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Isogenies between elliptic curves

Between elliptic curves, isogenies are non-zero morphisms of algebraic
groups.

ϕ

E1 E2
ϕ(P +Q)=ϕ(P)+ϕ(Q)
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Isogenies between abelian varieties

Abelian varieties are projective abelian group varieties, generalizing
elliptic curves.
Between abelian varieties, isogenies are morphisms which are
surjective and of finite kernel.

ϕ

A1 A2

ϕ(P +Q)=ϕ(P)+ϕ(Q)

Pierrick Dartois 3 / 42



Introduction
The algebraic theory of theta functions

Change of level formulas and isogeny computations
Computing chains of 2-isogenies

Conclusion

Why (higher dimensional) isogenies matter

Quantum computers jeopardize current public key cryptography
(RSA, discrete logarithms...).
Isogenies are used in quantum-resistant cryptographic protocols.

Why higher dimensions?
Isogenies of dimensions 2, 4 (or 8) were used to break the
isogeny-based protocol SIDH (NIST candidate).
Higher dimensional isogenies are used as an interpolation tool.
They also have been used constructively in several protocols
(FESTA/QFESTA, SQIsignHD/2D/Prime, Scallop-HD, IS-CUBE,
3D hash function...).
We need fast implementations.
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Our goal: a "good" system of coordinates
The theta group and its action on global sections
Theta structures
Theta functions

The algebraic theory of theta functions
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Our goal: a "good" system of coordinates
The theta group and its action on global sections
Theta structures
Theta functions

Line bundles

Notations:
k : algebraically closed field.
A: abelian variety defined over k .
g := dim(A).

A line bundle L on A is a locally free sheaf of OA-modules of
rank 1.
Line bundles on A form a group for the tensor product.
Isomorphism classes of line bundles form the Picard group Pic(A).
Pic(A)∼= {divisors on A}/{principal divisors}.
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Polarisations

Let:
Pic0(A)= {[L ] ∈Pic(A) | ∀a ∈A(k), t∗a L ≃L }

Pic0(A)∼= Â(k) (k-rational points of Â).
If L is a line bundle on A, consider:

ϕL :A −→ Â

x ∈A(k) 7−→ [t∗x L ⊗L −1] ∈Pic0(A)

When K (L ) := ker(ϕL ) is finite, ϕL is an isogeny and we say that:
ϕL is a polarisation of A.
(A,L ) is a polarized abelian variety.

When ϕL is an isomorphism, (A,L ) is a principally polarised
abelian variety (PPAV).
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Projective coordinates on polarised abelian varieties

We are looking for systems of coordinates on (A,L ).
Assume that L is generated by global sections
s0, · · · ,sn ∈ Γ(A,L ) i.e. that s0,x , · · · ,sn,x generate Lx for all x ∈A.

Idea: Take such global sections s0, · · · ,sn ∈ Γ(A,L ). They define a
map:

A −→ Pnk
x 7−→ (s0(x) : · · · : sn(x))

These sections are coordinates when the above map is an
embedding.

Theta functions form a family of global sections of Γ(A,L ) with
"good arithmetic properties".
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The theta group
Let L be a line bundle on A generated by global sections.

We define:
K (L ) := {x ∈A | t∗x L ≃L }.

Assume that K (L ) is finite so that ϕL :A−→ Â is a polarisation.

The theta group of L is given by:

G (L ) := {(x ,φx ) | x ∈K (L ), φx :L
∼−→ t∗x L }.

Given (x ,φx ),(y ,φy ) ∈G (L ), the composition:

L
φx−−−→ t∗x L

t∗x φy−−−→ t∗x t
∗
y L = t∗x+yL ,

defines the product:

(x ,φx ) · (y ,φy )= (x +y ,t∗x φy ◦φx ).

This defines a (non-commutative) group law on G (L ).
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The commutator pairing

There is an exact sequence:

1−→ k∗ −→G (L )−→K (L )−→ 0,

where the first arrow is λ 7−→ (0,λidL ) and the last arrow is the
forgetful map ρL : (x ,φx ) 7−→ x .

G (L ) does not commute and we measure the commutativity defect
via the commutator pairing.
Let x ,y ∈K (L ) and x̃ , ỹ ∈G (L ) be lifts of x ,y . Define:

eL (x ,y) := x̃ · ỹ · x̃−1 · ỹ−1 ∈ k∗.

as the commutator pairing of x and y .
eL :K (L )×K (L )−→ k∗ is a non-degenerate skew-symmetric
bilinear map.
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Action of the Theta group

G (L ) acts on the space of global sections Γ(A,L ) as follows:

∀s ∈ Γ(A,L ),(x ,φx ) ∈G (L ), (x ,φx ) · s = t∗−x (φx (s)).

Theorem (Mumford, 1966)

This action defines an irreducible representation of G (L ):

G (L ) ,−→GL(Γ(A,L )).

All irreducible representations of G (L ) on which k∗ acts naturally are
isomorphic.
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Symplectic decompositions
A subgroup K ⊂K (L ) is isotropic if eL (x ,y)= 1 for all x ,y ∈K .
eL induces a symplectic decomposition of K (L ):

K (L )=K1(L )⊕K2(L ),

where K1(L ) and K2(L ) are maximal isotropic subgroups.

eL induces an isomorphism K2(L )∼= àK1(L )=Hom(K1(L ),k∗).

There exists a unique tuple of integers δ= (d1, · · · ,dg ) such that:
d1| · · · |dg and g = dim(A);
K1(L )≃K1(δ) and K2(L )≃K2(δ).

Where:

K1(δ) :=
r∏

i=1
Z/diZ and K2(δ) := �K1(δ)=Hom(K1(δ),k∗).

We say that L has type δ.
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The Heisenberg group

Let K (δ) :=K1(δ)×K2(δ).
We define the Heisenberg group as H (δ) := k∗×K (δ), with the
group law:

(α,x ,χ) · (β,x ′,χ′) := (αβχ′(x),x +x ′,χχ′).

Similarly, we define a commutator pairing eδ :K (δ)×K (δ)−→ k∗.

There always exists a symplectic isomorphism φ :K (δ)
∼−→K (L ):

∀x ,y ∈K (δ), eL (φ(x),φ(y))= eδ(x ,y).

The Ki (L ) :=φ(Ki (δ)) form a symplectic decomposition of K (L ).

Pierrick Dartois 14 / 42
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Theta structures

The Heisenberg group is isomorphic to the theta group.
A Theta structure is an isomorphism ΘL :H (δ)

∼−→G (L )
inducing an isomorphism of exact sequences:

1 // k∗ // H (δ) //

ΘL

��

K (δ) //

ΘL

��

0

1 // k∗ // G (L ) // K (L ) // 0

In particular, ΘL :K (δ)
∼−→K (L ) is a symplectic isomorphism.

Slogan: "A theta structure is a symplectic isomorphism with lifting
information."

Pierrick Dartois 15 / 42



Introduction
The algebraic theory of theta functions

Change of level formulas and isogeny computations
Computing chains of 2-isogenies

Conclusion

Our goal: a "good" system of coordinates
The theta group and its action on global sections
Theta structures
Theta functions

Action of the Heisenberg group

Let V (δ) be the space of functions K1(δ)−→ k .
H (δ) acts on V (δ) as follows:

(α,x ,χ) · f : y 7−→αχ(y)−1f (y −x),

for all f ∈V (δ) and (α,x ,χ) ∈H (δ).

This defines an irreducible representation H (δ) ,−→GL(V (δ)).
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Action of the Theta group
G (L ) acts on the space of global sections Γ(A,L ) as follows:

∀s ∈ Γ(A,L ),(x ,φx ) ∈G (L ), (x ,φx ) · s = t∗−x (φx (s)).

Theorem (Mumford, 1966)

This action defines an irreducible representation of G (L ):

G (L ) ,−→GL(Γ(A,L )).

All irreducible representations of G (L ) on which k∗ acts naturally are
isomorphic.

Hence, if L has type δ, there exists an isomorphism of
representations β :V (δ)

∼−→ Γ(A,L ):

∀v ∈V (δ),h ∈H (δ), β(h ·v)=ΘL (h) ·β(v).

β is unique up to a multiplicative constant (by Shur’s lemma).
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Theta functions

Consider the basis of V (δ) given by Kronecker functions:

δi : j ∈K1(δ) 7−→ δi ,j =
{

1 if i = j
0 otherwise

for all i ∈K1(δ).
Then the θL

i :=β(δi ) form the basis of theta functions on
(A,L ,ΘL ).
This basis is defined up to a multiplicative constant.

It defines a projective map:

A −→ P
d1···dg−1
k

x 7−→ (θL
i (x))i∈K1(δ)

Main advantage of theta functions: the action G (L )æ Γ(A,L )
yields nice formulas on theta functions.
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Theta structures of level n

When L is of type δ= (n, · · · ,n), we say L has level n.
Then K (L )=A[n] and there are ng theta functions (θL

i )i∈(Z/nZ)g .

Theorem (Mumford, 1974)

When n≥ 3, the map A−→Pn
g

k induced by theta functions (θL
i )i∈(Z/nZ)g

is an embedding.

Theorem (Birkenhake, Lange, 2004)

When n= 2 and (A,ϕL ) is not a product, the map KA −→P2g
k induced

by theta functions (θL
i )i∈(Z/2Z)g is an embedding, where KA :=A/± is

the Kummer variety associated to A.

n= 2 gives the minimal number of coordinates (2g on the Kummer
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The theta null point

The theta null point (θi (0A))i is of special interest.

Theorem (Mumford, 1966)

When 4|δ, the theta null point (θi (0A))i entirely determines (A,L ,ΘL ),
as it determines the Riemann relations relating theta coordinates in the
projective space.

In practice, even at level 2 (δ= (2, · · · ,2)), we use (θi (0A))i to
represent the Kummer variety.
Unlike in most algebraic geometry studies, we do not look at abelian
varieties as Jacobians or by their equations. We use their theta null
point to do arithmetic.
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The isogeny theorem

Definition

A polarised isogeny f : (A,L )−→ (B ,M ) satisfies f ∗M ≃L . If f is
such an isogeny, then we have:

f̂ ◦ϕM ◦ f =ϕL .
K := ker(f )⊂K (L ) is an isotropic subgroup.

Theorem (Mumford, 1966 and Robert, 2010)

Let f : (A,L )−→ (B ,M ) be a polarised isogeny and ΘL and ΘM be
compatible theta-structures on G (L ) and G (M ).
Then, there exists λ ∈ k∗ such that for all i ∈K1(δM ),

f ∗θM
i =λ ∑

j∈Σ(ΘL ,ΘM )

θL
j ,

with Σ(ΘL ,ΘM )⊆K1(δL ).
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Our goal

Let (A,L0) and (B ,M0) be a principally polarised abelian varieties
(PPAVs).
A d-isogeny is a polarised isogeny f : (A,L d

0 )−→ (B ,M0) i.e. such
that f ∗M0 ≃L d

0 .
Then, we have:

f̂ ◦ϕM0 ◦ f =ϕL d
0
= [d ]ϕL0

And K = ker(f )⊆K (L d
0 )=A[d ].

State of the art [LR12; LR15; LR22]: When n and d are coprime,
given K ⊂A[d ], compute f in level n theta coordinates:

(θ
L n

0
i (x))i∈(Z/nZ)g 7−→ (θ

Mn
0

i (f (x)))i∈(Z/nZ)g

Our goal: Treat the case n= 2 and d = 2e (cryptographically relevant).
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Applying the isogeny theorem

Let f : (A,L 2
0 )−→ (B ,M0) be a 2-isogeny between PPAVs.

f is also a polarised isogeny (A,L 2)−→ (B ,M ) where L :=L 2
0 and

M :=M 2
0 are of level 2.

Corollary (of the isogeny theorem)

Assume K =K2(ΘL ). Then we can choose compatible theta structures
ΘL and ΘM such that:

∀i ∈ (Z/2Z)g , f ∗θM
i = θL 2

2i i.e. θM
i (f (x))= θL 2

2i (x)

Problem: We know (θL
i (x))i but not (θL 2

2i (x))i .
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Change of level

(A,L ,ΘL )

(A,L 2,ΘL 2)

(B ,M ,ΘM )

f

isogeny thm.
change of level

Goal: Change of level (A,L ,ΘL )−→ (A,L 2,ΘL 2).

We have some compatibility condition between (A,L 2,ΘL 2) and
(B ,M ,ΘM ).
What compatibility condition do we have between (A,L ,ΘL ) and
(A,L 2,ΘL 2)?
First, ΘL and ΘL 2 have to be symmetric (then ΘM is symmetric).
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Symmetric theta structures

Definition
A theta-structure ΘL is symmetric if ΘL ◦D−1 = δ−1 ◦ΘL , where
D−1 ∈Aut(H (δ)) and δ−1 ∈Aut(G (L )) are maps that lift [−1] : x −→−x .

1 // k∗ // G (L )

δ−1
��

// K (L )

[−1]
��

// 0

1 // k∗ // G (L ) // K (L ) // 0

1 // k∗ // H (δ)

D−1
��

// K (δ)

[−1]
��

// 0

1 // k∗ // H (δ) // K (δ) // 0

Pierrick Dartois 26 / 42



Introduction
The algebraic theory of theta functions

Change of level formulas and isogeny computations
Computing chains of 2-isogenies

Conclusion

The isogeny theorem
The duplication formula for symmetric theta structures
A simple evaluation algorithm
Computing the codomain theta null point
Change of coordinate formulas

Compatible symmetric theta structures

Two symmetric theta structures ΘL of G (L ) and ΘL 2 of G (L 2) are
compatible if the following diagrams commute:

H (2δ)
Θ

L2 // G (L 2)

H (δ)

E2

OO

ΘL // G (L )

ε2

OO

H (2δ)

H2
��

Θ
L2 // G (L 2)

η2

��
H (δ)

ΘL // G (L )
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Differential addition and duplication formulas
For all χ ∈ á(Z/2Z)g and i ∈K1(2δ), define:

UL 2

χ,i := ∑
t∈(Z/2Z)g

χ(t)θL 2

i+tδ

Theorem (Mumford, 1966 and Robert, 2010)

Assume ΘL and ΘL 2 are symmetric and compatible. Let x ,y ∈A. Then
there exists λ1,λ2 ∈ k∗ such that for all i , j ∈K1(2δ) such that i ≡ j

mod 2 and χ ∈ á(Z/2Z)g , we have:

θL
(i+j)/2(x +y)θL

(i−j)/2(x −y)=λ1
∑

χ∈ á(Z/2Z)g U
L 2

χ,i (x)U
L 2

χ,j (y)

UL 2

χ,i (x)U
L 2

χ,j (y)=λ2
∑

t∈(Z/2Z)g
χ(t)θL

(i+j+tδ)/2(x +y)θL
(i−j+tδ)/2(x −y).
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Differential addition and duplication formulas

These formulas yield:
A change of level algorithm to evaluate f :

(θL
i (x))i 7−→ (θL 2

2i (x))i = (θM
i (f (x)))i .

But also:
A duplication algorithm (θL

i (x))i 7−→ (θL
i (2x))i (useful for isogeny

chain computations).
A differential addition algorithm:

(θL
i (x))i ,(θ

L
i (y))i ,(θ

L
i (x −y))i 7−→ (θL

i (x +y))i .
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Evaluation algorithm

Proposition (D., Maino, Pope, Robert, 2023)

For all x ∈A,

(θ̃M
i (f (x)))i ⋆ (θ̃M

i (0B))i =H ◦S((θL
i (x))i ),

where (θ̃M
i (x))i :=H((θM

i (x))i ) and:

H is the Hadamard operator: (xi )i 7−→
(∑

i∈(Z/2Z)g (−1)〈i |j〉xi
)
j

.

S is the squaring operator (xi )i 7−→ (x2
i )i .

⋆ is the multiplication operator (xi )i ,(yi )i 7−→ (xiyi )i .

A straightforward algorithm follows:

(θL
i (x))i

H−→∗ S−→∗ ⋆(1/θ̃M
i (0B))i−−−−−−−−−−−→∗ H−→ (θM

i (f (x)))i

Problem: We don’t know the dual theta null point (θ̃M
i (0B))i .
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Computing the codomain theta null point

" We need 8-torsion points above the kernel.

• In dimensions 2 and 3, these can be avoided at the expense of square
root computations.

Proposition (D., Maino, Pope, Robert, 2023)

Let (T1, · · · ,Tg ) forming a maximal isotropic subgroup of A[8] such that
K = 〈[4]T1, · · · , [4]Tg 〉.
Then, for all l ∈ �

1 ; g
�

and i ∈ (Z/2Z)g ,

θ̃M
i+el (0B) ·H ◦S((θL

j (Tl ))j )i = θ̃M
i (0B) ·H ◦S((θL

j (Tl ))j )i+el ,

where el = (0, · · · ,1, · · · ,0) with 1 at the l-th position.
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Why we need change of coordinate formulas

Corollary (of the isogeny theorem)

Assume K =K2(ΘL ). Then we can choose compatible theta structures
ΘL and ΘM such that:

∀i ∈ (Z/2Z)g , f ∗θM
i = θL 2

2i i.e. θM
i (f (x))= θL 2

2i (x)

Issue: The domain theta structure ΘL we are given may not satisfy
K =K2(ΘL ).

Solution: Change the theta structure and compute the associated
change of theta coordinates.
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Sym. theta structures and symplectic basis (Mumford, 1966)

{
Symmetric theta structures ΘL 2 on G (L 2)

}
{

Symplectic isomorphisms ΘL 2 :K (2δ)−→K (L 2)
}

{
Symplectic basis of K (L 2)

}
{

Symmetric theta structures ΘL on G (L )
}
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Symplectic basis

Assume L is of level n (e.g. L =L n
0 ).

What is a symplectic basis of K (L 2)=A[2n]?

Definition
Let ζ ∈ k∗ be a primitive 2n-th root of unity.
A ζ-symplectic basis of K (L 2)=A[2n] is a basis (x1, · · · ,xg ,y1, · · · ,yg )
such that:

∀1≤ i , j ≤ g , eL 2(xi ,xj )= eL 2(yi ,yj )= 1;

∀1≤ i , j ≤ g , eL 2(xi ,yj )= ζδi ,j .
Then K1(L

2) := 〈x1, · · · ,xg 〉 and K2(L
2) := 〈y1, · · · ,yg 〉 form a symplectic

decomposition of K (L 2).
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Change of coordinate formulas (D., 2024)

Symplectic basis B

of K(L 2)=A[4]

Symmetric theta
structure ΘL

Initial theta
coordinates (θi )i

Symplectic basis B′

of K(L 2)=A[4]

with K2(Θ′
L )= ker(f )

Symmetric theta
structure Θ′

L

New theta
coordinates (θ′

i
)i

Change of basis

matrix M ∈Sp2g (Z/4Z)

Change of coordinates

matrix N(ζ,M)
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Computing a 2e-isogeny

Input: Points T1, · · · ,Tg forming a maximal isotropic subgroup of
A[2e+2].

Output: A 2e -isogeny f : (A,L 2e )−→ (B ,M ) with kernel
〈[4]T1, · · · , [4]Tg 〉.

We divide the computation into a chain of 2-isogenies:

A0 =A
f1

A1
f2

A2 · · · Ae−1
fe

Ae =B

For all i ∈ �1 ; e�, we compute the dual theta null point (θ̃j (0Ai
))j of

Ai to obtain fi :Ai−1 −→Ai .
(θ̃j (0Ai

))j is obtained from

[2e−i ]fi−1 ◦ · · · ◦ f1(T1), · · · , [2e−i ]fi−1 ◦ · · · ◦ f1(Tg ).
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Computing a 2e-isogeny

Input: Points T1, · · · ,Tg forming a maximal isotropic subgroup of
A[2e+2].

Output: A 2e -isogeny f : (A,L 2e )−→ (B ,M ) with kernel
〈[4]T1, · · · , [4]Tg 〉.

This involves point duplications and evaluations. Their number can
be optimised with divide and conquer strategies.

If A is a product, f1 :A−→A1 is a gluing isogeny (and the following
can also be gluings). Formulas are different.
The change of theta coordinates is only needed on A to compute f1
(or further gluings).
A change of theta coordinates can be needed on B if it is a product.
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Computing a 2e -isogeny
Performance results

Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2e -isogeny chain computation in dimension 2.

log2(p) 254 381 1293
e 126 208 632

Theta Rust 2.13 ms 9.05 ms 463 ms
Theta SageMath 108 ms 201 ms 1225 ms

Kummer SageMath 467 ms 858 ms 5150 ms
Jacobian SageMath 760 ms 1478 ms 9196 ms
Richelot SageMath 1028 ms 1998 ms 12840 ms
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Computing a 2e -isogeny
Performance results

Implementation results in dimension 2 [DMPR23]

Table: Timings of a 2e -isogeny evaluation in dimension 2.

log2(p) 254 381 1293
e 126 208 632

Theta Rust 161 µs 411 µs 17.8 ms
Theta SageMath 5.43 ms 8.68 ms 40.8 ms

Kummer SageMath 18.4 ms 31.4 ms 170 ms
Jacobian SageMath 66.7 ms 119 ms 593 ms
Richelot SageMath 114 ms 208 ms 1203 ms
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Computing a 2e -isogeny
Performance results

Implementation results in dimension 4 [Dar24]

Table: Timings in SageMath of a 2e -isogeny chain computation and evaluation
in dimension 4.

log2(p) 125 254 371
e 64 128 192

Computation 678 ms 1519 ms 2459 ms
Evaluation 25.9 ms 59.3 ms 107.7 ms

We expect an improvement by a factor 50 with a C implementation.
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Thanks for listening!

P. Dartois, L. Maino, G. Pope, D. Robert. An
Algorithmic Approach to (2,2)-isogenies in the
Theta Model and Applications to Isogeny-based
Cryptography. Cryptology ePrint Archive,
2023. https://eprint.iacr.org/2023/1747

P. Dartois. Fast computation of 2-isogenies in
dimension 4 and cryptographic applications.
Cryptology ePrint Archive, 2024.
https://eprint.iacr.org/2024/1180
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