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Cryptography in daily life

What people think crypto is: What crypto really is:
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Hard problems for public key cryptography

Widely used underlying problems...

The factorisation problem (RSA):

N = p×q.

The discrete logarithm problem in a
group (G ,+) generated by P (ECC):

Q = [n]P .

...All broken by quantum
computers
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Elliptic curves

An elliptic curve E/Fq is defined by:

y2 = x3+ax +b, a,b ∈ Fq
with an infinite element 0E .
E is equipped with a commutative group law.
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Isogenies

ϕ

E1 E2
ϕ(P +Q)=ϕ(P)+ϕ(Q)

ϕ(x ,y)=
(
p(x)

q(x)
,y

r(x)

s(x)

)
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Why are isogenies interesting in cryptography?

The isogeny problem: Given two elliptic curves E1,E2/Fq, find an
isogeny E1 −→E2.

?
E1 E2

This problem is assumed to be hard for both classical and quantum
computers.
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Isogenies - degree

•

•

•deg(ϕ)= 2E1 E2

An isogeny of degree n is called an n-isogeny.
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Isogenies - the dual isogeny

ϕ̂

deg(ϕ̂)= deg(ϕ)= 2

E1 E2

An n-isogeny ϕ satisfies ϕ̂◦ϕ= [n].
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Isogeny chains

E0
ϕ1

E1 · · · En−1
ϕn

En

deg(ϕn ◦ · · · ◦ϕ1)=
n∏

i=1
deg(ϕi )
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A brief (biased) history of isogeny based cryptography

In blue: group actions

In green: works of this PhD
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1 SQIsign and the Deuring correspondence

2 New dimensions in cryptography

3 Fast computation of higher dimensional isogenies
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The Deuring correspondence
SQIsign

SQIsign and the Deuring correspondence
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The Deuring correspondence
SQIsign

The Endomorphism ring

Definition (Endomorphism ring)

End(E )= {0}∪ {Isogenies ϕ :E −→E }

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/Fq (p = char(Fq)). Then End(E ) is either isomorphic to:
An order in a quadratic imaginary field. We say that E is ordinary.
A maximal order in a quaternion algebra ramifying at p and ∞. We
say that E is supersingular.
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The Deuring correspondence
SQIsign

Quaternions - Definitions

Quaternion algebra ramifying at p and ∞: A 4-dimensional non
commutative division algebra over Q:

Bp,∞ =Q⊕Qi ⊕Qj ⊕Qk ,

with

i2 =−1 (if p ≡ 3 mod 4), j2 =−p and k = ij =−ji .

Order: A full rank lattice O ⊂Bp,∞ with a ring structure.
Maximal Order: An order O ⊂Bp,∞ such that for any other order
O ′ ⊇O , we have O ′ =O .
Left Ideal: A left O -ideal I is a full rank lattice I ⊂Bp,∞ such that
O · I = I .
Right Ideal: A right O -ideal I is a full rank lattice I ⊂Bp,∞ such
that I ·O = I .
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The Deuring correspondence
SQIsign

Quaternions - Definitions

Conjugation:

α= x +yi +zj + tk 7−→α= x −yi −zj − tk

Norm: nrd(α) :=αα= x2+y2+p(z2+ t2).

Ideal norm: nrd(I ) := gcd{nrd(α) |α ∈ I }.

Ideal conjugate: I := {α |α ∈ I }.

Equivalent left O-ideals: I ∼ J ⇐⇒∃α ∈B∗
p,∞, J = Iα.
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SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

j(E ) or j(E )p supersingular O ∼=End(E ) maximal order in Bp,∞

ϕ :E −→E ′ left O -ideal and right O ′-ideal Iϕ

ϕ,ψ :E −→E ′ Iϕ ∼ Iψ (Iψ = Iϕα, α ∈Bp,∞)

ϕ̂ Iϕ

ϕ◦ψ Iψ · Iϕ
deg(ϕ) nrd(Iϕ)
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The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Claim : I know ϕsk
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The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

ϕcom

Ecom

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Claim : I know ϕsk

Commitment: Ecom

Pierrick Dartois HD isogenies for cryptography 18 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

ϕcom

Ecom

ϕchl

Echl

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Claim : I know ϕsk

Commitment: Ecom

Challenge: ϕchl
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The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

ϕcom

Ecom

ϕchl

Echl

ϕrsp

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Claim : I know ϕsk

Commitment: Ecom

Challenge: ϕchl

Response: ϕrsp
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The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

ϕcom

Ecom

ϕchl

Echl

ϕrsp

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Accept if ϕrsp
is correct*

*ϕrsp should not factor through ϕchl.

Claim : I know ϕsk

Commitment: Ecom

Challenge: ϕchl

Response: ϕrsp

Pierrick Dartois HD isogenies for cryptography 21 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

The Deuring correspondence
SQIsign

The SQIsign identification scheme

E0
ϕsk

Epk

ϕcom

Ecom

ϕchl

Echl

ϕrsp

public
Prover’s secret
published by Verifier
published by Prover

Deuring

Prover Verifier

Accept if ϕrsp
is correct*

*ϕrsp should not factor through ϕchl.

Claim : I know ϕsk

Commitment: Ecom

Challenge: ϕchl

Response: ϕrsp
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The Deuring correspondence
SQIsign

Computing isogenies via the Deuring correspondence
Goal: In SQIsign, we know End(Ecom) and End(Echl) and we want an
isogeny ϕrsp :Ecom −→Echl.

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I random of smooth norm via [KLPT14].
Translate J into an isogeny ϕJ :E1 −→E2.

✓ Takes polynomial time.
✓ Becomes hard when End(E1) or End(E2) is unknown.
✗ Slow in practice because of the red steps.
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The Deuring correspondence
SQIsign

What does it mean to "compute" an isogeny?

Definition (Efficient representation)

Let ϕ :E −→E ′ be a d-isogeny over Fq. An efficient representation of ϕ
with respect to an algorithm A is some data Dϕ ∈ {0,1}∗ such that:

1 Dϕ has size poly(log(d), log(q)).
2 For all P ∈E (Fqk ), A (Dϕ,P) returns ϕ(P) in time

poly(log(d),k log(q)).
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The Deuring correspondence
SQIsign

What does it mean to "compute" an isogeny?

Examples of efficient representations:
If deg(ϕ)=∏r

i=1ℓi , a chain of isogenies:

ϕ

E0
ϕ1

E1 · · · En−1
ϕn

En
deg(ϕ1)= ℓ1 deg(ϕn)= ℓn

If deg(ϕ) is smooth, a generator P ∈E (Fq) s.t. ker(ϕ)= 〈P〉 (Vélu).

New: If deg(ϕ)< 2e is odd and E [2e ]= 〈P ,Q〉, the image points
(ϕ(P),ϕ(Q)) (higher dimensional interpolation).
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Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

New dimensions in cryptography
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Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

Isogenies between abelian varieties

Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.
Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.

ϕ

A1 A2

ϕ(P +Q)=ϕ(P)+ϕ(Q)

An isogeny between abelian surfaces
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Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

n-isogenies in higher dimension

Let ϕ :A−→B be an isogeny between principally polarised abelian
varieties (PPAVs).

Then there exists a contravariant isogeny ϕ̃ :B −→A with
deg(ϕ)= deg(ϕ̃).

ϕ is an n-isogeny if ϕ̃◦ϕ= [n].

" This is not a general fact.

" n-isogenies have degree ng (with g = dim(A)= dim(B)).
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Kani’s lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

E1

E4 E3

E2
ϕ

ψψ′

ϕ′

⟳

s.t. deg(ϕ)= deg(ϕ′)= q and deg(ψ)= deg(ψ′)= r are coprime.

Then
the isogeny:

Φ :=
(
ϕ ψ̂

−ψ′ ϕ̂′

)
:E1×E3 −→E2×E4

is a (q+ r)-isogeny, i.e. Φ̃◦Φ= [q+ r ], and its kernel is:

ker(Φ)= {([q]P ,ψ◦ϕ(P)) |P ∈E1[q+ r ]}.
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Kani’s lemma (dimension 2) [Kan97]
Let ϕ :E1 −→E2 be an isogeny of odd degree q < 2e to be
computed.

Let ψ :E2 −→E3 be an auxiliary isogeny of degree r := 2e −q.

Suppose we know ψ◦ϕ(E1[2e ]).

Then we can compute:

ker(Φ)= {([q]P ,ψ◦ϕ(P)) |P ∈E1[2e ]}.

So we can compute

Φ :=
(
ϕ ψ̂

−ψ′ ϕ̂′

)
:E1×E3 −→E2×E4

as a chain of e 2-isogenies [DMPR25]:

E1×E3
Φ1−−−→A1

Φ2−−−→A2 · · · Ae−1
Φe−−−→E2×E4.
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Kani’s lemma [Kan97] and efficient representations

Knowing Φ, we can evaluate ϕ everywhere:

Φ(P ,0)= (ϕ(P),−ψ′(P)).

So (ψ◦ϕ(E1[2e ]),q,e) is an efficient representation of ϕ (and ψ′).

The Power of Kani’s lemma:

A way to interpolate isogenies given their images on torsion points
(led to SIDH attacks).

Provides efficient representations on non-smooth degree isogenies.
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HD techniques for the Deuring correspondence
Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

Let E1 and E2 of known endomorphism rings O1 ∼=End(E1) and
O2 ∼=End(E2).
Compute a connecting ideal I between O1 and O2 (left O1-ideal and
right O2-ideal).
Compute J ∼ I random of smooth norm via [KLPT14] of (small)
norm.
Translate J into an isogeny ϕJ :E1 −→E2 using dimension 2 or 4
interpolation techniques.

✓ Takes polynomial time.

✓ Becomes hard when End(E1) or End(E2) is unknown.

✓ Faster than the previous method.
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The Clapoti method [PR23]

Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

E0 EI

E0E ′

ϕI1

ϕ̂I2

Φ :E2
0 −→EI ×E ′

Find I1, I2 ∼ I such that:

nrd(I1)+nrd(I2)= 2e .

By Kani’s lemma, there exists a
2e -isogeny Φ :E2

0 −→EI ×E ′ that
embeds ϕI1 and ϕI2 .
ker(Φ) can be computed from
θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.
From Φ, one can evaluate ϕI1 and
then ϕI .

Pierrick Dartois HD isogenies for cryptography 34 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

E0 EI

E0E ′

ϕI1

ϕ̂I2

Φ :E2
0 −→EI ×E ′

Find I1, I2 ∼ I such that:

nrd(I1)+nrd(I2)= 2e .

By Kani’s lemma, there exists a
2e -isogeny Φ :E2

0 −→EI ×E ′ that
embeds ϕI1 and ϕI2 .
ker(Φ) can be computed from
θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.
From Φ, one can evaluate ϕI1 and
then ϕI .

Pierrick Dartois HD isogenies for cryptography 34 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

E0 EI

E0E ′

ϕI1

ϕ̂I2

Φ :E2
0 −→EI ×E ′

Find I1, I2 ∼ I such that:

nrd(I1)+nrd(I2)= 2e .

By Kani’s lemma, there exists a
2e -isogeny Φ :E2

0 −→EI ×E ′ that
embeds ϕI1 and ϕI2 .
ker(Φ) can be computed from
θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.

From Φ, one can evaluate ϕI1 and
then ϕI .

Pierrick Dartois HD isogenies for cryptography 34 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

E0 EI

E0E ′

ϕI1

ϕ̂I2

Φ :E2
0 −→EI ×E ′

Find I1, I2 ∼ I such that:

nrd(I1)+nrd(I2)= 2e .

By Kani’s lemma, there exists a
2e -isogeny Φ :E2

0 −→EI ×E ′ that
embeds ϕI1 and ϕI2 .
ker(Φ) can be computed from
θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.
From Φ, one can evaluate ϕI1 and
then ϕI .

Pierrick Dartois HD isogenies for cryptography 34 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

Kani’s embedding lemma
Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

E0 EI

E0E ′

ϕI1

ϕ̂I2

Φ :E2
0 −→EI ×E ′

Find I1, I2 ∼ I such that:

nrd(I1)+nrd(I2)= 2e .

Previously too hard to solve.

By Kani’s lemma, there exists a
2e -isogeny Φ :E2

0 −→EI ×E ′ that
embeds ϕI1 and ϕI2 .
ker(Φ) can be computed from
θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.
From Φ, one can evaluate ϕI1 and
then ϕI .
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The Clapoti method in SQIsign2D-West [BDF+25]
Goal: Given E0/Fp2 of equation y2 = x3+x and known endomorphism
ring O0, and a left O0-ideal I , compute ϕI :E0 −→EI .

Eu E0 EI

E0

EvE ′2

ϕ̂u ϕI1

ϕ̂I2

ϕv

Φ :Eu ×Ev −→EI ×E ′

Find u,v > 0 and I1, I2 ∼ I such that:

unrd(I1)+v nrd(I2)= 2e .

Use Kani’s lemma to compute isogenies
ϕu and ϕv of degrees u and v [NO24].
By Kani’s lemma, there exists a
2e -isogeny Φ :Eu ×Ev −→EI ×E ′ that
embeds ϕI1 ◦ ϕ̂u and ϕI2 ◦ ϕ̂v .
ker(Φ) can be computed from ϕu, ϕv

and θ := ϕ̂I2 ◦ϕI1 that generates I1 · I 2.
From Φ, one can evaluate ϕI1 ◦ϕu and
then ϕI .
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Ideal class group action

Let O be a quadratic imaginary order.

A (primitively) O-oriented curve is a supersingular elliptic curve E
with a maximal embedding ι :O ,→End(E ).
Cl(O) acts freely and (almost) transitively on O-oriented curves.

O-ideals O-oriented curves and isogenies

Ideal a⊆O ϕa :E −→Ea := a ·E
b∼ a a ·E ≃ b ·E
αO ι(α) :E −→E

a ϕ̂a

ab ϕb ◦ϕa

N(a) deg(ϕa)
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Effective group action

Definition

An effective group action (EGA) G æX is:
1 Commutative, free and transitive.
2 Easy to compute: g ·x can be evaluated in polynomial time for all

g ∈G and x ∈X .
3 One way : given x and g ·x , g ∈G is hard to find.

With effective group actions, we can derive many schemes (including
key exchange, signatures and more).
Actually, group actions based on orientations are restricted effective
group actions. We can act by ideals of small norms l1, · · · , lt that
generate Cl(O).
" Issue: This makes schemes less efficient and less scalable to
bigger parameters.
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The Clapoti method in PEGASIS [DEF+25]

Goal: Given an O-oriented curve E and any ideal a⊆O, compute
Ea := a ·E .

Au E2 E2
a

E2

AvE ′2

Φ̃u Φb

Φ̃c

Φv

F :Au ×Av −→E2
a ×E ′2

Find u,v > 0 and b,c∼ a such that:

unrd(b)+v nrd(c)= 2e .

Compute u and v -isogenies Φu and Φv

in dimension 2.
By Kani’s lemma, there exists a
2e -isogeny F :Au ×Av −→E2

a ×E ′2
that embeds Φb ◦ Φ̃u and Φc ◦ Φ̃v .
ker(F ) can be computed from Φu, Φv

and θ := ϕ̂c ◦ϕc that generates b · c.
From F , we extract Ea.
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Fast computation of higher dimensional isogenies
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Definition: symplectic isomorphism
Let A/k be a PPAV of dimension g .
If n ∤ char(k), then A[n]≃ (Z/nZ)2g .

A symplectic isomorphism ϕ : (Z/nZ)g × á(Z/nZ)g ∼−→A[n] is a group
isomorphism satisfying:

∀x ,y ∈ (Z/nZ)g × á(Z/nZ)g , en(ϕ(x),ϕ(y))= en(x ,y),

where the first pairing is the Weil-pairing and the second one is
given by:

∀(i ,χ),(i ′,χ′) ∈ (Z/nZ)g × á(Z/nZ)g , en((i ,χ),(i ′,χ′))=χ′(i)χ(i ′)−1.

Such a symplectic isomorphism is determined by a (ζ-)symplectic
basis (S1, · · · ,Sg ,T1, · · · ,Tg ) of A[n] i.e. a basis such that:

∀1≤ i , j ≤ g , en(Si ,Sj )= en(Ti ,Tj )= 1 and en(Si ,Tj )= ζδi ,j ,
where ζ is a primitive n-th root of unity.
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Definition: theta structure

Definition (Max Duparc)

Let A be a PPAV of dimension g . A (symmetric) theta structure of level
n is a map

Θ(n) :A −→ Pn
g−1

x 7−→ (θi (x))i∈(Z/nZ)g

along with a symplectic isomorphism:

Θ(n) : (Z/nZ)g × á(Z/nZ)g ∼−→A[n]

satisfying the theta group action relation:

θi (x +Θ(n)(j ,χ))=χ(i)−1θi+j (x),

for all x ∈A, i , j ∈ (Z/nZ)g and χ ∈ á(Z/nZ)g .
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Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (Θ(n),Θ(n)) on a PPAV A is fully determined by
a symplectic isomorphism Θ(2n) : (Z/2nZ)g × á(Z/2nZ)g ∼−→A[2n]
inducing Θ(n) i.e. by a symplectic basis of A[2n] inducing Θ(n).

Theta structures and theta null points:
When 4|n, the marked AV (PPAV and theta structure)
(A,Θ(n),Θ(n)) is determined by the theta null point (θi (0A))i .
In other cases, we still use the theta null point as a representative of
a marked AV.
This is enough for arithmetic operations.
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Theta structures of level 2

Theorem

Let (A,Θ(n),Θ(n)) be a marked AV of level n and dimension g . Then:
1 [Mum74] If n≥ 3, then Θ(n) :A ,−→Pn

g−1 is an embedding.
2 [BL04] If n= 2 and A is not a product, then Θ(2) defines an

embedding A/± ,−→P2g−1.
3 [BL04] If n= 2 and A≃A1×·· ·×Am, then Θ(2) defines an

embedding
A1/±×·· ·×Am/± ,−→P2g−1.
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Our goal
Goal: Given the kernel K ⊂A[2e ] of a 2e -isogeny between PPAVs
f :A−→B, compute f in level 2 theta coordinates:

(θAi (x))i∈(Z/2Z)g 7−→ (θBi (f (x)))i∈(Z/2Z)g

Method:
Decompose f as a chain of 2-isogenies:

A0 =A
f1

A1
f2

A2 · · · Ae−1
fe

Ae =B

Compute every 2-isogeny iteratively, using:

ker(fi )= [2e−i ]fi−1 ◦ · · · ◦ f1(ker(f )).

Technicality: We need more torsion K ⊂A[2e+2] above the kernel.
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Computing a 2-isogeny: change of level

Let f :A−→B be a 2-isogeny.

(A,ΘA(2),Θ
A
(2))

(A,ΘA(4),Θ
A
(4))

(B ,ΘB(2),Θ
B
(2))

f

isogeny theorem
change of level

The level 4 theta structure (A,ΘA(4),Θ
A
(4)) is induced by a

symplectic basis of A[8].

For that reason, we need 8-torsion points T1, · · · ,Tg such that
ker(f )= 〈[4]T1, · · · , [4]Tg 〉 to compute f .

With this data, we compute the codomain theta-null point (θi (0B))i .
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2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

(θAi (x))i
H−→∗ S−→∗ ⋆(1/θ̃Bi (0B))i−−−−−−−−−−−→∗ H−→ (θBi (f (x)))i

where:
H : (xi )i 7−→

(∑
i∈(Z/2Z)g (−1)〈i |j〉xi

)
j

(Hadamard).

S : (xi )i 7−→ (x2
i )i .

(xi )i ⋆ (yi )i := (xiyi )i .

(θ̃Bi (0B))i =H((θBi (0B))i ) (dual theta null point).
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Issues with the first 2-isogeny in the chain
Usually, the first isogeny of the chain is a gluing f :A1×A2 −→B.

Issue 1:
The starting domain theta structure ΘA1×A2 is the product
ΘA1 ×ΘA2 :

θ
A1×A2
i ,j (x ,y)= θA1

i (x) ·θA2
j (y).

The isogeny formulas only work when

Θ
A1×A2({0}× á(Z/2Z)g )= ker(f ).

This is usually not the case when ΘA1×A2 =ΘA1 ×ΘA2 .

Solution 1: Compute a new theta structure Θ′A1×A2 such that

Θ′A1×A2
({0}× á(Z/2Z)g )= ker(f ).
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Change of coordinate formulas

ζ-symplectic basis

B of A[4]

Theta structure

(ΘA,Θ
A
)

Initial theta
coordinates (θA

i
)i

ζ-symplectic basis

B′ of A[4]

Theta structure

(Θ′A,Θ′A)

New theta

coordinates (θ′Ai )i

Change of basis

matrix M ∈Sp2g (Z/4Z)

Change of coordinates

matrix N(ζ,M)

*ζ is a primitive 4-th root of unity given by the Weil-pairings of symplectic basis.
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The right choice of theta structure propagates

When there is only one gluing isogeny, only 2 change of theta structures
are needed

A0 =A
f1

A1
f2

A2 · · · Ae−1
fe

Ae =B

Change of theta
coordinates

Change of theta
coordinates

Pierrick Dartois HD isogenies for cryptography 50 / 54



Introduction
SQIsign and the Deuring correspondence

New dimensions in cryptography
Fast computation of higher dimensional isogenies

Conclusion

Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies
Results

Evaluating a gluing 2-isogeny

Issue 2:
The evaluation algorithm:

(θAi (x))i
H−→∗ S−→∗ ⋆(1/θ̃Bi (0B))i−−−−−−−−−−−→∗ H−→ (θBi (f (x)))i

no longer works because the θ̃Bi (0B) may vanish.

Why? Because level 2 theta coordinates encode points up to a sign,
we are computing:

(±x ,±y) 7−→±f (x ,y)

We need additional information to lift the sign indetermination.

Solution 2: Using x and translates x +T where [2]T ∈ ker(f ), we can
evaluate f (x).
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A dramatic improvement of SQIsign with dimension 2

Table: Comparison of time performance in ms of SQIsign (NIST round 1) and
SQIsign (NIST round 2) on an Intel Core i5-1335U 4600MHz CPU.

NIST I NIST III NIST V
Key Gen. 355.72 5 625.72 22 445.3

SQIsign v 1.0 Signature 554.78 10 553.18 41 322.21
Verification 7.77 195.86 571.77
Key Gen. 10.63 32.05 51.37

SQIsign v 2.0 Signature 24.53 74.20 126.72
Verification 1.13 4.10 8.49
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PEGASIS: the proof dimension 4 can be efficient

Paper Impl. 500 1000 1500 2000 4000

SCALLOP [FFK+23]* C++ 35s 12m30s – – –
SCALLOP-HD [CLP24]* Sage 88s 19m – – –

PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m – –

KLaPoTi [PPS24]
Sage 200s – – – –
Rust 1.95s – – – –

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table: Comparison between PEGASIS and other effective group actions in the
literature. The last 5 columns gives the timings corresponding to the different
security levels, where s/m gives the number of seconds/minutes in wall-clock
time. SCALLOP and SCALLOP-HD are starred because they were measured
on a different hardware setup.
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Thank you for listening

SIDH attacks and HD isogenies are a
breakthrough in isogeny based
cryptography.

There have been many grounbreaking
constructive applications (e.g. SQIsign)
and new applications are still unfolding.

Research is still needed to accelerate
HD algorithms (e.g. for odd degree).
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