Fast computation of higher dimensional isogenies for cryptographic applications

Pierrick Dartois

PhD Defense Under the supervision of Damien Robert, Benjamin Wesolowski and Luca De Feo

2025, July 9

Cryptography in daily life

What people think crypto is:

What crypto really is:

Introduction
SQIsign and the Deuring correspondence
New dimensions in cryptography
Fast computation of higher dimensional isogenies
Conclusion

Hard problems for public key cryptography

Widely used underlying problems...

Hard problems for public key cryptography

Widely used underlying problems...

• The factorisation problem (RSA):

$$N = p \times q$$
.

Hard problems for public key cryptography

Widely used underlying problems...

The factorisation problem (RSA):

$$N = p \times q$$
.

 The discrete logarithm problem in a group (G,+) generated by P (ECC):

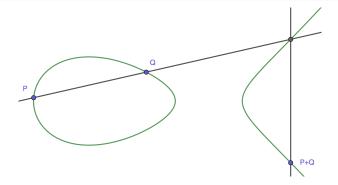
$$Q = [n]P$$
.

Hard problems for public key cryptography

Widely used underlying problems...

• The factorisation problem (RSA):

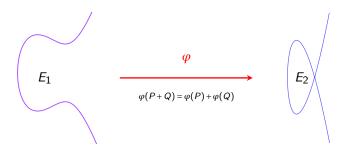
$$N = p \times q$$
.


 The discrete logarithm problem in a group (G,+) generated by P (ECC):

$$Q = [n]P$$
.

...All broken by quantum computers

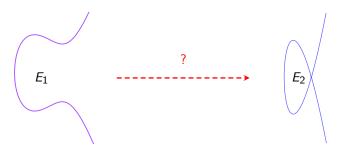
Elliptic curves


• An elliptic curve E/\mathbb{F}_q is defined by:

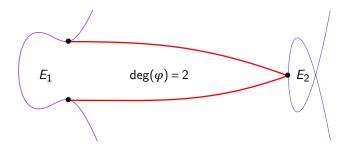
$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_q$

with an infinite element 0_E .

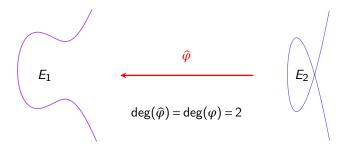
• E is equipped with a commutative group law.


Isogenies

$$\varphi(x,y) = \left(\frac{p(x)}{q(x)}, y\frac{r(x)}{s(x)}\right)$$


Why are isogenies interesting in cryptography?

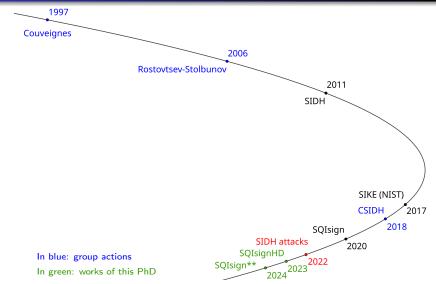
The isogeny problem: Given two elliptic curves $E_1, E_2/\mathbb{F}_q$, find an isogeny $E_1 \longrightarrow E_2$.


This problem is assumed to be hard for both classical and quantum computers.

Isogenies - degree

An isogeny of degree n is called an n-isogeny.

Isogenies - the dual isogeny


An *n*-isogeny φ satisfies $\widehat{\varphi} \circ \varphi = [n]$.

Isogeny chains

$$\deg(\varphi_n\circ\cdots\circ\varphi_1)=\prod_{i=1}^n\deg(\varphi_i)$$

A brief (biased) history of isogeny based cryptography

Introduction
SQIsign and the Deuring correspondence
New dimensions in cryptography
Fast computation of higher dimensional isogenies
Conclusion

- SQlsign and the Deuring correspondence
- 2 New dimensions in cryptography
- 3 Fast computation of higher dimensional isogenies

The Deuring correspondence SQIsign

SQIsign and the Deuring correspondence

The Endomorphism ring

Definition (Endomorphism ring)

$$\operatorname{End}(E) = \{0\} \cup \{\text{Isogenies } \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

The Endomorphism ring

Definition (Endomorphism ring)

$$End(E) = \{0\} \cup \{Isogenies \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/\mathbb{F}_q $(p = \operatorname{char}(\mathbb{F}_q))$. Then $\operatorname{End}(E)$ is either isomorphic to:

- An order in a quadratic imaginary field. We say that E is ordinary.
- A maximal order in a quaternion algebra ramifying at p and ∞ . We say that E is supersingular.

• Quaternion algebra ramifying at p and ∞ : A 4-dimensional non commutative division algebra over \mathbb{Q} :

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

• Quaternion algebra ramifying at p and ∞ : A 4-dimensional non commutative division algebra over \mathbb{Q} :

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.

 Quaternion algebra ramifying at p and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{p,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathscr{O} \subset \mathscr{B}_{p,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.
- **Left Ideal:** A left \mathscr{O} -ideal I is a full rank lattice $I \subset \mathscr{B}_{p,\infty}$ such that $\mathscr{O} \cdot I = I$.
- **Right Ideal:** A right \mathcal{O} -ideal I is a full rank lattice $I \subset \mathcal{B}_{p,\infty}$ such that $I \cdot \mathcal{O} = I$.

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

• **Norm:** $nrd(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$

Conjugation:

$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

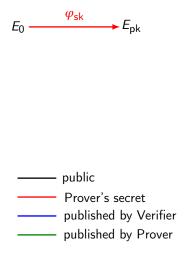
- **Norm:** $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2)$.
- **Ideal norm:** $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate: $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$.

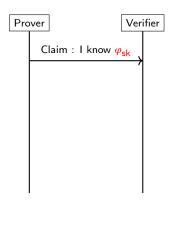
Conjugation:

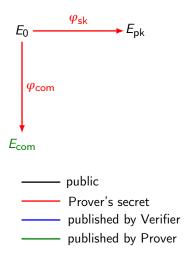
$$\alpha = x + yi + zj + tk \longrightarrow \overline{\alpha} = x - yi - zj - tk$$

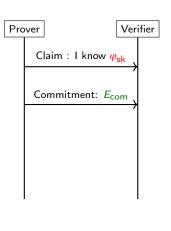
- **Norm:** $\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$
- **Ideal norm:** $\operatorname{nrd}(I) := \operatorname{gcd}\{\operatorname{nrd}(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate: $\overline{I} := {\overline{\alpha} \mid \alpha \in I}$.
- Equivalent left \mathscr{O} -ideals: $I \sim J \Longleftrightarrow \exists \alpha \in \mathscr{B}_{p,\infty}^*$, $J = I\alpha$.

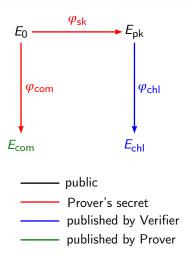
Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$

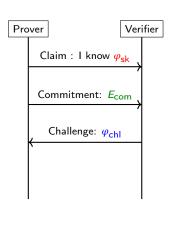

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}

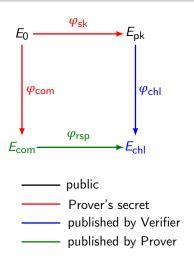

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty})$

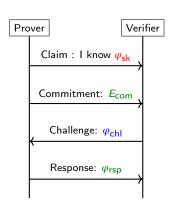

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ (I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty})$
\widehat{arphi}	$\overline{I_{arphi}}$

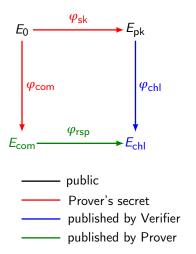

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$l_{\psi}\cdot l_{\varphi}$

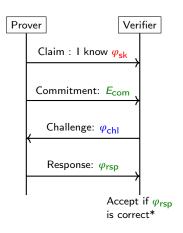

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathscr{O}\cong\operatorname{End}(E)$ maximal order in $\mathscr{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left \mathscr{O} -ideal and right \mathscr{O}' -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{\varphi} \sim I_{\psi} \ \big(I_{\psi} = I_{\varphi} \alpha, \ \alpha \in \mathcal{B}_{p,\infty} \big)$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$l_{\psi}\cdot l_{\varphi}$
$\overline{ deg(\varphi)}$	$nrd(\mathit{I}_{oldsymbol{arphi}})$

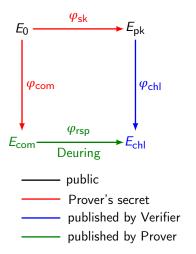


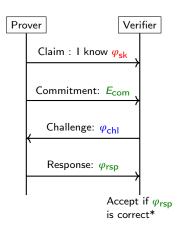












^{*} $\varphi_{\rm rsp}$ should not factor through $\varphi_{\rm chl}$.

^{*} $\varphi_{\rm rsp}$ should not factor through $\varphi_{\rm chl}$.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

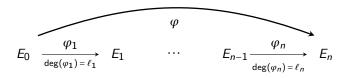
- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- \checkmark Becomes hard when End(E_1) or End(E_2) is unknown.

Goal: In SQIsign, we know $End(E_{com})$ and $End(E_{chl})$ and we want an isogeny $\varphi_{rsp}: E_{com} \longrightarrow E_{chl}$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute $J \sim I$ random of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.
- X Slow in practice because of the red steps.

What does it mean to "compute" an isogeny?

Definition (Efficient representation)

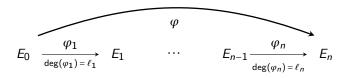

Let $\varphi: E \longrightarrow E'$ be a *d*-isogeny over \mathbb{F}_q . An <u>efficient representation</u> of φ with respect to an algorithm \mathscr{A} is some data $\overline{D_{\varphi} \in \{0,1\}^*}$ such that:

- D_{ω} has size poly(log(d), log(q)).
- ② For all $P \in E(\mathbb{F}_{q^k})$, $\mathscr{A}(D_{\varphi}, P)$ returns $\varphi(P)$ in time poly(log(d), $k \log(q)$).

What does it mean to "compute" an isogeny?

Examples of efficient representations:

• If $deg(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:



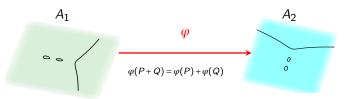
• If $\deg(\varphi)$ is smooth, a generator $P \in E(\mathbb{F}_q)$ s.t. $\ker(\varphi) = \langle P \rangle$ (Vélu).

What does it mean to "compute" an isogeny?

Examples of efficient representations:

• If $deg(\varphi) = \prod_{i=1}^{r} \ell_i$, a chain of isogenies:

- If $\deg(\varphi)$ is smooth, a generator $P \in E(\mathbb{F}_q)$ s.t. $\ker(\varphi) = \langle P \rangle$ (Vélu).
- New: If $\deg(\varphi) < 2^e$ is odd and $E[2^e] = \langle P, Q \rangle$, the image points $(\varphi(P), \varphi(Q))$ (higher dimensional interpolation).


Introduction
SQIsign and the Deuring correspondence
New dimensions in cryptography
Fast computation of higher dimensional isogenies
Conclusion

Kani's embedding lemma Efficient ideal to isogeny translation Effective group actions

New dimensions in cryptography

Isogenies between abelian varieties

- Abelian varieties are projective abelian group varieties, generalizing elliptic curves.
- Between abelian varieties, isogenies are morphisms which are surjective and of finite kernel.

An isogeny between abelian surfaces

n-isogenies in higher dimension

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contravariant isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.

n-isogenies in higher dimension

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contravariant isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.
- φ is an *n*-isogeny if $\widetilde{\varphi} \circ \varphi = [n]$.

n-isogenies in higher dimension

- Let $\varphi: A \longrightarrow B$ be an isogeny between principally polarised abelian varieties (PPAVs).
- Then there exists a contravariant isogeny $\widetilde{\varphi}: B \longrightarrow A$ with $\deg(\varphi) = \deg(\widetilde{\varphi})$.
- φ is an *n*-isogeny if $\widetilde{\varphi} \circ \varphi = [n]$.
- 1 This is not a general fact.
- \bigwedge *n*-isogenies have degree n^g (with $g = \dim(A) = \dim(B)$).

Consider the following commutative diagram:

$$E_{4} \xrightarrow{\varphi'} E_{3}$$

$$\psi' \uparrow \qquad \qquad \downarrow \psi$$

$$E_{1} \xrightarrow{\varphi} E_{2}$$

s.t. $\deg(\varphi) = \deg(\varphi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime.

Consider the following commutative diagram:

$$E_{4} \xrightarrow{\varphi'} E_{3}$$

$$\psi' \uparrow \qquad \uparrow \qquad \uparrow \qquad \psi$$

$$E_{1} \xrightarrow{\varphi} E_{2}$$

s.t. $\deg(\varphi) = \deg(\varphi') = q$ and $\deg(\psi) = \deg(\psi') = r$ are coprime. Then the isogeny:

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi'} \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

is a (q+r)-isogeny, i.e. $\widetilde{\Phi} \circ \Phi = [q+r]$, and its kernel is:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[q+r]\}.$$

- Let $\varphi: E_1 \longrightarrow E_2$ be an isogeny of odd degree $q < 2^e$ to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r:=2^e-q$.

- Let $\varphi: E_1 \longrightarrow E_2$ be an isogeny of odd degree $q < 2^e$ to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r:=2^e-q$.
- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

- Let $\varphi: E_1 \longrightarrow E_2$ be an isogeny of odd degree $q < 2^e$ to be computed.
- Let $\psi: E_2 \longrightarrow E_3$ be an auxiliary isogeny of degree $r:=2^e-q$.
- Suppose we know $\psi \circ \varphi(E_1[2^e])$.
- Then we can compute:

$$\ker(\Phi) = \{([q]P, \psi \circ \varphi(P)) \mid P \in E_1[2^e]\}.$$

So we can compute

$$\Phi := \begin{pmatrix} \varphi & \widehat{\psi} \\ -\psi' & \widehat{\varphi}' \end{pmatrix} : E_1 \times E_3 \longrightarrow E_2 \times E_4$$

as a chain of e 2-isogenies [DMPR25]:

$$E_1 \times E_3 \xrightarrow{\Phi_1} A_1 \xrightarrow{\Phi_2} A_2 \quad \cdots \quad A_{e-1} \xrightarrow{\Phi_e} E_2 \times E_4.$$

Kani's lemma [Kan97] and efficient representations

• Knowing Φ , we can evaluate φ everywhere:

$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

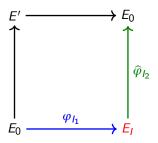
• So $(\psi \circ \varphi(E_1[2^e]), q, e)$ is an efficient representation of φ (and ψ').

Kani's lemma [Kan97] and efficient representations

• Knowing Φ , we can evaluate φ everywhere:

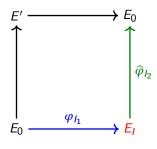
$$\Phi(P,0) = (\varphi(P), -\psi'(P)).$$

• So $(\psi \circ \varphi(E_1[2^e]), q, e)$ is an efficient representation of φ (and ψ').


The Power of Kani's lemma:

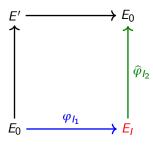
- A way to interpolate isogenies given their images on torsion points (led to SIDH attacks).
- Provides efficient representations on non-smooth degree isogenies.

HD techniques for the Deuring correspondence


- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 (left \mathcal{O}_1 -ideal and right \mathcal{O}_2 -ideal).
- Compute J~I random of smooth norm via [KLPT14] of (small) norm.
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$ using dimension 2 or 4 interpolation techniques.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.
- ✓ Faster than the previous method.

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

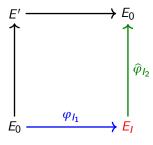
$$\Phi: E_0^2 \longrightarrow E_I \times E'$$


Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find $I_1, I_2 \sim I$ such that: $\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e.$

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

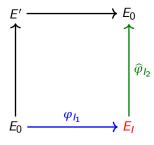


$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find $I_1, I_2 \sim I$ such that: $\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e.$

- By Kani's lemma, there exists a 2^e -isogeny $\Phi: E_0^2 \longrightarrow E_I \times E'$ that embeds φ_{I_1} and φ_{I_2} .
- $\ker(\Phi)$ can be computed from $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$ that generates $I_1 \cdot \overline{I}_2$.

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

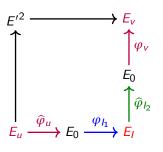

$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find $l_1, l_2 \sim I$ such that:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e.$$

- By Kani's lemma, there exists a 2^e -isogeny $\Phi: E_0^2 \longrightarrow E_I \times E'$ that embeds φ_{I_1} and φ_{I_2} .
- $\ker(\Phi)$ can be computed from $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$ that generates $I_1 \cdot \overline{I}_2$.
- From Φ , one can evaluate φ_{I_1} and then φ_{I} .

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

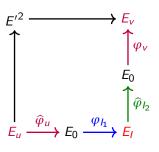

$$\Phi: E_0^2 \longrightarrow E_I \times E'$$

• Find l_1 , $l_2 \sim I$ such that:

$$\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e$$
.
Previously too hard to solve.

- By Kani's lemma, there exists a 2^e -isogeny $\Phi: E_0^2 \longrightarrow E_l \times E'$ that embeds φ_{I_1} and φ_{I_2} .
- $\ker(\Phi)$ can be computed from $\theta := \widehat{\varphi}_{I_2} \circ \varphi_{I_1}$ that generates $I_1 \cdot \overline{I}_2$.
- From Φ , one can evaluate φ_{I_1} and then φ_{I} .

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

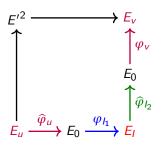


$$\Phi: E_{u} \times E_{v} \longrightarrow E_{l} \times E'$$

• Find u, v > 0 and $l_1, l_2 \sim I$ such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

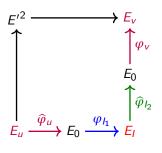

 $\Phi: E_u \times E_v \longrightarrow E_I \times E'$

• Find u, v > 0 and $l_1, l_2 \sim l$ such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

• Use Kani's lemma to compute isogenies φ_u and φ_v of degrees u and v [NO24].

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.


$$\Phi: E_u \times E_v \longrightarrow E_I \times E'$$

• Find u, v > 0 and $l_1, l_2 \sim l$ such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

- Use Kani's lemma to compute isogenies φ_u and φ_v of degrees u and v [NO24].
- By Kani's lemma, there exists a 2^e -isogeny $\Phi: E_u \times E_v \longrightarrow E_l \times E'$ that embeds $\varphi_{I_1} \circ \widehat{\varphi}_u$ and $\varphi_{I_2} \circ \widehat{\varphi}_v$.
- $\ker(\Phi)$ can be computed from φ_u , φ_v and $\theta := \widehat{\varphi}_{l_2} \circ \varphi_{l_1}$ that generates $l_1 \cdot \overline{l}_2$.

Goal: Given E_0/\mathbb{F}_{p^2} of equation $y^2 = x^3 + x$ and known endomorphism ring \mathcal{O}_0 , and a left \mathcal{O}_0 -ideal I, compute $\varphi_I : E_0 \longrightarrow E_I$.

$$\Phi: E_u \times E_v \longrightarrow E_I \times E'$$

• Find u, v > 0 and $l_1, l_2 \sim l$ such that:

$$u \operatorname{nrd}(I_1) + v \operatorname{nrd}(I_2) = 2^e$$
.

- Use Kani's lemma to compute isogenies φ_u and φ_v of degrees u and v [NO24].
- By Kani's lemma, there exists a 2^e -isogeny $\Phi: E_u \times E_v \longrightarrow E_l \times E'$ that embeds $\varphi_{I_1} \circ \widehat{\varphi}_u$ and $\varphi_{I_2} \circ \widehat{\varphi}_v$.
- $\ker(\Phi)$ can be computed from φ_u , φ_v and $\theta := \widehat{\varphi}_{l_2} \circ \varphi_{l_1}$ that generates $I_1 \cdot \overline{I}_2$.
- From Φ , one can evaluate $\varphi_{l_1} \circ \varphi_u$ and then φ_l .

 \bullet Let $\mathfrak O$ be a quadratic imaginary order.

- ullet Let ${\mathfrak O}$ be a quadratic imaginary order.
- A (primitively) \mathfrak{D} -oriented curve is a supersingular elliptic curve E with a maximal embedding $\iota : \mathfrak{D} \hookrightarrow \operatorname{End}(E)$.

- ullet Let ${\mathfrak O}$ be a quadratic imaginary order.
- A (primitively) \mathfrak{D} -oriented curve is a supersingular elliptic curve E with a maximal embedding $\iota : \mathfrak{D} \hookrightarrow \operatorname{End}(E)$.
- Cl(D) acts freely and (almost) transitively on D-oriented curves.

- ullet Let ${\mathfrak O}$ be a quadratic imaginary order.
- A (primitively) \mathfrak{D} -oriented curve is a supersingular elliptic curve E with a maximal embedding $\iota : \mathfrak{D} \hookrightarrow \operatorname{End}(E)$.
- $Cl(\mathfrak{O})$ acts freely and (almost) transitively on \mathfrak{O} -oriented curves.

$\mathfrak{O} ext{-ideals}$	$\mathfrak O\text{-oriented}$ curves and isogenies
Ideal $\mathfrak{a} \subseteq \mathfrak{O}$	$\varphi_{\mathfrak{a}}: E \longrightarrow E_{\mathfrak{a}}:= \mathfrak{a} \cdot E$
b ~ a	$a \cdot E \simeq b \cdot E$
αΩ	$\iota(\alpha): E \longrightarrow E$
	$\widehat{arphi}_{\mathfrak{a}}$
ab	$arphi_{\mathfrak{b}} \circ arphi_{\mathfrak{a}}$
<i>N</i> (a)	$deg(arphi_\mathfrak{a})$

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- ② Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **1** One way: given x and $g \cdot x$, $g \in G$ is hard to find.

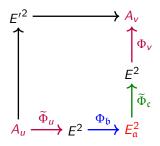
Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- **2** Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- 3 One way: given x and $g \cdot x$, $g \in G$ is hard to find.
- With effective group actions, we can derive many schemes (including key exchange, signatures and more).

Effective group action


Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative, free and transitive.
- **2** Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- 3 One way: given x and $g \cdot x$, $g \in G$ is hard to find.
- With effective group actions, we can derive many schemes (including key exchange, signatures and more).
- Actually, group actions based on orientations are *restricted* effective group actions. We can act by ideals of small norms l_1, \dots, l_t that generate $Cl(\mathfrak{O})$.
- Issue: This makes schemes less efficient and less scalable to bigger parameters.

The Clapoti method in PEGASIS [DEF+25]

Goal: Given an \mathfrak{D} -oriented curve E and **any** ideal $\mathfrak{a} \subseteq \mathfrak{D}$, compute $E_{\mathfrak{a}} := \mathfrak{a} \cdot E$.

$$F: A_u \times A_v \longrightarrow E_{\mathfrak{a}}^2 \times E'^2$$

• Find u, v > 0 and $b, c \sim a$ such that:

$$u \operatorname{nrd}(\mathfrak{b}) + v \operatorname{nrd}(\mathfrak{c}) = 2^e.$$

- Compute u and v-isogenies Φ_u and Φ_v in dimension 2.
- By Kani's lemma, there exists a 2^e -isogeny $F: A_u \times A_v \longrightarrow E_{\mathfrak{a}}^2 \times E'^2$ that embeds $\Phi_{\mathfrak{b}} \circ \widetilde{\Phi}_u$ and $\Phi_{\mathfrak{c}} \circ \widetilde{\Phi}_v$.
- $\ker(F)$ can be computed from Φ_u , Φ_v and $\theta := \widehat{\varphi}_c \circ \varphi_c$ that generates $b \cdot \overline{c}$.
- From F, we extract $E_{\mathfrak{a}}$.

Introduction
SQIsign and the Deuring correspondence
New dimensions in cryptography
Fast computation of higher dimensional isogenies
Conclusion

Theta structures Computing 2-isogeny chains Gluing 2-isogenies Results

Fast computation of higher dimensional isogenies

Definition: symplectic isomorphism

- Let A/k be a PPAV of dimension g.
- If $n \nmid \operatorname{char}(k)$, then $A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$.

Definition: symplectic isomorphism

- Let A/k be a PPAV of dimension g.
- If $n \nmid \operatorname{char}(k)$, then $A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$.
- A symplectic isomorphism $\varphi: (\mathbb{Z}/n\mathbb{Z})^g \times (\widehat{\mathbb{Z}/n\mathbb{Z}})^g \xrightarrow{\sim} A[n]$ is a group isomorphism satisfying:

$$\forall x,y \in (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g}, \quad e_n(\varphi(x),\varphi(y)) = e_n(x,y),$$

where the first pairing is the Weil-pairing and the second one is given by:

$$\forall (i,\chi), (i',\chi') \in (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g}, \quad e_n((i,\chi),(i',\chi')) = \chi'(i)\chi(i')^{-1}.$$

Definition: symplectic isomorphism

- Let A/k be a PPAV of dimension g.
- If $n \nmid \operatorname{char}(k)$, then $A[n] \simeq (\mathbb{Z}/n\mathbb{Z})^{2g}$.
- A symplectic isomorphism $\varphi: (\mathbb{Z}/n\mathbb{Z})^g \times (\overline{\mathbb{Z}}/n\overline{\mathbb{Z}})^g \xrightarrow{\sim} A[n]$ is a group isomorphism satisfying:

$$\forall x, y \in (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g}, \quad e_n(\varphi(x), \varphi(y)) = e_n(x, y),$$

where the first pairing is the Weil-pairing and the second one is given by:

$$\forall (i,\chi), (i',\chi') \in (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g}, \quad e_n((i,\chi),(i',\chi')) = \chi'(i)\chi(i')^{-1}.$$

• Such a symplectic isomorphism is determined by a $(\zeta$ -)symplectic basis $(S_1, \dots, S_g, T_1, \dots, T_g)$ of A[n] i.e. a basis such that:

$$\forall 1 \leq i, j \leq g$$
, $e_n(S_i, S_j) = e_n(T_i, T_j) = 1$ and $e_n(S_i, T_j) = \zeta^{\delta_{i,j}}$,

where ζ is a primitive *n*-th root of unity.

Definition: theta structure

Definition (Max Duparc)

Let A be a PPAV of dimension g. A (symmetric) theta structure of level n is a map

$$\Theta(n): A \longrightarrow \mathbb{P}^{n^g - 1}$$

$$\times \longmapsto (\theta_i(x))_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$$

along with a symplectic isomorphism:

$$\overline{\Theta}(n): (\mathbb{Z}/n\mathbb{Z})^g \times \widehat{(\mathbb{Z}/n\mathbb{Z})^g} \stackrel{\sim}{\longrightarrow} A[n]$$

satisfying the theta group action relation:

$$\theta_i(x + \overline{\Theta}(n)(j,\chi)) = \chi(i)^{-1}\theta_{i+j}(x),$$

for all $x \in A$, $i,j \in (\mathbb{Z}/n\mathbb{Z})^g$ and $\chi \in \widehat{(\mathbb{Z}/n\mathbb{Z})^g}$.

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure $(\Theta(n), \overline{\Theta}(n))$ on a PPAV A is fully determined by a symplectic isomorphism $\overline{\Theta}(2n): (\mathbb{Z}/2n\mathbb{Z})^g \times (\widehat{\mathbb{Z}/2n\mathbb{Z}})^g \xrightarrow{\sim} A[2n]$ inducing $\overline{\Theta}(n)$ i.e. by a symplectic basis of A[2n] inducing $\overline{\Theta}(n)$.

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure $(\Theta(n), \overline{\Theta}(n))$ on a PPAV A is fully determined by a symplectic isomorphism $\overline{\Theta}(2n): (\mathbb{Z}/2n\mathbb{Z})^g \times (\widehat{\mathbb{Z}/2n\mathbb{Z}})^g \xrightarrow{\sim} A[2n]$ inducing $\overline{\Theta}(n)$ i.e. by a symplectic basis of A[2n] inducing $\overline{\Theta}(n)$.

Theta structures and theta null points:

• When 4|n, the marked AV (PPAV and theta structure) $(A,\Theta(n),\overline{\Theta}(n))$ is determined by the theta null point $(\theta_i(0_A))_i$.

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure $(\Theta(n), \overline{\Theta}(n))$ on a PPAV A is fully determined by a symplectic isomorphism $\overline{\Theta}(2n): (\mathbb{Z}/2n\mathbb{Z})^g \times (\widehat{\mathbb{Z}/2n\mathbb{Z}})^g \xrightarrow{\sim} A[2n]$ inducing $\overline{\Theta}(n)$ i.e. by a symplectic basis of A[2n] inducing $\overline{\Theta}(n)$.

Theta structures and theta null points:

- When 4|n, the marked AV (PPAV and theta structure) $(A,\Theta(n),\overline{\Theta}(n))$ is determined by the theta null point $(\theta_i(0_A))_i$.
- In other cases, we still use the theta null point as a representative of a marked AV.
- This is enough for arithmetic operations.

Theta structures of level 2

Theorem

Let $(A, \Theta(n), \overline{\Theta}(n))$ be a marked AV of level n and dimension g. Then:

- **1** [Mum74] If $n \ge 3$, then $\Theta(n)$: $A \hookrightarrow \mathbb{P}^{n^g-1}$ is an embedding.
- ② [BL04] If n = 2 and A is not a product, then $\Theta(2)$ defines an embedding $A/\pm \longrightarrow \mathbb{P}^{2^g-1}$.
- **③** [BL04] If n = 2 and $A \simeq A_1 \times \cdots \times A_m$, then $\Theta(2)$ defines an embedding

$$A_1/\pm\times\cdots\times A_m/\pm\longrightarrow\mathbb{P}^{2^g-1}$$
.

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

Method:

• Decompose *f* as a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$

• Compute every 2-isogeny iteratively, using:

$$\ker(f_i) = [2^{e-i}]f_{i-1} \circ \cdots \circ f_1(\ker(f)).$$

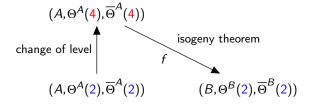
Goal: Given the kernel $K \subset A[2^e]$ of a 2^e -isogeny between PPAVs $f: A \longrightarrow B$, compute f in level 2 theta coordinates:

$$(\theta_i^A(x))_{i \in (\mathbb{Z}/2\mathbb{Z})^g} \longmapsto (\theta_i^B(f(x)))_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$$

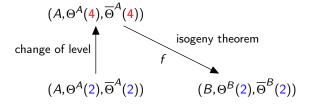
Method:

• Decompose *f* as a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$


• Compute every 2-isogeny iteratively, using:

$$\ker(f_i) = [2^{e-i}]f_{i-1} \circ \cdots \circ f_1(\ker(f)).$$


Technicality: We need more torsion $K \subset A[2^{e+2}]$ above the kernel.

Computing a 2-isogeny: change of level

Computing a 2-isogeny: change of level



Computing a 2-isogeny: change of level

- The level 4 theta structure $(A, \Theta^A(4), \overline{\Theta}^A(4))$ is induced by a symplectic basis of A[8].
- For that reason, we need 8-torsion points T_1, \dots, T_g such that $\ker(f) = \langle [4]T_1, \dots, [4]T_g \rangle$ to compute f.

Computing a 2-isogeny: change of level

- The level 4 theta structure $(A, \Theta^A(4), \overline{\Theta}^A(4))$ is induced by a symplectic basis of A[8].
- For that reason, we need 8-torsion points T_1, \dots, T_g such that $\ker(f) = \langle [4]T_1, \dots, [4]T_g \rangle$ to compute f.
- With this data, we compute the codomain theta-null point $(\theta_i(0_B))_i$.

2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

$$(\theta_i^A(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\bar{\theta}_i^B(0_B))_i} * \xrightarrow{H} (\theta_i^B(f(x)))_i$$

where:

•
$$H: (x_i)_i \longmapsto \left(\sum_{i \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{\langle i|j \rangle} x_i\right)_j$$
 (Hadamard).

•
$$S:(x_i)_i \longmapsto (x_i^2)_i$$
.

$$\bullet (x_i)_i \star (y_i)_i := (x_i y_i)_i.$$

•
$$(\widetilde{\theta}_i^B(0_B))_i = H((\theta_i^B(0_B))_i)$$
 (dual theta null point).

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing $f: A_1 \times A_2 \longrightarrow B$.

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing $f: A_1 \times A_2 \longrightarrow B$.

Issue 1:

• The starting domain theta structure $\Theta^{A_1 \times A_2}$ is the product $\Theta^{A_1} \times \Theta^{A_2}$:

$$\theta_{i,j}^{A_1\times A_2}(x,y)=\theta_i^{A_1}(x)\cdot\theta_j^{A_2}(y).$$

The isogeny formulas only work when

$$\overline{\Theta}^{A_1 \times A_2} (\{0\} \times \widehat{(\mathbb{Z}/2\mathbb{Z})^g}) = \ker(f).$$

• This is usually not the case when $\Theta^{A_1 \times A_2} = \Theta^{A_1} \times \Theta^{A_2}$.

Issues with the first 2-isogeny in the chain

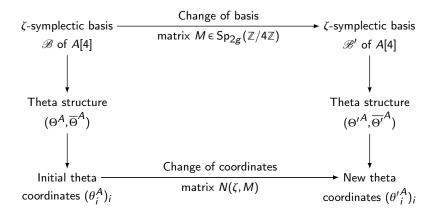
Usually, the first isogeny of the chain is a gluing $f: A_1 \times A_2 \longrightarrow B$.

Issue 1:

• The starting domain theta structure $\Theta^{A_1 \times A_2}$ is the product $\Theta^{A_1} \times \Theta^{A_2}$:

$$\theta_{i,j}^{A_1\times A_2}\big(x,y\big)=\theta_i^{A_1}\big(x\big)\cdot\theta_j^{A_2}\big(y\big).$$

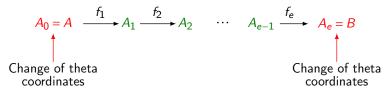
• The isogeny formulas only work when


$$\overline{\Theta}^{A_1 \times A_2} (\{0\} \times \widehat{(\mathbb{Z}/2\mathbb{Z})^g}) = \ker(f).$$

• This is usually not the case when $\Theta^{A_1 \times A_2} = \Theta^{A_1} \times \Theta^{A_2}$.

Solution 1: Compute a new theta structure $\Theta'^{A_1 \times A_2}$ such that

$$\overline{\Theta'}^{A_1 \times A_2}(\{0\} \times \widehat{(\mathbb{Z}/2\mathbb{Z})^g}) = \ker(f).$$


Change of coordinate formulas

 $^{*\}zeta$ is a primitive 4-th root of unity given by the Weil-pairings of symplectic basis.

The right choice of theta structure propagates

When there is only one gluing isogeny, only 2 change of theta structures are needed

Evaluating a gluing 2-isogeny

Issue 2:

• The evaluation algorithm:

$$(\theta_i^A(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\widehat{\theta}_i^B(0_B))_i} * \xrightarrow{H} (\theta_i^B(f(x)))_i$$

no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.

Evaluating a gluing 2-isogeny

Issue 2:

• The evaluation algorithm:

$$(\theta_i^A(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\widehat{\theta}_i^B(0_B))_i} * \xrightarrow{H} (\theta_i^B(f(x)))_i$$

no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.

 Why? Because level 2 theta coordinates encode points up to a sign, we are computing:

$$(\pm x, \pm y) \longmapsto \pm f(x, y)$$

• We need additional information to lift the sign indetermination.

Evaluating a gluing 2-isogeny

Issue 2:

• The evaluation algorithm:

$$(\theta_i^A(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\tilde{\theta}_i^B(0_B))_i} * \xrightarrow{H} (\theta_i^B(f(x)))_i$$

no longer works because the $\widetilde{\theta}_i^B(0_B)$ may vanish.

 Why? Because level 2 theta coordinates encode points up to a sign, we are computing:

$$(\pm x, \pm y) \longmapsto \pm f(x, y)$$

We need additional information to lift the sign indetermination.

Solution 2: Using x and translates x + T where $[2]T \in \ker(f)$, we can evaluate f(x).

A dramatic improvement of SQIsign with dimension 2

Table: Comparison of time performance in ms of SQIsign (NIST round 1) and SQIsign (NIST round 2) on an Intel Core i5-1335U 4600MHz CPU.

		NIST I	NIST III	NIST V	
SQlsign v 1.0	Key Gen.	355.72	5 625.72	22 445.3	
	Signature	554.78	10 553.18	41 322.21	
	Verification	7.77	195.86	571.77	
SQlsign v 2.0	Key Gen.	10.63	32.05	51.37	
	Signature	24.53	74.20	126.72	
	Verification	1.13	4.10	8.49	

PEGASIS: the proof dimension 4 can be efficient

Paper	Impl.	500	1000	1500	2000	4000
SCALLOP [FFK+23]*	C++	35s	12m30s	_	-	_
SCALLOP-HD [CLP24]*	Sage	88s	19m	-	-	-
PEARL-SCALLOP [ABE+24]	C++	30s	58s	12m	-	-
KLaPoTi [PPS24]	Sage	200s	-	-	-	_
KLai 011 [i 1 324]	Rust	1.95s	-	_	_	-
PEGASIS (This work)	Sage	1.53s	4.21s	10.5s	21.3s	2m2s

Table: Comparison between PEGASIS and other effective group actions in the literature. The last 5 columns gives the timings corresponding to the different security levels, where s/m gives the number of seconds/minutes in wall-clock time. SCALLOP and SCALLOP-HD are starred because they were measured on a different hardware setup.

Thank you for listening

- SIDH attacks and HD isogenies are a breakthrough in isogeny based cryptography.
- There have been many grounbreaking constructive applications (e.g. SQIsign) and new applications are still unfolding.
- Research is still needed to accelerate HD algorithms (e.g. for odd degree).