Fast computation of higher dimensional 2^e-isogenies with theta coordinates

Pierrick Dartois

Joint work with Luciano Maino, Giacomo Pope and Damien Robert

May 16 2025

Pierrick Dartois

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic groups.

Isogenies between abelian varieties

- Abelian varieties are projective abelian group varieties, generalizing elliptic curves.
- Between abelian varieties, isogenies are morphisms which are surjective and of finite kernel.

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

Why (higher dimensional) isogenies matter

- Quantum computers jeopardize current public key cryptography (RSA, discrete logarithms...).
- Isogenies are used in quantum-resistant cryptographic protocols.

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

Why (higher dimensional) isogenies matter

- Quantum computers jeopardize current public key cryptography (RSA, discrete logarithms...).
- Isogenies are used in quantum-resistant cryptographic protocols.

Why higher dimensions?

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

Why (higher dimensional) isogenies matter

- Quantum computers jeopardize current public key cryptography (RSA, discrete logarithms...).
- Isogenies are used in quantum-resistant cryptographic protocols.

Why higher dimensions?

- Isogenies of dimensions 2, 4 (or 8) were used to break the isogeny-based protocol SIDH (NIST candidate).
- Higher dimensional isogenies are used as an interpolation tool.

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

Why (higher dimensional) isogenies matter

- Quantum computers jeopardize current public key cryptography (RSA, discrete logarithms...).
- Isogenies are used in quantum-resistant cryptographic protocols.

Why higher dimensions?

- Isogenies of dimensions 2, 4 (or 8) were used to break the isogeny-based protocol SIDH (NIST candidate).
- Higher dimensional isogenies are used as an interpolation tool.
- They also have been used constructively in several protocols (FESTA/QFESTA, SQIsignHD/2D/Prime, Scallop-HD, IS-CUBE, 3D hash function...).
- We need fast implementations.

The algebraic theory of theta functions Change of level formulas and isogeny computations Computing chains of 2-isogenies Conclusion

- 1 The algebraic theory of theta functions
- 2 Change of level formulas and isogeny computations
- 3 Computing chains of 2-isogenies

The algebraic theory of theta functions	oal: a "good" system of coordinates
Change of level formulas and isogeny computations	heta group and its action on global sections
Computing chains of 2-isogenies	a structures
Conclusion	a functions

The algebraic theory of theta functions

Line bundles

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Notations:

- k: algebraically closed field.
- A: abelian variety defined over k.
- $g := \dim(A)$.
- A line bundle \mathscr{L} on A is a locally free sheaf of \mathcal{O}_A -modules of rank 1.
- Line bundles on A form a group for the tensor product.
- Isomorphism classes of line bundles form the Picard group Pic(A).
- Pic(A) ≅ {divisors on A}/{principal divisors}.

Polarisations

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

• Let:

$$\operatorname{Pic}^{0}(A) = \{ [\mathscr{L}] \in \operatorname{Pic}(A) \mid \forall a \in A(k), \quad t_{a}^{*}\mathscr{L} \simeq \mathscr{L} \}$$

- $\operatorname{Pic}^{0}(A) \cong \widehat{A}(k)$ (k-rational points of \widehat{A}).
- If \mathcal{L} is a line bundle on A, consider:

$$\begin{array}{rcl} \varphi_{\mathscr{L}} : A & \longrightarrow & \widehat{A} \\ x \in A(k) & \longmapsto & [t_x^* \mathscr{L} \otimes \mathscr{L}^{-1}] \in \operatorname{Pic}^0(A) \end{array}$$

- When $\mathcal{K}(\mathscr{L}) := \ker(\varphi_{\mathscr{L}})$ is finite, $\varphi_{\mathscr{L}}$ is an isogeny and we say that:
 - $\varphi_{\mathscr{L}}$ is a **polarisation** of *A*.
 - (A, \mathcal{L}) is a polarized abelian variety.
- When φ_L is an isomorphism, (A, L) is a principally polarised abelian variety (PPAV).

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Projective coordinates on polarised abelian varieties

- We are looking for systems of coordinates on (A, \mathcal{L}) .
- Assume that \mathscr{L} is **generated by global sections** $s_0, \dots, s_n \in \Gamma(A, \mathscr{L})$ *i.e.* that $s_{0,x}, \dots, s_{n,x}$ generate \mathscr{L}_x for all $x \in A$.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Projective coordinates on polarised abelian varieties

- We are looking for systems of coordinates on (A, \mathcal{L}) .
- Assume that \mathscr{L} is **generated by global sections** $s_0, \dots, s_n \in \Gamma(\mathcal{A}, \mathscr{L})$ *i.e.* that $s_{0,x}, \dots, s_{n,x}$ generate \mathscr{L}_x for all $x \in \mathcal{A}$.
- Idea: Take such global sections s₀, · · · , s_n ∈ Γ(A, ℒ). They define a map:

$$\begin{array}{rccc} A & \longrightarrow & \mathbb{P}_k^n \\ x & \longmapsto & (s_0(x) : \cdots : s_n(x)) \end{array}$$

• These sections are coordinates when the above map is an embedding.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Projective coordinates on polarised abelian varieties

- We are looking for systems of coordinates on (A, \mathcal{L}) .
- Assume that \mathscr{L} is **generated by global sections** $s_0, \dots, s_n \in \Gamma(\mathcal{A}, \mathscr{L})$ *i.e.* that $s_{0,x}, \dots, s_{n,x}$ generate \mathscr{L}_x for all $x \in \mathcal{A}$.
- Idea: Take such global sections s₀, · · · , s_n ∈ Γ(A, ℒ). They define a map:

$$\begin{array}{rccc} A & \longrightarrow & \mathbb{P}_k^n \\ x & \longmapsto & (s_0(x) : \cdots : s_n(x)) \end{array}$$

- These sections are coordinates when the above map is an embedding.
- Theta functions form a family of global sections of $\Gamma(A, \mathscr{L})$ with "good arithmetic properties".

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta group

• Let \mathscr{L} be a line bundle on A generated by global sections.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta group

- \bullet Let ${\mathscr L}$ be a line bundle on A generated by global sections.
- We define:

$$K(\mathscr{L}) := \{ x \in A \mid t_x^* \mathscr{L} \simeq \mathscr{L} \}.$$

• Assume that $\mathcal{K}(\mathscr{L})$ is finite so that $\varphi_{\mathscr{L}}: A \longrightarrow \widehat{A}$ is a polarisation.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta group

- \bullet Let ${\mathscr L}$ be a line bundle on A generated by global sections.
- We define:

$$K(\mathscr{L}) := \{ x \in A \mid t_x^* \mathscr{L} \simeq \mathscr{L} \}.$$

- Assume that $\mathcal{K}(\mathscr{L})$ is finite so that $\varphi_{\mathscr{L}}: A \longrightarrow \widehat{A}$ is a polarisation.
- The **theta group** of \mathcal{L} is given by:

 $G(\mathcal{L}) := \{ (x, \phi_x) \mid x \in K(\mathcal{L}), \ \phi_x : \mathcal{L} \xrightarrow{\sim} t_x^* \mathcal{L} \}.$

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta group

- \bullet Let ${\mathscr L}$ be a line bundle on A generated by global sections.
- We define:

$$K(\mathscr{L}) := \{ x \in A \mid t_x^* \mathscr{L} \simeq \mathscr{L} \}.$$

- Assume that $\mathcal{K}(\mathscr{L})$ is finite so that $\varphi_{\mathscr{L}}: A \longrightarrow \widehat{A}$ is a polarisation.
- The **theta group** of \mathcal{L} is given by:

$$G(\mathcal{L}) := \{ (x, \phi_x) \mid x \in K(\mathcal{L}), \ \phi_x : \mathcal{L} \xrightarrow{\sim} t_x^* \mathcal{L} \}.$$

• Given $(x, \phi_x), (y, \phi_y) \in G(\mathcal{L})$, the composition:

$$\mathscr{L} \xrightarrow{\phi_x} t_x^* \mathscr{L} \xrightarrow{t_x^* \phi_y} t_x^* t_y^* \mathscr{L} = t_{x+y}^* \mathscr{L},$$

defines the product:

$$(x,\phi_x)\cdot(y,\phi_y)=(x+y,t_x^*\phi_y\circ\phi_x).$$

• This defines a (non-commutative) group law on $G(\mathcal{L})$.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The commutator pairing

• There is an exact sequence:

$$1 \longrightarrow k^* \longrightarrow G(\mathscr{L}) \longrightarrow K(\mathscr{L}) \longrightarrow 0,$$

where the first arrow is $\lambda \mapsto (0, \lambda \operatorname{id}_{\mathscr{L}})$ and the last arrow is the forgetful map $\rho_{\mathscr{L}}: (x, \phi_x) \mapsto x$.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The commutator pairing

• There is an exact sequence:

$$1 \longrightarrow k^* \longrightarrow G(\mathscr{L}) \longrightarrow K(\mathscr{L}) \longrightarrow 0,$$

where the first arrow is $\lambda \mapsto (0, \lambda \operatorname{id}_{\mathscr{L}})$ and the last arrow is the forgetful map $\rho_{\mathscr{L}}: (x, \phi_x) \mapsto x$.

- $G(\mathscr{L})$ does not commute and we measure the commutativity defect via the **commutator pairing**.
- Let $x, y \in K(\mathcal{L})$ and $\tilde{x}, \tilde{y} \in G(\mathcal{L})$ be lifts of x, y. Define:

$$e_{\mathscr{L}}(x,y) := \widetilde{x} \cdot \widetilde{y} \cdot \widetilde{x}^{-1} \cdot \widetilde{y}^{-1} \in k^*.$$

as the **commutator pairing** of x and y.

e_L: K(L) × K(L) → k^{*} is a non-degenerate skew-symmetric bilinear map.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Action of the Theta group

• $G(\mathcal{L})$ acts on the space of global sections $\Gamma(A, \mathcal{L})$ as follows:

 $\forall s \in \Gamma(A, \mathcal{L}), (x, \phi_x) \in G(\mathcal{L}), \quad (x, \phi_x) \cdot s = t^*_{-x}(\phi_x(s)).$

Theorem (Mumford, 1966)

This action defines an irreducible representation of $G(\mathcal{L})$:

 $G(\mathscr{L}) \hookrightarrow GL(\Gamma(A,\mathscr{L})).$

All irreducible representations of $G(\mathcal{L})$ on which k^* acts naturally are isomorphic.

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

Symplectic decompositions

- A subgroup $K \subset K(\mathcal{L})$ is **isotropic** if $e_{\mathcal{L}}(x, y) = 1$ for all $x, y \in K$.
- $e_{\mathscr{L}}$ induces a symplectic decomposition of $\mathcal{K}(\mathscr{L})$:

$$K(\mathscr{L}) = K_1(\mathscr{L}) \oplus K_2(\mathscr{L}),$$

where $K_1(\mathscr{L})$ and $K_2(\mathscr{L})$ are maximal isotropic subgroups.

• $e_{\mathscr{L}}$ induces an isomorphism $K_2(\mathscr{L}) \cong \widehat{K_1(\mathscr{L})} = \operatorname{Hom}(K_1(\mathscr{L}), k^*)$.

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

Symplectic decompositions

- A subgroup $K \subset K(\mathscr{L})$ is **isotropic** if $e_{\mathscr{L}}(x, y) = 1$ for all $x, y \in K$.
- $e_{\mathscr{L}}$ induces a symplectic decomposition of $\mathcal{K}(\mathscr{L})$:

$$K(\mathscr{L}) = K_1(\mathscr{L}) \oplus K_2(\mathscr{L}),$$

where $K_1(\mathscr{L})$ and $K_2(\mathscr{L})$ are maximal isotropic subgroups.

- $e_{\mathscr{L}}$ induces an isomorphism $K_2(\mathscr{L}) \cong \widehat{K_1(\mathscr{L})} = \operatorname{Hom}(K_1(\mathscr{L}), k^*)$.
- There exists a unique tuple of integers $\delta = (d_1, \dots, d_g)$ such that:
 - $d_1|\cdots|d_g$ and $g = \dim(A)$; • $K_1(\mathscr{L}) \simeq K_1(\delta)$ and $K_2(\mathscr{L}) \simeq K_2(\delta)$.

Where:

$$\mathcal{K}_1(\delta) := \prod_{i=1}^r \mathbb{Z}/d_i\mathbb{Z}$$
 and $\mathcal{K}_2(\delta) := \widehat{\mathcal{K}_1(\delta)} = \operatorname{Hom}(\mathcal{K}_1(\delta), k^*).$

• We say that \mathscr{L} has **type** δ .

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

The Heisenberg group

- Let $K(\delta) := K_1(\delta) \times K_2(\delta)$.
- We define the Heisenberg group as ℋ(δ) := k* × K(δ), with the group law:

$$(\alpha, x, \chi) \cdot (\beta, x', \chi') := (\alpha \beta \chi'(x), x + x', \chi \chi').$$

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

The Heisenberg group

- Let $K(\delta) := K_1(\delta) \times K_2(\delta)$.
- We define the Heisenberg group as ℋ(δ) := k^{*} × K(δ), with the group law:

$$(\alpha, x, \chi) \cdot (\beta, x', \chi') := (\alpha \beta \chi'(x), x + x', \chi \chi').$$

• Similarly, we define a commutator pairing $e_{\delta}: K(\delta) \times K(\delta) \longrightarrow k^*$.

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

The Heisenberg group

- Let $K(\delta) := K_1(\delta) \times K_2(\delta)$.
- We define the **Heisenberg group** as $\mathcal{H}(\delta) := k^* \times K(\delta)$, with the group law:

$$(\alpha, x, \chi) \cdot (\beta, x', \chi') := (\alpha \beta \chi'(x), x + x', \chi \chi').$$

- Similarly, we define a commutator pairing $e_{\delta} : K(\delta) \times K(\delta) \longrightarrow k^*$.
- There always exists a symplectic isomorphism $\phi: \mathcal{K}(\delta) \xrightarrow{\sim} \mathcal{K}(\mathscr{L})$:

$$\forall x, y \in K(\delta), \quad e_{\mathscr{L}}(\phi(x), \phi(y)) = e_{\delta}(x, y).$$

The K_i(ℒ) := φ(K_i(δ)) form a symplectic decomposition of K(ℒ).

Our goal: a "good" system of coordinates The theta group and its action on global sections **Theta structures** Theta functions

Theta structures

- The Heisenberg group is isomorphic to the theta group.
- A Theta structure is an isomorphism Θ_L : ℋ(δ) → G(L) inducing an isomorphism of exact sequences:

In particular, $\overline{\Theta}_{\mathscr{L}} : \mathcal{K}(\delta) \xrightarrow{\sim} \mathcal{K}(\mathscr{L})$ is a symplectic isomorphism.

• **Slogan:** "A theta structure is a symplectic isomorphism with lifting information."

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Action of the Heisenberg group

- Let $V(\delta)$ be the space of functions $K_1(\delta) \longrightarrow k$.
- $\mathcal{H}(\delta)$ acts on $V(\delta)$ as follows:

$$(\alpha, x, \chi) \cdot f : y \longmapsto \alpha \chi(y)^{-1} f(y - x),$$

for all $f \in V(\delta)$ and $(\alpha, x, \chi) \in \mathcal{H}(\delta)$.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Action of the Heisenberg group

- Let $V(\delta)$ be the space of functions $K_1(\delta) \longrightarrow k$.
- $\mathcal{H}(\delta)$ acts on $V(\delta)$ as follows:

$$(\alpha, x, \chi) \cdot f : y \longmapsto \alpha \chi(y)^{-1} f(y - x),$$

for all $f \in V(\delta)$ and $(\alpha, x, \chi) \in \mathcal{H}(\delta)$.

• This defines an irreducible representation $\mathcal{H}(\delta) \hookrightarrow GL(V(\delta))$.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Action of the Theta group

• $G(\mathcal{L})$ acts on the space of global sections $\Gamma(A, \mathcal{L})$ as follows:

 $\forall s \in \Gamma(A, \mathcal{L}), (x, \phi_x) \in G(\mathcal{L}), \quad (x, \phi_x) \cdot s = t^*_{-x}(\phi_x(s)).$

Theorem (Mumford, 1966)

This action defines an irreducible representation of $G(\mathcal{L})$:

$$G(\mathscr{L}) \hookrightarrow GL(\Gamma(A,\mathscr{L})).$$

All irreducible representations of $G(\mathcal{L})$ on which k^* acts naturally are isomorphic.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Action of the Theta group

G(L) acts on the space of global sections Γ(A, L) as follows:

$$\forall s \in \Gamma(A, \mathscr{L}), (x, \phi_x) \in G(\mathscr{L}), \quad (x, \phi_x) \cdot s = t^*_{-x}(\phi_x(s)).$$

Theorem (Mumford, 1966)

This action defines an irreducible representation of $G(\mathcal{L})$:

$$G(\mathscr{L}) \hookrightarrow GL(\Gamma(A,\mathscr{L})).$$

All irreducible representations of $G(\mathcal{L})$ on which k^* acts naturally are isomorphic.

Hence, if *L* has type δ, there exists an isomorphism of representations β: V(δ) → Γ(A, L):

$$\forall v \in V(\delta), h \in \mathcal{H}(\delta), \quad \beta(h \cdot v) = \Theta_{\mathcal{L}}(h) \cdot \beta(v).$$

• β is unique up to a multiplicative constant (by Shur's lemma).

Theta functions

• Consider the basis of $V(\delta)$ given by Kronecker functions:

$$\delta_i : j \in \mathcal{K}_1(\delta) \longmapsto \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

for all $i \in K_1(\delta)$.

- Then the $\theta_i^{\mathscr{L}} := \beta(\delta_i)$ form the basis of **theta functions** on $(A, \mathscr{L}, \Theta_{\mathscr{L}})$.
- This basis is defined up to a multiplicative constant.

Theta functions

• Consider the basis of $V(\delta)$ given by Kronecker functions:

$$\delta_i : j \in \mathcal{K}_1(\delta) \longmapsto \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

for all $i \in K_1(\delta)$.

- Then the $\theta_i^{\mathscr{L}} := \beta(\delta_i)$ form the basis of **theta functions** on $(A, \mathscr{L}, \Theta_{\mathscr{L}})$.
- This basis is defined up to a multiplicative constant.
- It defines a projective map:

$$\begin{array}{rcl} A & \longrightarrow & \mathbb{P}_{k}^{d_{1}\cdots d_{g}-1} \\ x & \longmapsto & (\theta_{i}^{\mathscr{L}}(x))_{i\in K_{1}(\delta)} \end{array}$$

Theta functions

• Consider the basis of $V(\delta)$ given by Kronecker functions:

$$\delta_{i}: j \in \mathcal{K}_{1}(\delta) \longmapsto \delta_{i,j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

for all $i \in K_1(\delta)$.

- Then the $\theta_i^{\mathscr{L}} := \beta(\delta_i)$ form the basis of **theta functions** on $(A, \mathscr{L}, \Theta_{\mathscr{L}})$.
- This basis is defined up to a multiplicative constant.
- It defines a projective map:

$$\begin{array}{rcl} A & \longrightarrow & \mathbb{P}_{k}^{d_{1}\cdots d_{g}-1} \\ x & \longmapsto & (\theta_{i}^{\mathscr{L}}(x))_{i \in \mathcal{K}_{1}(\delta)} \end{array}$$

• Main advantage of theta functions: the action $G(\mathcal{L}) \cap \Gamma(A, \mathcal{L})$ yields nice formulas on theta functions.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Theta structures of level n

- When \mathscr{L} is of type $\delta = (n, \dots, n)$, we say \mathscr{L} has **level** n.
- Then K(ℒ) = A[n] and there are n^g theta functions (θ^ℒ_i)_{i∈(ℤ/nℤ)^g}.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Theta structures of level n

- When \mathscr{L} is of type $\delta = (n, \dots, n)$, we say \mathscr{L} has **level** n.
- Then $K(\mathscr{L}) = A[n]$ and there are n^g theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$.

Theorem (Mumford, 1974)

When $n \ge 3$, the map $A \longrightarrow \mathbb{P}_k^{n^g}$ induced by theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$ is an embedding.

Theorem (Birkenhake, Lange, 2004)

When n = 2 and $(A, \varphi_{\mathscr{L}})$ is not a product, the map $K_A \longrightarrow \mathbb{P}_k^{2^{\mathscr{G}}}$ induced by theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/2\mathbb{Z})^{\mathscr{G}}}$ is an embedding, where $K_A := A/\pm$ is the **Kummer variety** associated to A.
Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

Theta structures of level n

- When \mathscr{L} is of type $\delta = (n, \dots, n)$, we say \mathscr{L} has **level** n.
- Then $K(\mathscr{L}) = A[n]$ and there are n^g theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$.

Theorem (Mumford, 1974)

When $n \ge 3$, the map $A \longrightarrow \mathbb{P}_k^{n^g}$ induced by theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/n\mathbb{Z})^g}$ is an embedding.

Theorem (Birkenhake, Lange, 2004)

When n = 2 and $(A, \varphi_{\mathscr{L}})$ is not a product, the map $K_A \longrightarrow \mathbb{P}_k^{2^g}$ induced by theta functions $(\theta_i^{\mathscr{L}})_{i \in (\mathbb{Z}/2\mathbb{Z})^g}$ is an embedding, where $K_A := A/\pm$ is the **Kummer variety** associated to A.

• *n* = 2 gives the minimal number of coordinates (2^g on the Kummer variety).

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta null point

• The **theta null point** $(\theta_i(0_A))_i$ is of special interest.

Theorem (Mumford, 1966)

When $4|\delta$, the theta null point $(\theta_i(0_A))_i$ entirely determines $(A, \mathcal{L}, \Theta_{\mathcal{L}})$, as it determines the **Riemann relations** relating theta coordinates in the projective space.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta null point

• The **theta null point** $(\theta_i(0_A))_i$ is of special interest.

Theorem (Mumford, 1966)

When $4|\delta$, the theta null point $(\theta_i(0_A))_i$ entirely determines $(A, \mathcal{L}, \Theta_{\mathcal{L}})$, as it determines the **Riemann relations** relating theta coordinates in the projective space.

• In practice, even at level 2 ($\delta = (2, \dots, 2)$), we use $(\theta_i(0_A))_i$ to represent the Kummer variety.

Our goal: a "good" system of coordinates The theta group and its action on global sections Theta structures Theta functions

The theta null point

• The **theta null point** $(\theta_i(0_A))_i$ is of special interest.

Theorem (Mumford, 1966)

When $4|\delta$, the theta null point $(\theta_i(0_A))_i$ entirely determines $(A, \mathcal{L}, \Theta_{\mathcal{L}})$, as it determines the **Riemann relations** relating theta coordinates in the projective space.

- In practice, even at level 2 ($\delta = (2, \dots, 2)$), we use $(\theta_i(0_A))_i$ to represent the Kummer variety.
- Unlike in most algebraic geometry studies, we do not look at abelian varieties as Jacobians or by their equations. We use their theta null point to do arithmetic.

Introduction	The isogeny theorem
The algebraic theory of theta functions	The duplication formula for symmetric theta structures
Change of level formulas and isogeny computations	A simple evaluation algorithm
Computing chains of 2-isogenies	Computing the codomain theta null point
Conclusion	Change of coordinate formulas

Change of level formulas and isogeny computations

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

The isogeny theorem

Definition

A **polarised isogeny** $f: (A, \mathcal{L}) \longrightarrow (B, \mathcal{M})$ satisfies $f^* \mathcal{M} \simeq \mathcal{L}$. If f is such an isogeny, then we have:

•
$$\widehat{f} \circ \varphi_{\mathcal{M}} \circ f = \varphi_{\mathcal{L}}.$$

• $K := \ker(f) \subset K(\mathscr{L})$ is an isotropic subgroup.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

The isogeny theorem

Definition

A **polarised isogeny** $f: (A, \mathscr{L}) \longrightarrow (B, \mathscr{M})$ satisfies $f^* \mathscr{M} \simeq \mathscr{L}$. If f is such an isogeny, then we have:

- $\widehat{f} \circ \varphi_{\mathcal{M}} \circ f = \varphi_{\mathcal{L}}.$
- $K := \ker(f) \subset K(\mathscr{L})$ is an isotropic subgroup.

Theorem (Mumford, 1966 and Robert, 2010)

Let $f : (A, \mathscr{L}) \longrightarrow (B, \mathscr{M})$ be a polarised isogeny and $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{M}}$ be **compatible** theta-structures on $G(\mathscr{L})$ and $G(\mathscr{M})$. Then, there exists $\lambda \in k^*$ such that for all $i \in K_1(\delta_{\mathscr{M}})$,

$$f^*\theta_i^{\mathcal{M}} = \lambda \sum_{j \in \Sigma(\overline{\Theta}_{\mathcal{L}}, \overline{\Theta}_{\mathcal{M}})} \theta_j^{\mathcal{L}},$$

with $\Sigma(\overline{\Theta}_{\mathscr{L}}, \overline{\Theta}_{\mathscr{M}}) \subseteq K_1(\delta_{\mathscr{L}}).$

Introduction
The algebraic theory of theta functions
Change of level formulas and isogeny computations
Computing chains of 2-isogenies
Conclusion
Conclusi

Our goal

- Let (A, \mathcal{L}_0) and (B, \mathcal{M}_0) be a principally polarised abelian varieties (PPAVs).
- A *d*-isogeny is a polarised isogeny $f: (A, \mathscr{L}_0^d) \longrightarrow (B, \mathscr{M}_0)$ *i.e.* such that $f^* \mathscr{M}_0 \simeq \mathscr{L}_0^d$.
- Then, we have:

$$\widehat{f} \circ \varphi_{\mathcal{M}_0} \circ f = \varphi_{\mathcal{L}_0^d} = [d] \varphi_{\mathcal{L}_0}$$

• And
$$K = \ker(f) \subseteq K(\mathscr{L}_0^d) = A[d].$$

Introduction
The algebraic theory of theta functions
Change of level formulas and isogeny computations
Computing chains of 2-isogenies
Conclusion
Conclusi

Our goal

- Let (A, \mathcal{L}_0) and (B, \mathcal{M}_0) be a principally polarised abelian varieties (PPAVs).
- A *d*-isogeny is a polarised isogeny $f: (A, \mathscr{L}_0^d) \longrightarrow (B, \mathscr{M}_0)$ *i.e.* such that $f^* \mathscr{M}_0 \simeq \mathscr{L}_0^d$.
- Then, we have:

$$\widehat{f} \circ \varphi_{\mathcal{M}_0} \circ f = \varphi_{\mathcal{L}_0^d} = [d] \varphi_{\mathcal{L}_0}$$

• And
$$K = \ker(f) \subseteq K(\mathscr{L}_0^d) = A[d].$$

State of the art [LR12; LR15; LR22]: When n and d are coprime, given $K \subset A[d]$, compute f in level n theta coordinates:

$$(\theta_i^{\mathscr{L}_0^n}(x))_{i\in (\mathbb{Z}/n\mathbb{Z})^g} \longmapsto (\theta_i^{\mathscr{M}_0^n}(f(x)))_{i\in (\mathbb{Z}/n\mathbb{Z})^g}$$

Introduction
The algebraic theory of theta functions
Change of level formulas and isogeny computations
Computing chains of 2-isogenies
Conclusion
Conclusi

Our goal

- Let (A, \mathcal{L}_0) and (B, \mathcal{M}_0) be a principally polarised abelian varieties (PPAVs).
- A *d*-isogeny is a polarised isogeny $f: (A, \mathscr{L}_0^d) \longrightarrow (B, \mathscr{M}_0)$ *i.e.* such that $f^* \mathscr{M}_0 \simeq \mathscr{L}_0^d$.
- Then, we have:

$$\widehat{f} \circ \varphi_{\mathcal{M}_0} \circ f = \varphi_{\mathcal{L}_0^d} = [d] \varphi_{\mathcal{L}_0}$$

• And
$$K = \ker(f) \subseteq K(\mathscr{L}_0^d) = A[d].$$

State of the art [LR12; LR15; LR22]: When n and d are coprime, given $K \subset A[d]$, compute f in level n theta coordinates:

$$(\theta_i^{\mathscr{L}_0^n}(x))_{i\in(\mathbb{Z}/n\mathbb{Z})^g}\longmapsto (\theta_i^{\mathscr{M}_0^n}(f(x)))_{i\in(\mathbb{Z}/n\mathbb{Z})^g}$$

Our goal: Treat the case n = 2 and $d = 2^e$ (cryptographically relevant).

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Applying the isogeny theorem

- Let $f: (A, \mathcal{L}_0^2) \longrightarrow (B, \mathcal{M}_0)$ be a 2-isogeny between PPAVs.
- *f* is also a polarised isogeny $(A, \mathcal{L}^2) \longrightarrow (B, \mathcal{M})$ where $\mathcal{L} := \mathcal{L}_0^2$ and $\mathcal{M} := \mathcal{M}_0^2$ are of level 2.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Applying the isogeny theorem

- Let $f: (A, \mathcal{L}_0^2) \longrightarrow (B, \mathcal{M}_0)$ be a 2-isogeny between PPAVs.
- f is also a polarised isogeny $(A, \mathcal{L}^2) \longrightarrow (B, \mathcal{M})$ where $\mathcal{L} := \mathcal{L}_0^2$ and $\mathcal{M} := \mathcal{M}_0^2$ are of level 2.

Corollary (of the isogeny theorem)

Assume $K = K_2(\overline{\Theta}_{\mathscr{L}})$. Then we can choose compatible theta structures $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{M}}$ such that:

$$\forall i \in (\mathbb{Z}/2\mathbb{Z})^{g}, \quad f^{*}\theta_{i}^{\mathcal{M}} = \theta_{2i}^{\mathcal{L}^{2}} \quad i.e. \quad \theta_{i}^{\mathcal{M}}(f(x)) = \theta_{2i}^{\mathcal{L}^{2}}(x)$$

Problem: We know $(\theta_i^{\mathscr{L}}(x))_i$ but not $(\theta_{2i}^{\mathscr{L}^2}(x))_i$.

Change of level

Goal: Change of level $(A, \mathscr{L}, \Theta_{\mathscr{L}}) \longrightarrow (A, \mathscr{L}^2, \Theta_{\mathscr{L}^2}).$

Change of level

Goal: Change of level $(A, \mathscr{L}, \Theta_{\mathscr{L}}) \longrightarrow (A, \mathscr{L}^2, \Theta_{\mathscr{L}^2}).$

- We have some compatibility condition between $(A, \mathcal{L}^2, \Theta_{\mathcal{L}^2})$ and $(B, \mathcal{M}, \Theta_{\mathcal{M}})$.
- What compatibility condition do we have between $(A, \mathcal{L}, \Theta_{\mathcal{L}})$ and $(A, \mathcal{L}^2, \Theta_{\mathcal{L}^2})$?

Change of level

Goal: Change of level $(A, \mathcal{L}, \Theta_{\mathcal{L}}) \longrightarrow (A, \mathcal{L}^2, \Theta_{\mathcal{L}^2}).$

- We have some compatibility condition between $(A, \mathcal{L}^2, \Theta_{\mathcal{L}^2})$ and $(B, \mathcal{M}, \Theta_{\mathcal{M}})$.
- What compatibility condition do we have between $(A, \mathcal{L}, \Theta_{\mathcal{L}})$ and $(A, \mathcal{L}^2, \Theta_{\mathcal{L}^2})$?
- First, $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{L}^2}$ have to be **symmetric** (then $\Theta_{\mathscr{M}}$ is symmetric).

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Symmetric theta structures

Definition

A theta-structure $\Theta_{\mathscr{L}}$ is **symmetric** if $\Theta_{\mathscr{L}} \circ D_{-1} = \delta_{-1} \circ \Theta_{\mathscr{L}}$, where $D_{-1} \in \operatorname{Aut}(\mathscr{H}(\delta))$ and $\delta_{-1} \in \operatorname{Aut}(G(\mathscr{L}))$ are maps that lift $[-1]: x \longrightarrow -x$.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Compatible symmetric theta structures

Two symmetric theta structures $\Theta_{\mathscr{L}}$ of $G(\mathscr{L})$ and $\Theta_{\mathscr{L}^2}$ of $G(\mathscr{L}^2)$ are **compatible** if the following diagrams commute:

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Differential addition and duplication formulas

For all $\chi \in (\widehat{\mathbb{Z}/2\mathbb{Z})^g}$ and $i \in K_1(2\delta)$, define:

$$U_{\chi,i}^{\mathcal{L}^2} := \sum_{t \in (\mathbb{Z}/2\mathbb{Z})^g} \chi(t) \theta_{i+t\delta}^{\mathcal{L}^2}$$

Theorem (Mumford, 1966 and Robert, 2010)

Assume $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{L}^2}$ are symmetric and compatible. Let $x, y \in A$. Then there exists $\lambda_1, \lambda_2 \in k^*$ such that for all $i, j \in K_1(2\delta)$ such that $i \equiv j \mod 2$ and $\chi \in (\mathbb{Z}/2\mathbb{Z})^g$, we have:

$$\theta_{(i+j)/2}^{\mathscr{L}}(x+y)\theta_{(i-j)/2}^{\mathscr{L}}(x-y) = \lambda_1 \sum_{\chi \in (\overline{\mathbb{Z}/2\mathbb{Z}})^g} U_{\chi,i}^{\mathscr{L}^2}(x) U_{\chi,j}^{\mathscr{L}^2}(y)$$

$$U_{\chi,i}^{\mathcal{L}^2}(x)U_{\chi,j}^{\mathcal{L}^2}(y) = \lambda_2 \sum_{t \in (\mathbb{Z}/2\mathbb{Z})^g} \chi(t)\theta_{(i+j+t\delta)/2}^{\mathcal{L}}(x+y)\theta_{(i-j+t\delta)/2}^{\mathcal{L}}(x-y).$$

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Differential addition and duplication formulas

These formulas yield:

• A change of level algorithm to evaluate f:

$$(\theta_i^{\mathscr{L}}(x))_i \longmapsto (\theta_{2i}^{\mathscr{L}^2}(x))_i = (\theta_i^{\mathscr{M}}(f(x)))_i.$$

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Differential addition and duplication formulas

These formulas yield:

• A change of level algorithm to evaluate *f*:

$$(\theta_i^{\mathscr{L}}(x))_i \longmapsto (\theta_{2i}^{\mathscr{L}^2}(x))_i = (\theta_i^{\mathscr{M}}(f(x)))_i.$$

But also:

- A duplication algorithm $(\theta_i^{\mathscr{L}}(x))_i \mapsto (\theta_i^{\mathscr{L}}(2x))_i$ (useful for isogeny chain computations).
- A differential addition algorithm:

$$(\theta_i^{\mathscr{L}}(x))_i, (\theta_i^{\mathscr{L}}(y))_i, (\theta_i^{\mathscr{L}}(x-y))_i \longmapsto (\theta_i^{\mathscr{L}}(x+y))_i.$$

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Evaluation algorithm

Proposition (D., Maino, Pope, Robert, 2023)

For all $x \in A$,

$$(\widetilde{\theta}_i^{\mathcal{M}}(f(x)))_i \star (\widetilde{\theta}_i^{\mathcal{M}}(0_B))_i = H \circ S((\theta_i^{\mathcal{L}}(x))_i),$$

where $(\tilde{\theta}_{i}^{\mathcal{M}}(x))_{i} := H((\theta_{i}^{\mathcal{M}}(x))_{i})$ and:

- *H* is the **Hadamard** operator: $(x_i)_i \mapsto \left(\sum_{i \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{\langle i|j \rangle} x_i \right)_i$.
- S is the squaring operator $(x_i)_i \mapsto (x_i^2)_i$.
- \star is the **multiplication** operator $(x_i)_i, (y_i)_i \mapsto (x_iy_i)_i$.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Evaluation algorithm

Proposition (D., Maino, Pope, Robert, 2023)

For all $x \in A$,

$$(\widetilde{\theta}_i^{\mathcal{M}}(f(x)))_i \star (\widetilde{\theta}_i^{\mathcal{M}}(0_B))_i = H \circ S((\theta_i^{\mathcal{L}}(x))_i),$$

where $(\tilde{\theta}_{i}^{\mathcal{M}}(x))_{i} := H((\theta_{i}^{\mathcal{M}}(x))_{i})$ and:

- *H* is the **Hadamard** operator: $(x_i)_i \mapsto \left(\sum_{i \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{\langle i|j \rangle} x_i\right)_i$.
- S is the squaring operator $(x_i)_i \mapsto (x_i^2)_i$.
- \star is the **multiplication** operator $(x_i)_i, (y_i)_i \mapsto (x_iy_i)_i$.

A straightforward algorithm follows:

$$(\theta_i^{\mathscr{L}}(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\tilde{\theta}_i^{\mathscr{M}}(0_B))_i} * \xrightarrow{H} (\theta_i^{\mathscr{M}}(f(x)))_i$$

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Evaluation algorithm

Proposition (D., Maino, Pope, Robert, 2023)

For all $x \in A$,

$$(\widetilde{\theta}_i^{\mathcal{M}}(f(x)))_i \star (\widetilde{\theta}_i^{\mathcal{M}}(0_B))_i = H \circ S((\theta_i^{\mathcal{L}}(x))_i),$$

where $(\tilde{\theta}_{i}^{\mathcal{M}}(x))_{i} := H((\theta_{i}^{\mathcal{M}}(x))_{i})$ and:

- *H* is the **Hadamard** operator: $(x_i)_i \mapsto \left(\sum_{i \in (\mathbb{Z}/2\mathbb{Z})^g} (-1)^{\langle i|j \rangle} x_i\right)_i$.
- S is the squaring operator $(x_i)_i \mapsto (x_i^2)_i$.
- \star is the **multiplication** operator $(x_i)_i, (y_i)_i \mapsto (x_iy_i)_i$.

A straightforward algorithm follows:

$$(\theta_i^{\mathscr{L}}(x))_i \xrightarrow{H} * \xrightarrow{S} * \xrightarrow{\star (1/\tilde{\theta}_i^{\mathscr{M}}(0_B))_i} * \xrightarrow{H} (\theta_i^{\mathscr{M}}(f(x)))_i$$

Problem: We don't know the dual theta null point $(\tilde{\theta}_i^{\mathcal{M}}(0_B))_i$.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm **Computing the codomain theta null point** Change of coordinate formulas

Computing the codomain theta null point

Me need 8-torsion points above the kernel.

• In dimensions 2 and 3, these can be avoided at the expense of square root computations.

Proposition (D., Maino, Pope, Robert, 2023)

Let (T_1, \dots, T_g) forming a maximal isotropic subgroup of A[8] such that $K = \langle [4] T_1, \dots, [4] T_g \rangle$. Then, for all $l \in [\![1;g]\!]$ and $i \in (\mathbb{Z}/2\mathbb{Z})^g$, $\widetilde{\mathcal{O}}_{\mathcal{M}}(0, \cdot) = U_{\mathcal{D}} S((\mathcal{O}_{\mathcal{L}}^{\mathcal{L}}(T_{\mathcal{D}}))) = \widetilde{\mathcal{O}}_{\mathcal{M}}^{\mathcal{M}}(0, \cdot) = U_{\mathcal{D}} S((\mathcal{O}_{\mathcal{L}}^{\mathcal{L}}(T_{\mathcal{D}})))$

 $\widetilde{\theta}_{i+e_l}^{\mathcal{M}}(0_B) \cdot H \circ S((\theta_j^{\mathscr{L}}(T_l))_j)_i = \widetilde{\theta}_i^{\mathcal{M}}(0_B) \cdot H \circ S((\theta_j^{\mathscr{L}}(T_l))_j)_{i+e_l},$

where $e_l = (0, \dots, 1, \dots, 0)$ with 1 at the *l*-th position.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Why we need change of coordinate formulas

Corollary (of the isogeny theorem)

Assume $K = K_2(\overline{\Theta}_{\mathscr{L}})$. Then we can choose compatible theta structures $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{M}}$ such that:

$$\forall i \in (\mathbb{Z}/2\mathbb{Z})^{g}, \quad f^{*}\theta_{i}^{\mathcal{M}} = \theta_{2i}^{\mathcal{L}^{2}} \quad i.e. \quad \theta_{i}^{\mathcal{M}}(f(x)) = \theta_{2i}^{\mathcal{L}^{2}}(x)$$

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Why we need change of coordinate formulas

Corollary (of the isogeny theorem)

Assume $K = K_2(\overline{\Theta}_{\mathscr{L}})$. Then we can choose compatible theta structures $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{M}}$ such that:

$$\forall i \in (\mathbb{Z}/2\mathbb{Z})^g, \quad f^*\theta_i^{\mathscr{M}} = \theta_{2i}^{\mathscr{L}^2} \quad i.e. \quad \theta_i^{\mathscr{M}}(f(x)) = \theta_{2i}^{\mathscr{L}^2}(x)$$

Issue: The domain theta structure $\Theta_{\mathscr{L}}$ we are given may not satisfy $\mathcal{K} = \mathcal{K}_2(\overline{\Theta}_{\mathscr{L}})$.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Why we need change of coordinate formulas

Corollary (of the isogeny theorem)

Assume $K = K_2(\overline{\Theta}_{\mathscr{L}})$. Then we can choose compatible theta structures $\Theta_{\mathscr{L}}$ and $\Theta_{\mathscr{M}}$ such that:

$$\forall i \in (\mathbb{Z}/2\mathbb{Z})^g, \quad f^*\theta_i^{\mathscr{M}} = \theta_{2i}^{\mathscr{L}^2} \quad i.e. \quad \theta_i^{\mathscr{M}}(f(x)) = \theta_{2i}^{\mathscr{L}^2}(x)$$

Issue: The domain theta structure $\Theta_{\mathscr{L}}$ we are given may not satisfy $\mathcal{K} = \mathcal{K}_2(\overline{\Theta}_{\mathscr{L}})$.

Solution: Change the theta structure and compute the associated change of theta coordinates.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Sym. theta structures and symplectic basis (Mumford, 1966)

{ Symmetric theta structures
$$\Theta_{\mathscr{L}^2}$$
 on $G(\mathscr{L}^2)$ }

Symplectic isomorphisms $\overline{\Theta}_{\mathscr{L}^2} : K(2\delta) \longrightarrow K(\mathscr{L}^2)$ }

{ Symplectic basis of $K(\mathscr{L}^2)$ }

{ Symmetric theta structures $\Theta_{\mathscr{L}}$ on $G(\mathscr{L})$ }

Introduction	The isogeny theorem
The algebraic theory of theta functions	The duplication formula for symmetric theta structures
Change of level formulas and isogeny computations	A simple evaluation algorithm
Computing chains of 2-isogenies	Computing the codomain theta null point
Conclusion	Change of coordinate formulas

Symplectic basis

- Assume \mathscr{L} is of level n (e.g. $\mathscr{L} = \mathscr{L}_0^n$).
- What is a symplectic basis of $K(\mathcal{L}^2) = A[2n]$?

Introduction	The isogeny theorem
The algebraic theory of theta functions	The duplication formula for symmetric theta structures
Change of level formulas and isogeny computations	A simple evaluation algorithm
Computing chains of 2-isogenies	Computing the codomain theta null point
Conclusion	Change of coordinate formulas

Symplectic basis

- Assume \mathscr{L} is of level n (e.g. $\mathscr{L} = \mathscr{L}_0^n$).
- What is a symplectic basis of $K(\mathcal{L}^2) = A[2n]$?

Definition

Let $\zeta \in k^*$ be a primitive 2*n*-th root of unity. A ζ -symplectic basis of $K(\mathcal{L}^2) = A[2n]$ is a basis $(x_1, \dots, x_g, y_1, \dots, y_g)$ such that:

- $\forall 1 \leq i,j \leq g$, $e_{\mathcal{L}^2}(x_i,x_j) = e_{\mathcal{L}^2}(y_i,y_j) = 1$;
- $\forall 1 \leq i,j \leq g$, $e_{\mathcal{L}^2}(x_i, y_j) = \zeta^{\delta_{i,j}}$.

Then $K_1(\mathcal{L}^2) := \langle x_1, \cdots, x_g \rangle$ and $K_2(\mathcal{L}^2) := \langle y_1, \cdots, y_g \rangle$ form a symplectic decomposition of $K(\mathcal{L}^2)$.

The isogeny theorem The duplication formula for symmetric theta structures A simple evaluation algorithm Computing the codomain theta null point Change of coordinate formulas

Change of coordinate formulas (D., 2024)

Computing a 2^e-isogeny Performance results

Computing chains of 2-isogenies

Conclusion

Computing a 2^e-isogeny Performance results

Computing a 2^e-isogeny

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^{*e*}-isogeny $f: (A, \mathscr{L}^{2^e}) \longrightarrow (B, \mathscr{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

Conclusion

Computing a 2^e-isogeny Performance results

Computing a 2^e-isogeny

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^{*e*}-isogeny $f: (A, \mathscr{L}^{2^e}) \longrightarrow (B, \mathscr{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

• We divide the computation into a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$

Conclusion

Computing a 2^e-isogeny Performance results

Computing a 2^e-isogeny

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^e -isogeny $f: (A, \mathcal{L}^{2^e}) \longrightarrow (B, \mathcal{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

• We divide the computation into a chain of 2-isogenies:

$$A_0 = A \xrightarrow{f_1} A_1 \xrightarrow{f_2} A_2 \cdots A_{e-1} \xrightarrow{f_e} A_e = B$$

- For all $i \in [1; e]$, we compute the dual theta null point $(\tilde{\theta}_j(0_{A_i}))_j$ of A_i to obtain $f_i : A_{i-1} \longrightarrow A_i$.
- $(\tilde{\theta}_j(0_{A_i}))_j$ is obtained from

$$[2^{e-i}]f_{i-1} \circ \cdots \circ f_1(T_1), \cdots, [2^{e-i}]f_{i-1} \circ \cdots \circ f_1(T_g)$$

Conclusion

Computing a 2^e -isogeny

Computing a 2^e-isogeny Performance results

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^e -isogeny $f: (A, \mathscr{L}^{2^e}) \longrightarrow (B, \mathscr{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

• This involves point duplications and evaluations. Their number can be optimised with divide and conquer strategies.
Conclusion

Computing a 2^e-isogeny Performance results

Computing a 2^e-isogeny

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^e -isogeny $f: (A, \mathcal{L}^{2^e}) \longrightarrow (B, \mathcal{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

- This involves point duplications and evaluations. Their number can be optimised with divide and conquer strategies.
- If A is a product, $f_1: A \longrightarrow A_1$ is a gluing isogeny (and the following can also be gluings). Formulas are different.

Conclusion

Computing a 2^e-isogeny Performance results

Computing a 2^e-isogeny

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^e -isogeny $f: (A, \mathscr{L}^{2^e}) \longrightarrow (B, \mathscr{M})$ with kernel $\langle [4] T_1, \cdots, [4] T_g \rangle$.

- This involves point duplications and evaluations. Their number can be optimised with divide and conquer strategies.
- If A is a product, $f_1 : A \longrightarrow A_1$ is a gluing isogeny (and the following can also be gluings). Formulas are different.
- The change of theta coordinates is only needed on A to compute f₁ (or further gluings).

Conclusion

Computing a 2^e -isogeny

Computing a 2^e-isogeny Performance results

Input: Points T_1, \dots, T_g forming a maximal isotropic subgroup of $A[2^{e+2}]$.

Output: A 2^{e} -isogeny $f: (A, \mathscr{L}^{2^{e}}) \longrightarrow (B, \mathscr{M})$ with kernel $\langle [4] T_{1}, \cdots, [4] T_{g} \rangle$.

- This involves point duplications and evaluations. Their number can be optimised with divide and conquer strategies.
- If A is a product, $f_1: A \longrightarrow A_1$ is a gluing isogeny (and the following can also be gluings). Formulas are different.
- The change of theta coordinates is only needed on A to compute f₁ (or further gluings).
- A change of theta coordinates can be needed on B if it is a product.

Computing a 2^e-isogeny Performance results

Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2^{e} -isogeny chain computation in dimension 2.

$\log_2(p)$	254	381	1293
е	126	208	632
Theta Rust	2.13 ms	9.05 ms	463 ms
Theta SageMath	108 ms	201 ms	1225 ms
Kummer SageMath	467 ms	858 ms	5150 ms
Jacobian SageMath	760 ms	1478 ms	9196 ms
Richelot SageMath	1028 ms	1998 ms	12840 ms

Conclusion

Computing a 2^e-isogeny Performance results

Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2^e -isogeny evaluation in dimension 2.

$\log_2(p)$	254	381	1293
е	126	208	632
Theta Rust	161 μs	411 μs	17.8 ms
Theta SageMath	5.43 ms	8.68 ms	40.8 ms
Kummer SageMath	18.4 ms	31.4 ms	170 ms
Jacobian SageMath	66.7 ms	119 ms	593 ms
Richelot SageMath	114 ms	208 ms	1203 ms

Computing a 2^{*e*}-isogeny Performance results

Implementation results in dimension 4 [Dar24]

Table: Timings in **SageMath** of a 2^e -isogeny chain computation and evaluation in dimension 4.

$\log_2(p)$	125	254	371
е	64	128	192
Computation	678 ms	1519 ms	2459 ms
Evaluation	25.9 ms	59.3 ms	107.7 ms

We expect an improvement by a factor 50 with a C implementation.

Thanks for listening!

P. Dartois, L. Maino, G. Pope, D. Robert. An Algorithmic Approach to (2,2)-isogenies in the Theta Model and Applications to Isogeny-based Cryptography. Cryptology ePrint Archive, 2023. https://eprint.iacr.org/2023/1747

P. Dartois. Fast computation of 2-isogenies in dimension 4 and cryptographic applications. Cryptology ePrint Archive, 2024. https://eprint.iacr.org/2024/1180