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Introduction

Cryptography in daily life

What people think crypto is: What crypto really is:

[ o 0 ¢ m— )
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Introduction

Hard problems for public key cryptography

Widely used underlying problems...
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Introduction

Hard problems for public key cryptography

Widely used underlying problems... ...All broken by quantum
computers

@ The factorisation problem (RSA):
N=pxgq.

@ The discrete logarithm problem in a
group (G, +) generated by P (ECC):

Q= [n]P.
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Introduction

Elliptic curves

\P+Q

@ An elliptic curve E/Fq is defined by:

Y2 =53

+ax+b, abely,
with an infinite element Of.
o E is equipped with a commutative group law.
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Introduction

Isogenies

»

¢(P+Q)=9p(P)+¢(Q)
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Introduction

Why are isogenies interesting in cryptography?

The isogeny problem: Given two elliptic curves Eq, Ep/Fq, find an
isogeny E; — E».

El ---------------- >

This problem is assumed to be hard for both classical and quantum
computers.
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Introduction

Isogenies - degree

Ei deg(¢p) =2

An isogeny of degree n is called an n-isogeny.
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Introduction

Isogenies - the dual isogeny

)

deg(®) = deg(¢) =2

An n-isogeny ¢ satisfies Pog =[n].
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Introduction

Isogeny chains

7 o ) L
Eg

& Epr— | E,

deg(pno---0p1) =[] deg(¢p;)
=1
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Introduction

A brief (biased) history of isogeny based cryptography

1997

Couveignes

2006

Rostovtsev-Stolbunov

SIKE (NIST)
CSIDH

SQIsign 2018
SIDH attacks
SQIsignHD

SQIsign**

2020
In blue: group actions
In green: works of this PhD 2024
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Introduction

@ SQIsign and the Deuring correspondence
© New dimensions in cryptography

© Fast computation of higher dimensional isogenies
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SQIsign and the Deuring correspondence TS (BT (e T

SQIsign

SQIsign and the Deuring correspondence
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Endomorphism ring

Definition (Endomorphism ring)

End(E) = {0} u {Isogenies ¢ : E — E}

Defines a ring for the addition and composition of isogenies.
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Endomorphism ring

Definition (Endomorphism ring)

End(E) = {0} u {Isogenies ¢ : E — E}

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/Fq (p=char(Fq)). Then End(E) is either isomorphic to:
® An order in a quadratic imaginary field. We say that E is ordinary.

@ A maximal order in a quaternion algebra ramifying at p and co. We
say that E is supersingular.
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

@ Quaternion algebra ramifying at p and co: A 4-dimensional non
commutative division algebra over Q:

Bpoo=Q0QioQj®Qk,
with

i?=-1(f p=3 mod4), j2=—p and k=ij=—ji.
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

@ Quaternion algebra ramifying at p and co: A 4-dimensional non
commutative division algebra over Q:

Bpo =00 Qi Q)& Qk,
with
i?=-1(f p=3 mod4), j2=—p and k=ij=—ji.

@ Order: A full rank lattice 6 c 98, with a ring structure.

e Maximal Order: An order G c 9B, such that for any other order
0' 20, we have 0' =0.
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SQIsign and the Deuring correspondence Tie Barins e

SQIsign

Quaternions - Definitions

@ Quaternion algebra ramifying at p and co: A 4-dimensional non
commutative division algebra over Q:

Bpo =00 Qi Q)& Qk,
with
i?=-1(f p=3 mod4), j2=—p and k=ij=—ji.

@ Order: A full rank lattice 6 c 98, with a ring structure.

e Maximal Order: An order G c 9B, such that for any other order
0' 20, we have 0' =0.

o Left Ideal: A left 0-ideal / is a full rank lattice / = 9By« such that

o-1=1.
o Right Ideal: A right O-ideal / is a full rank lattice | ¢ % o such
that 1.0 =1.
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

o Conjugation:

a=x+yi+zj+thk—a=x-yi—zj—tk
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

o Conjugation:
a=x+yi+zj+thk—a=x-yi—zj—tk

o Norm: nrd(a):= a@=x2+y? + p(z° + t?).
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

Conjugation:
a=x+yi+zj+thk—a=x-yi—zj—tk

Norm: nrd(a):= a@ = x? +y? + p(z2 + t2).

o ldeal norm: nrd(/):=gcd{nrd(a) | a € I}.

Ideal conjugate: T:={@lacl.

Pierrick Dartois HD isogenies for cryptography



SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

Quaternions - Definitions

Conjugation:
a=x+yi+zj+thk—a=x-yi—zj—tk

Norm: nrd(a):= a@ = x? +y? + p(z2 + t2).

o ldeal norm: nrd(/):=gcd{nrd(a) | a € I}.

Ideal conjugate: T:={@lacl.

o Equivalent left 0-ideals: | ~ J<—3Ja € 98;;,00, J=la.
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o
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SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o
@p:E—FE left O-ideal and right ¢'-ideal /,

Pierrick Dartois HD isogenies for cryptography 16 /54



SQIsign and the Deuring correspondence Tie Barins e

SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o
@p:E—FE left O-ideal and right ¢'-ideal /,

oy E—F Iy~ by (hy = lp, @€ Bpoo)
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o

@p:E—FE left O-ideal and right ¢'-ideal /,
oy E—E by~ by (ly = lpat, @€ Bp o)
? lp
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o

@p:E—FE left O-ideal and right ¢'-ideal /,
gy E—F o~ by (by = lpar, @€ B o)
P Iy
poy by -1y
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SQIsign and the Deuring correspondence T Bt Ere e

SQIsign

The Deuring correspondence

Supersingular elliptic curves Quaternions

J(E) or j(E)P supersingular @ =End(E) maximal order in %p o

@p:E—FE left O-ideal and right ¢'-ideal /,
oy E—F by~ by (ly = lpat, @€ Bp o)
? lp
Qo by -1y
deg(¢) nrd(/y)
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
public
Prover's secret

published by Verifier
published by Prover
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
®Pcom
Commitment: Ecom
Ecom
public
Prover's secret

published by Verifier
published by Prover
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
®Pcom Pchl .
Commitment: Ecom
Challenge: ¢cp
Ecom Echi
public
Prover's secret

published by Verifier
published by Prover
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SQIsign and the Deuring correspondence T Bty acre et
SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
®Pcom Pchl
‘ Commitment: Ecom
Prsp

Challenge: ¢cp

Ecom—————Ecnl

Response: ¢rsp

—— public

Prover's secret
——— published by Verifier
published by Prover
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SQIsign and the Deuring correspondence T Bty acre et
SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
®Pcom Pchl
‘ Commitment: Ecom
Prsp

Challenge: ¢cp

Ecom—————Ecnl

Response: ¢rsp

—— public

Prover's secret
——— published by Verifier
——— published by Prover

Accept if ¢rsp
is correct*

*prsp should not factor through ¢y,
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SQIsign and the Deuring correspondence T Bty acre et
SQIlsign

The SQIsign identification scheme

Psk
Eq Epk Prover Verifier
Claim : | know ¢gy
®Pcom Pchl .
Commitment: Ecom
Prsp Challenge: ¢cp
Ecom—————Ep
Deuring
. Response: ¢rsp
—— public
Prover's secret

Accept if ¢rsp
is correct*

——— published by Verifier

published by Prover *prsp should not factor through ¢y,
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SQIsign and the Deuring correspondence T Bt csmesees

SQIlsign

Computing isogenies via the Deuring correspondence

Goal: In SQIsign, we know End(Ecom) and End(Egp,) and we want an
isogeny @rsp : Ecom — Ech-
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

Computing isogenies via the Deuring correspondence

Goal: In SQIsign, we know End(Ecom) and End(Egp,) and we want an
isogeny @rsp : Ecom — Ech-

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E1 and Ej of known endomorphism rings @1 = End(E;) and
Oy = End(Ep).

e Compute a connecting ideal | between €7 and @5 (left ©1-ideal and
right O»-ideal).

e Compute J ~/ random of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢ : E; — Ep.
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Computing isogenies via the Deuring correspondence

Goal: In SQIsign, we know End(Ecom) and End(Egp,) and we want an
isogeny @rsp : Ecom — Ech-

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E1 and Ej of known endomorphism rings @1 = End(E;) and
Oy = End(Ep).

e Compute a connecting ideal | between €7 and @5 (left ©1-ideal and
right O»-ideal).

e Compute J ~/ random of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢ : E; — Ep.

V" Takes polynomial time.
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SQIlsign

Computing isogenies via the Deuring correspondence

Goal: In SQIsign, we know End(Ecom) and End(Egp,) and we want an
isogeny @rsp : Ecom — Ech-

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E1 and Ej of known endomorphism rings @1 = End(E;) and
Oy = End(Ep).

e Compute a connecting ideal | between €7 and @5 (left ©1-ideal and
right O»-ideal).

e Compute J ~/ random of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢ : E; — Ep.

V" Takes polynomial time.
v" Becomes hard when End(E;) or End(E2) is unknown.
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

Computing isogenies via the Deuring correspondence

Goal: In SQIsign, we know End(Ecom) and End(Egp,) and we want an
isogeny @rsp : Ecom — Ech-

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E1 and Ej of known endomorphism rings @1 = End(E;) and
Oy = End(Ep).

e Compute a connecting ideal | between 67 and @ (left ©1-ideal and
right O»-ideal).

e Compute J ~/ random of smooth norm via [KLPT14].

@ Translate J into an isogeny ¢ : E; — Ep.

V" Takes polynomial time.
v" Becomes hard when End(Ej) or End(E2) is unknown.
X Slow in practice because of the red steps.
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SQIsign and the Deuring correspondence T Bty acre et
SQIlsign

What does it mean to "compute" an isogeny?

Definition (Efficient representation)
Let ¢ : E— E' be a d-isogeny over Fq. An efficient representation of ¢
with respect to an algorithm .27 is some data D, € {0,1}* such that:
© D, has size poly(log(d),log(q)).
Q For all Pe E(F ), «/(Dy,P) returns ¢(P) in time
poly(log(d), klog(q))-
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

What does it mean to "compute" an isogeny?

Examples of efficient representations:

o If deg(¢)=TI"_ ¢i, a chain of isogenies:

e T

P1 Pn
EO - E]. v En71 En
deg(p1) =01 deg(¢n) =¢n

o If deg(¢) is smooth, a generator P € E(Fg) s.t. ker(¢)=(P) (Vélu).
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SQIsign and the Deuring correspondence T Bty acre et

SQIlsign

What does it mean to "compute" an isogeny?

Examples of efficient representations:

o If deg(¢)=TI"_ ¢i, a chain of isogenies:

m
P1 Pn

0 deg(p1)=11 ! -l deg(¢n)=¢n

En

o If deg(¢) is smooth, a generator P € E(Fg) s.t. ker(¢)=(P) (Vélu).

e New: If deg(¢) <2¢ is odd and E[2°] = (P, Q), the image points
(¢(P),9(Q)) (higher dimensional interpolation).
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

New dimensions in cryptography
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Kani's embedding lemma

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Isogenies between abelian varieties

@ Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.

@ Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.

A1 A
¢ \/_‘
S <= > 0
o

¢(P+Q)=p(P)+¢(Q)

An isogeny between abelian surfaces
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Kani's embedding lemma

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

n-isogenies in higher dimension

@ Let ¢: A— B be an isogeny between principally polarised abelian
varieties (PPAVs).

@ Then there exists a contravariant isogeny ¢ : B — A with
deg(¢) = deg(9).
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n-isogenies in higher dimension

@ Let ¢: A— B be an isogeny between principally polarised abelian
varieties (PPAVs).

@ Then there exists a contravariant isogeny ¢ : B — A with
deg(¢) = deg(9).

@ ¢ is an n-isogeny if o =|n].

Pierrick Dartois HD isogenies for cryptography 20 /54



Kani's embedding lemma

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

n-isogenies in higher dimension

@ Let ¢: A— B be an isogeny between principally polarised abelian
varieties (PPAVs).

@ Then there exists a contravariant isogeny ¢ : B — A with
deg(¢) = deg(9).

@ ¢ is an n-isogeny if o =|n].
° A This is not a general fact.

o /\ n-isogenies have degree n€ (with g = dim(A) = dim(B)).
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

/

E4LE3

wﬂ O Tu/

Ei — B

s.t. deg(p)=deg(¢’) = q and deg(y) =deg(y’) = r are coprime.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma (dimension 2) [Kan97]

Consider the following commutative diagram:

/

E4LE3

v O
EE— B
s.t. deg(p)=deg(¢’) = q and deg(y) =deg(y’) = r are coprime. Then
the isogeny:
(D::(—(lp//’ g):E1XE3—>E2XE4

is a (q+r)-isogeny, i.e. ®o®=[g+r], and its kernel is:

ker(®) = {([q]P,wop(P))| P e Ei[q+r]}.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — E5 be an isogeny of odd degree q <2€ to be
computed.

o Let y: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.
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Kani's embedding lemma

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — E5 be an isogeny of odd degree q <2€ to be
computed.

o Let y: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.
@ Suppose we know 1o ¢( E1[2€]).

@ Then we can compute:

ker(®) ={([g]P,y o @(P))| P € E1[2°]}.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma (dimension 2) [Kan97]

@ Let ¢: E; — E5 be an isogeny of odd degree q <2€ to be
computed.

o Let y: Ep — E3 be an auxiliary isogeny of degree r:=2¢—gq.
@ Suppose we know 1o ¢( E1[2€]).

@ Then we can compute:

ker(®) ={([g]P,y o @(P))| P € E1[2°]}.

@ So we can compute

o Y
@::(_w, (E,):Ele3—>E2><E4

as a chain of e 2-isogenies [DMPR25]:

()

Epx B3 -2t Ay Ay o Al -2 B xE
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma [Kan97] and efficient representations

@ Knowing @, we can evaluate ¢ everywhere:

@(P,0) = (¢(P),—y'(P)).

o So (yo@(E1[2%]),q,e) is an efficient representation of ¢ (and y').
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Kani's lemma [Kan97] and efficient representations

@ Knowing @, we can evaluate ¢ everywhere:

@(P,0) = (¢(P),—y'(P)).

o So (yo@(E1[2%]),q,e) is an efficient representation of ¢ (and y').

The Power of Kani’s lemma:

@ A way to interpolate isogenies given their images on torsion points
(led to SIDH attacks).

@ Provides efficient representations on non-smooth degree isogenies.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

HD techniques for the Deuring correspondence

Problem: How to compute isogenies between elliptic curves of known
endomorphism rings?

@ Let E; and E of known endomorphism rings @7 = End(E;) and
0> =End(E).

e Compute a connecting ideal | between @1 and @ (left ©1-ideal and
right Op-ideal).

e Compute J ~ | random of smeeth-rerrvia—HKERFE4] of (small)
norm.

@ Translate J into an isogeny ¢ : Ey — Ep using dimension 2 or 4
interpolation techniques.

V" Takes polynomial time.
v' Becomes hard when End(Ej) or End(E>) is unknown.

v" Faster than the previous method.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given Eq/F 2 of equation y? =x3 4 x and known endomorphism

ring Og, and a left Gg-ideal I, compute ¢, : Eg — E;.

E— b
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given Eq/F 2 of equation y? =x3 4 x and known endomorphism

ring Og, and a left Gg-ideal I, compute ¢, : Eg — E;.

= s E e Find 1, ~ I such that:
nrd(ll)+nrd(lg)=2e.
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Kanifslambeddingllemme

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given Eq/F 2 of equation y? =x3 4 x and known endomorphism
ring Og, and a left Gg-ideal I, compute ¢, : Eg — E;.

= s E e Find 1, ~ I such that:

nrd(ll)+ nrd(lg) =2¢,

~

D,
@ By Kani's lemma, there exists a
2¢-isogeny @ : Eg — E; x E' that
P embeds and )
E() 1 E/ P D,

o ker(®) can be computed from
0 :=py, o), that generates /1 - /5.

E2—ExE
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given Eq/F 2 of equation y? =x3 4 x and known endomorphism

ring Og, and a left Gg-ideal I, compute ¢, : Eg — E;.

= s E e Find 1, ~ I such that:
nrd(ll) + nrd(lg) =2¢,
P
@ By Kani's lemma, there exists a
2¢-isogeny @ : Eg — E; x E' that
Pn embeds ¢, and ¢y, .
Eg — &
o ker(®) can be computed from
0 := P, 0y, that generates I - /5.
o E02 — E xE @ From @, one can evaluate ¢, and

then ¢;.
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method [PR23]

Goal: Given Eq/F 2 of equation y? =x3 4 x and known endomorphism

ring Og, and a left Gg-ideal I, compute ¢, : Eg — E;.

= s E o Find 1, ~ I such that:
W.

Previously too hard to solve.

By Kani's lemma, there exists a
2¢-isogeny @ : Eg — E; x E' that
embeds ¢, and ¢y, .

ker(®) can be computed from

0 := P, 0y, that generates I - /5.
From ®, one can evaluate ¢, and
then ¢;.

S
I
|
m
x
m

[
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method in SQIsign2D-West [BDF+25]

3

Goal: Given Eo/[sz of equation y2 = x3 +x and known endomorphism
ring Og, and a left Og-ideal I, compute ¢, : Eg — E.

£ E @ Find u,v>0 and I1,/» ~ I such that:
a v

T(’DV unrd(l1)+vnrd(k) =2°.

Eg

T‘ﬁ b
P

7
E,— Eg — £
d:E,xE,—E xE'
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The Clapoti method in SQIsign2D-West [BDF+25]

3

Goal: Given Eo/[sz of equation y2 = x3 +x and known endomorphism
ring Og, and a left Og-ideal I, compute ¢, : Eg — E.

£ E @ Find u,v>0 and I1,/» ~ I such that:
a v

T(’DV unrd(l1)+vnrd(k) =2°.
E @ Use Kani's lemma to compute isogenies
¢, and ¢, of degrees u and v [NO24].
T@/z
P

7
E,— Eg — £
d:E,xE,—E xE'
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The Clapoti method in SQIsign2D-West [BDF+25]

3

Goal: Given Eo/[sz of equation y2 = x3 +x and known endomorphism
ring Og, and a left Og-ideal I, compute ¢, : Eg — E.

£ E @ Find u,v>0 and I1,/» ~ I such that:
a v

T(’DV unrd(l1)+vnrd(k) =2°.
E @ Use Kani's lemma to compute isogenies
¢, and ¢, of degrees u and v [NO24].
T‘Plz @ By Kani's lemma, there exists a
Pn 2¢-isogeny ®: E, x E, — E; x E' that

Pu
Ey,— Eg —— E embeds ¢, 0P, and @1, 0P, .

o ker(®) can be computed from ¢, ¢,

®:E, xE,— E x E' and 0 :=, oy, that generates /- /5.
. u v

Pierrick Dartois HD isogenies for cryptography 36 /54



Kanifslambeddingllemme

New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method in SQIsign2D-West [BDF+25]

Goal: Given Eo/[sz of equation y2 = x3 +x and known endomorphism
ring Og, and a left Og-ideal I, compute ¢, : Eg — E.

£ E @ Find u,v>0 and I1,/» ~ I such that:
a v

T(’DV unrd(l1)+vnrd(k) =2°.
E @ Use Kani's lemma to compute isogenies
¢, and ¢, of degrees u and v [NO24].
T‘Plz @ By Kani's lemma, there exists a
Pn 2¢-isogeny ®: E, x E, — E; x E' that

Pu
Ey,— Eg —— E embeds ¢, 0P, and @1, 0P, .

o ker(®) can be computed from ¢, ¢,
®:E, xE,— E x E' and 0 :=, oy, that generates /- /5.

. u v
@ From @, one can evaluate ¢, o¢, and

then ¢;.
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Effective group actions

Ideal class group action

@ Let O be a quadratic imaginary order.
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@ Let O be a quadratic imaginary order.

e A (primitively) O-oriented curve is a supersingular elliptic curve E
with a maximal embedding ¢: O — End(E).
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New dimensions in cryptography
Effective group actions

Ideal class group action

@ Let O be a quadratic imaginary order.
e A (primitively) O-oriented curve is a supersingular elliptic curve E
with a maximal embedding ¢: O — End(E).

e CI(D) acts freely and (almost) transitively on O-oriented curves.
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Kani's embedding lemma
Efficient ideal to isogeny translation

New dimensions in cryptography
Effective group actions

Ideal class group action

@ Let O be a quadratic imaginary order.
e A (primitively) O-oriented curve is a supersingular elliptic curve E
with a maximal embedding ¢: O — End(E).

e CI(D) acts freely and (almost) transitively on O-oriented curves.

D-ideals  O-oriented curves and isogenies

Ideal ac O 0o E—Ey:=a-E
b~a a-E=b-E
ad (a):E—E
a Pa
ab P6oPa
N(a) deg(@a)
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Effective group action

Definition
An effective group action (EGA) G ~ X is:
© Commutative, free and transitive.

© Easy to compute: g-x can be evaluated in polynomial time for all
g€ G and xe X.

© One way: given x and g-x, g€ G is hard to find.
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Effective group action

Definition
An effective group action (EGA) G ~ X is:
© Commutative, free and transitive.

© Easy to compute: g-x can be evaluated in polynomial time for all
g€ G and xe X.

© One way: given x and g-x, g€ G is hard to find.

e With effective group actions, we can derive many schemes (including
key exchange, signatures and more).
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Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

Effective group action

Definition
An effective group action (EGA) G ~ X is:
© Commutative, free and transitive.

© Easy to compute: g-x can be evaluated in polynomial time for all
g€ G and xe X.

© One way: given x and g-x, g€ G is hard to find.

e With effective group actions, we can derive many schemes (including
key exchange, signatures and more).

@ Actually, group actions based on orientations are restricted effective
group actions. We can act by ideals of small norms [4,---,[; that
generate CI(O).

o /\ lIssue: This makes schemes less efficient and less scalable to
bigger parameters.

Pierrick Dartois HD isogenies for cryptography 38 /54



Kani's embedding lemma
New dimensions in cryptography Efficient ideal to isogeny translation
Effective group actions

The Clapoti method in PEGASIS [DEF-+25]

Goal: Given an O-oriented curve E and any ideal a <9, compute

Eq:=a-E.
£2 s A, @ Find u,v>0 and b,c~ a such that:
TCDV unrd(b) + vnrd(c) =2°.
E2 o Compute v and v-isogenies ®, and @,
in dimension 2.
N T‘Dc @ By Kani's lemma, there exists a
D, Dy 2¢-isogeny F: A, x A, — E2 x E"2
2 2 u . v a ~
Au ’E > Eg that embeds ®po®, and ®. 0D, .

@ ker(F) can be computed from ®,, ®,
F:AuxAV—»EfxE’z and 0 := .o, that generates b-t.
@ From F, we extract Ej.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Results

Fast computation of higher dimensional isogenies

Fast computation of higher dimensional isogenies
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Theta structures
ing 2-isogeny chains

Fast computation of higher dimensional isogenies Results

Definition: symplectic isomorphism

o Let A/k be a PPAV of dimension g.
o If ntchar(k), then Aln]=(Z/nz)%8.
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ing 2-isogeny chains
2-isogenies

Fast computation of higher dimensional isogenies Results

Definition: symplectic isomorphism

o Let A/k be a PPAV of dimension g.

o If ntchar(k), then Aln]=(Z/nz)%8.

o A symplectic isomorphism ¢ : (Z/nZ)& x (mg — A[n] is a group
isomorphism satisfying:

e

Vx,y €(Z/nZ)% x(Z2/nZ)8, en(@(x),@(y)) = en(xy),

where the first pairing is the Weil-pairing and the second one is
given by:

V(i x), (I x') € (2/n2)8 x (Z/nZ)8, en((in2) (i 2)) = A (D) .
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2-isogenies

Fast computation of higher dimensional isogenies Results

Definition: symplectic isomorphism

o Let A/k be a PPAV of dimension g.

o If ntchar(k), then Aln]=(Z/nz)%8.

o A symplectic isomorphism ¢ : (Z/nZ)& x (mg — A[n] is a group
isomorphism satisfying:

e

Vx,y €(Z/nZ)% x(Z2/nZ)8, en(@(x),@(y)) = en(xy),

where the first pairing is the Weil-pairing and the second one is
given by:

V(i x), (1) € (2/n2)8 x (Z]nZ)%,  en((i,1), (i',2)) = ' (D (i) .
@ Such a symplectic isomorphism is determined by a ({-)symplectic
basis (S1,-++,Sg, T1,--+, Tg) of A[n] i.e. a basis such that:
Vis<ij<g, enS,S)=eT,Tj)=1 and en(S; T;)=0%,

where { is a primitive n-th root of unity.
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Theta structures
Cermmtitng A-mmany) dhehr
@it 2fremae

Fast computation of higher dimensional isogenies Results

Definition: theta structure

Definition (Max Duparc)

Let A be a PPAV of dimension g. A (symmetric) theta structure of level
nis a map

o(n):A — Pl
x — (0i(x))ie(z/nz)e
along with a symplectic isomorphism:
0(n):(2/nZ)& x (Z/nZ)8 = Aln]
satisfying the theta group action relation:

0i(x +8(n)(j,1)) = 2(1) 674 (x),

for all xe A, i,j€(Z/nZ)€ and y€(Z/nZ)8.
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Theta structures
Computing 2-isogeny chains
. . . . . . Glui 2-isogenies
Fast computation of higher dimensional isogenies &

Results

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (©(n),0(n)) on a PPAV A is fully determined by
a symplectic isomorphism ©(2n) : (Z/2nZ)& x (Z/2nZ)8 — A[2n]
inducing ©(n) i.e. by a symplectic basis of A[2n] inducing ©(n).
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Results

Fast computation of higher dimensional isogenies

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (©(n),0(n)) on a PPAV A is fully determined by
a symplectic isomorphism ©(2n) : (Z/2nZ)& x (Z/2nZ)8 — A[2n]
inducing ©(n) i.e. by a symplectic basis of A[2n] inducing ©(n).

Theta structures and theta null points:

o When 4|n, the marked AV (PPAV and theta structure)
(A,0(n),0(n)) is determined by the theta null point (0;(04));.
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Results

Fast computation of higher dimensional isogenies

Properties of theta structures

Theta structures are induced by symplectic isomorphisms

Theorem (Mumford, 1966)

A level n theta structure (©(n),0(n)) on a PPAV A is fully determined by
a symplectic isomorphism ©(2n) : (Z/2nZ)& x (Z/2nZ)8 — A[2n]
inducing ©(n) i.e. by a symplectic basis of A[2n] inducing ©(n).

Theta structures and theta null points:

o When 4|n, the marked AV (PPAV and theta structure)
(A,0(n),0(n)) is determined by the theta null point (0;(04));.

@ In other cases, we still use the theta null point as a representative of
a marked AV.

@ This is enough for arithmetic operations.
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Theta structures
Computing 2-isogeny chains
: . . . . . Gluing 2-isogenies
Fast computation of higher dimensional isogenies Resuﬁs &

Theta structures of level 2

Let (A,©(n),0(n)) be a marked AV of level n and dimension g. Then:
© [Mum74] If n=3, then ©(n): A— P™~1 is an embedding.
@ [BL04] If n=2 and A is not a product, then ©(2) defines an
embedding A/+ — P71,
@ [BL0O4] If n=2 and A= A1 x---x A, then ©(2) defines an
embedding
e xAm/i‘—>|]:°2g_1.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Our goal

Goal: Given the kernel K < A[2¢] of a 2¢-isogeny between PPAVs
f:A— B, compute f in level 2 theta coordinates:

(efq(X))ie(Z/ﬂ)g — (ef(f(x)))ie(z/m)g
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Our goal

Goal: Given the kernel K < A[2¢] of a 2¢-isogeny between PPAVs
f:A— B, compute f in level 2 theta coordinates:

(efq(X))ie(Z/ﬂ)g — (ef(f(x)))ie(z/m)g

Method:
@ Decompose f as a chain of 2-isogenies:
f fa
Ag=A —+ A ——Ay - Aeq —> A.=B

o Compute every 2-isogeny iteratively, using:

ker(f;) = [257/]fi_1 0---0 i (ker(f)).
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Our goal

Goal: Given the kernel K < A[2¢] of a 2¢-isogeny between PPAVs
f:A— B, compute f in level 2 theta coordinates:

(efq(X))ie(Z/ﬂ)g — (ef(f(x)))ie(z/m)g

Method:
@ Decompose f as a chain of 2-isogenies:
f fa
Ag=A —+ A ——Ay - Aeq —> A.=B

o Compute every 2-isogeny iteratively, using:

ker(f;) = [257/]fi_1 0---0 i (ker(f)).

Technicality: We need more torsion K < A[26*2] above the kernel.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Computing a 2-isogeny: change of level

o Let f: A— B be a 2-isogeny.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Computing a 2-isogeny: change of level

o Let f: A— B be a 2-isogeny.
Ary =A
(A,07(4),6 (4))

isogeny theorem
change of level

(A,04(2),8%(2)) (B,68(2),8°(2))
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Computing a 2-isogeny: change of level

o Let f: A— B be a 2-isogeny.

(A,04(4),8%(4))

isogeny theorem
change of level

(A,04(2),8%(2)) (B,68(2),8°(2))

@ The level 4 theta structure (A,@A(4),@A(4)) is induced by a
symplectic basis of A[8].

o For that reason, we need 8-torsion points T1,---, T such that
ker(f)=<([4]T1,---,[4] Tg) to compute f.
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Fast computation of higher dimensional isogenies Results

Computing a 2-isogeny: change of level

o Let f: A— B be a 2-isogeny.

(A,04(4),8%(4))

isogeny theorem
change of level

(A,04(2),8%(2)) (B,68(2),8°(2))

@ The level 4 theta structure (A,@A(4),@A(4)) is induced by a
symplectic basis of A[8].

o For that reason, we need 8-torsion points T1,---, T such that
ker(f)=<([4]T1,---,[4] Tg) to compute f.

e With this data, we compute the codomain theta-null point (6;(05));.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

2-isogeny evaluation algorithm

A very simple isogeny evaluation algorithm:

aB .
07 () Ao £y JELCD LB

where:
o H:(x;)j— (Zie(z/ﬂ)g(—l)“mx;)j (Hadamard).
o S:(xi)i— (x?)i-
o (xi)i* (yi)i = (xiyi)i-
e (5,5(05))/: H((QIB(OB)),-) (dual theta null point).
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing f: A1 x Ao, — B.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing f: A1 x Ao, — B.

Issue 1:

@ The starting domain theta structure ©41*42 is the product
0% x %2
A1 xA A A
071 (x,y) = 0 (x) - 072 ).

@ The isogeny formulas only work when
0" (10} x (Z/22)€) = ker(f).

e This is usually not the case when ©@41*42 = @41 x @42,
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Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Issues with the first 2-isogeny in the chain

Usually, the first isogeny of the chain is a gluing f: A1 x Ao, — B.

Issue 1:

@ The starting domain theta structure ©41*42 is the product
0% x %2
A1 xA A A
071 (x,y) = 0 (x) - 072 ).

@ The isogeny formulas only work when

8" (10} x (Z/22)8) = ker(f).

e This is usually not the case when ©@41*42 = @41 x @42,
Solution 1: Compute a new theta structure 04142 gych that
—A1xAs

o (10} x (Z/2Z)8) = ker(f).
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Change of coordinate formulas

) ) Change of basis ) )
{-symplectic basis {-symplectic basis
matrix M € Spp,(2/42)

A of Al4] P of A[4]
Theta structure Theta structure
(04,87 @48

Change of coordinates
Initial theta > New theta

trix N({, M
coordinates (HI.A),- matrix N(¢, M)

. A
coordinates (6'%");
*( is a primitive 4-th root of unity given by the Weil-pairings of symplectic basis.
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

The right choice of theta structure propagates

When there is only one gluing isogeny, only 2 change of theta structures

are needed
i ) f.
Ag=A —— A —% Ay - Ay —> A.=B
Change of theta Change of theta
coordinates coordinates
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Theta structures
Computing 2-isogeny chains
Gluing 2-isogenies

Fast computation of higher dimensional isogenies Results

Evaluating a gluing 2-isogeny

Issue 2:

@ The evaluation algorithm:

nB .
(0A(x)); o v S TIOR8 (£(x));

no longer works because the 515(05) may vanish.
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Fast computation of higher dimensional isogenies Results

Evaluating a gluing 2-isogeny

Issue 2:
@ The evaluation algorithm:

nB .
(0A(x)); o v S TIOR8 (£(x));

no longer works because the 515(05) may vanish.

@ Why? Because level 2 theta coordinates encode points up to a sign,
we are computing:

(£x,2y) — f(x,y)

@ We need additional information to lift the sign indetermination.
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Fast computation of higher dimensional isogenies Results

Evaluating a gluing 2-isogeny

Issue 2:

@ The evaluation algorithm:

nB .
(0A(x)); o v S TIOR8 (£(x));

no longer works because the 515(05) may vanish.

@ Why? Because level 2 theta coordinates encode points up to a sign,
we are computing:

(£x,2y) — f(x,y)

@ We need additional information to lift the sign indetermination.

Solution 2: Using x and translates x+ T where [2] T € ker(f), we can
evaluate f(x).
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Fast computation of higher dimensional isogenies

ing 2-isogeny chains
N e
Results

A dramatic improvement of SQIlsign with dimension 2

Table: Comparison of time performance in ms of SQIsign (NIST round 1) and
SQlIsign (NIST round 2) on an Intel Core i5-1335U 4600MHz CPU.

NIST I  NIST Il NIST V
Key Gen. 355.72 5625.72 224453
SQIsign v 1.0 | Signature 554.78 10 553.18 41 322.21
Verification 17.77 195.86 571.77
Key Gen. 10.63 32.05 51.37
SQIlsign v 2.0 | Signature 24.53 74.20 126.72
Verification 1.13 4.10 8.49
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Fast computation of higher dimensional isogenies Results

PEGASIS: the proof dimension 4 can be efficient

Paper Impl. || 500 1000 1500 2000 4000
SCALLOP [FFK+423]* CH++ 35s  12m30s - - -
SCALLOP-HD [CLP24]* Sage 88s 19m - - -
PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m - -
KLaPoTi [PPS24] Sage || 200s - - - -
Rust 1.95s - - - -

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table: Comparison between PEGASIS and other effective group actions in the
literature. The last 5 columns gives the timings corresponding to the different
security levels, where s/m gives the number of seconds/minutes in wall-clock

time. SCALLOP and SCALLOP-HD are starred because they were measured

on a different hardware setup.

Pierrick Dartois HD isogenies for cryptography 53 /54



Conclusion

Thank you for listening

@ SIDH attacks and HD isogenies are a
breakthrough in isogeny based

cryptography.
@ There have been many grounbreaking
constructive applications (e.g. SQIlsign)

and new applications are still unfolding.

@ Research is still needed to accelerate
HD algorithms (e.g. for odd degree).

Pierrick Dartois HD isogenies for cryptography 54 /54



	Introduction
	SQIsign and the Deuring correspondence
	The Deuring correspondence
	SQIsign

	New dimensions in cryptography
	Kani's embedding lemma
	Efficient ideal to isogeny translation
	Effective group actions

	Fast computation of higher dimensional isogenies
	Theta structures
	Computing 2-isogeny chains
	Gluing 2-isogenies
	Results

	Conclusion

