       |  |
| Zero      | Heuristic on                           | An oracle returning            | • 2 oracles returning |  |
| knowledge | the distribution                       | "random" isogenies.            | "random" isogenies.   |  |
|           | of $\varphi_{rsp}$ .                   | Heuristic on                   |                       |  |
|           |                                        | the distribution               |                       |  |
|           |                                        | of E <sub>com</sub> (uniform). |                       |  |

A brief introduction to isogenies

# Cutting failure rates in the signature

- In SQIsign2D-West, the ideal to isogeny translation in the response phase could fail with a significant probability.
- This was due to the tightness of the norm equation:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e \quad (u, v > 0, I_1, I_2 \sim I).$$

# Cutting failure rates in the signature

- In SQIsign2D-West, the ideal to isogeny translation in the response phase could fail with a significant probability.
- This was due to the tightness of the norm equation:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e \quad (u, v > 0, I_1, I_2 \sim I).$$

 The failure rate is cryptographically negligible when we solve the following equation instead:

$$nrd(I_1) + nrd(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

# Cutting failure rates in the signature

- In SQIsign2D-West, the ideal to isogeny translation in the response phase could fail with a significant probability.
- This was due to the tightness of the norm equation:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e \quad (u, v > 0, I_1, I_2 \sim I).$$

 The failure rate is cryptographically negligible when we solve the following equation instead:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

Table: Comparison of failure rates in ideal-to-isogeny translation.

|                 | NIST I     | NIST III   | NIST V     |
|-----------------|------------|------------|------------|
| SQIsign-v2      | $2^{-65}$  | $2^{-61}$  | $2^{-60}$  |
| SQIsign Qlapoti | $2^{-197}$ | $2^{-312}$ | $2^{-438}$ |

A brief introduction to isogenies SQIsign and the Deuring correspondence. New algorithms for ideal-to-isogeny translations Improvements in performance and security Open implementation problems

Solving the norm equation in constant time Diagonal isogenies in Qlapoti

### Open implementation problems

Solving the equation:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

Solving the equation:

$$nrd(I_1) + nrd(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

Solving the equation:

$$nrd(I_1) + nrd(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

### Some algorithmic features hard to implement in constant time:

Unknown number of iterations.

Solving the equation:

$$nrd(I_1) + nrd(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

- Unknown number of iterations.
- Finding a short vector in dimension 4.

Solving the equation:

$$nrd(I_1) + nrd(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

- Unknown number of iterations.
- Finding a short vector in dimension 4.
- Solving a closest vector problem (CVP) in dimension 2.

Solving the equation:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e \quad (I_1, I_2 \sim I).$$

is highly non-constant time.

- Unknown number of iterations.
- Finding a short vector in dimension 4.
- Solving a closest vector problem (CVP) in dimension 2.
- Cornacchia's algorithm to solve  $x^2 + y^2 = n$  for  $n \in \mathbb{N}$  fixed and  $x, y \in \mathbb{Z}$  unknown.

# Qlapoti: the lucky case

• **Recall:** To translate a left  $\mathcal{O}_0$ -ideal I into an isogeny  $\varphi_I : E_0 \to E_I$ , we compute a 2-dimensional  $2^e$ -isogeny:

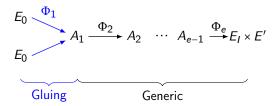
$$\Phi: E_0^2 \longrightarrow E_I \times E'.$$

# Qlapoti: the lucky case

• **Recall:** To translate a left  $\mathcal{O}_0$ -ideal I into an isogeny  $\varphi_I : E_0 \to E_I$ , we compute a 2-dimensional  $2^e$ -isogeny:

$$\Phi: E_0^2 \longrightarrow E_I \times E'$$
.

• Lucky case: the first isogeny is a gluing and the others are generic.



# Qlapoti: the unlucky case

• **Recall:** To translate a left  $\mathcal{O}_0$ -ideal I into an isogeny  $\varphi_I : E_0 \to E_I$ , we compute a 2-dimensional  $2^e$ -isogeny:

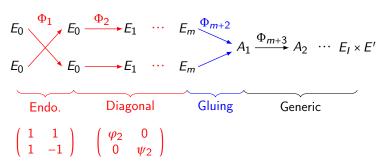
$$\Phi: E_0^2 \longrightarrow E_I \times E'.$$

# Qlapoti: the unlucky case

• **Recall:** To translate a left  $\mathcal{O}_0$ -ideal I into an isogeny  $\varphi_I : E_0 \to E_I$ , we compute a 2-dimensional  $2^e$ -isogeny:

$$\Phi: E_0^2 \longrightarrow E_I \times E'.$$

 Unlucky case: the gluing follows a an endomorphism and m diagonal isogenies (where m can vary). Not constant time!



#### A list of imperfect non-exclusive solutions:

Reject solutions to the norm equation that produce unlucky cases.
 Makes the norm equation slower to solve.

- Reject solutions to the norm equation that produce unlucky cases.
   Makes the norm equation slower to solve.
- Change  $E_0$  to reduce the probability of unlucky cases.
  - X Makes the norm equation slower to solve.

- Reject solutions to the norm equation that produce unlucky cases.
   Makes the norm equation slower to solve.
- Change  $E_0$  to reduce the probability of unlucky cases.
  - X Makes the norm equation slower to solve.
- Change the input ideal distribution.
  - X Non trivial to do.

- Reject solutions to the norm equation that produce unlucky cases.
   Makes the norm equation slower to solve.
- Change  $E_0$  to reduce the probability of unlucky cases.
  - X Makes the norm equation slower to solve.
- Change the input ideal distribution.
  - X Non trivial to do.
- Uniformize the generic and non-generic isogeny formulae.
  - X Non trivial to do.

# Thanks for listening!

- The use of higher dimensional isogenies greatly improved SQIsign.
- Optimising integer arithmetic is becoming more and more important.
- It is still an algorithmically non-trivial research challenge to implement SQIsign in constant time.

My works can be found on my webpage:



https://www.pierrickdartois.fr/homepage/