
THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

Spécialité : Mathématiques pures

Par Pierrick DARTOIS

Calcul rapide d’isogénies en dimension supérieure pour les applications
cryptographiques

Fast computation of higher dimensional isogenies for cryptographic
applications

Sous la direction de : Damien ROBERT
Co-directeur : Benjamin WESOLOWSKI

Co-encadrant : Luca DE FEO

Soutenance prévue le 9 juillet 2025

Membres du jury :

M. Damien ROBERT Directeur de Recherche Université de Bordeaux Directeur
M. Benjamin WESOLOWSKI Chargé de Recherche ENS de Lyon Co-directeur
M. David KOHEL Professeur Aix-Marseille Université Rapporteur
M. David LUBICZ Directeur Scientifique (DGA) Université de Rennes 1 Rapporteur
M. Pierrick GAUDRY Directeur de Recherche Université de Lorraine Examinateur
Mme. Sabrina KUNZWEILER Inria Starting Faculty Position Université de Bordeaux Examinatrice
Mme. Elisa LORENZO-GARCIA Maîtresse Assistante Université de Neuchâtel Examinatrice
M. Frederik VERCAUTEREN Professor KU Leuven Examinateur
M. Luca DE FEO Research Staff Member IBM Research Europe Invité

Calcul rapide d’isogénies en dimension supérieure pour les applications
cryptographiques

Résumé : Shor a découvert en 1995 un algorithme permettant à un ordinateur quantique
suffisamment puissant d’attaquer tous les protocoles cryptographiques à clés publiques fondés
sur le logarithme discret et la factorisation des nombres en produit de facteurs premiers, tels
que RSA et les courbes elliptiques, largement utilisés aujourd’hui. Depuis, de gros efforts de
recherche ont été accomplis pour proposer des protocoles résistants aux attaques quantiques et
l’institut de standardisation et des technologies américain (NIST) a organisé deux compétitions
internationales en ce sens. La cryptographie à base d’isogénies repose sur la difficulté à trouver
des isogénies entre courbes elliptiques. En 2022, le protocole d’échange de clé Supersingular
Isogeny Diffie-Hellman (SIDH) proposé au NIST fait l’objet d’attaques majeures. Loin d’entraver
l’avenir de la cryptographie à base d’isogénies, ces attaques ont au contraire fortement dynamisé
la recherche dans ce domaine. Les idées de ces attaques très efficaces ont en effet inspiré de
nouveaux protocoles cryptographiques et l’amélioration de protocoles existants ne souffrant pas des
faiblesses de sécurité de SIDH. Nos travaux de thèse ont notamment contribué à des améliorations
de Short Quaternion Isogeny Signatures (SQIsign), un protocole de signature électronique également
proposé au NIST. SQIsign s’appuie sur la correspondance de Deuring entre isogénies des courbes
elliptiques supersingulières et idéaux d’une algèbre de quaternions. Bien que très compact, SQIsign
était désavantagé par un algorithme de signature très lent consistant à traduire un idéal d’une
algèbre de quaternions en l’isogénie qui lui correspond. Les attaques contre SIDH ont mené à de
nouvelles idées pour améliorer cet algorithme de traduction de manière beaucoup plus efficace,
tout en améliorant la preuve de sécurité et la compacité du protocole. Ces nouveaux algorithmes
de traduction d’idéaux en isogénies ont aussi servi à améliorer le calcul de l’action du groupe des
classes d’idéaux sur les courbes elliptiques supersingulières orientées, qui intervient par exemple
dans le protocole Commutative Supersingular Isogeny Diffie Helmman (CSIDH). Les attaques
contre SIDH et les nouvelles techniques de construction qui ont suivi s’appuient sur le calcul efficace
d’isogénies en dimension supérieure à 2 (les courbes elliptiques étant de dimension 1). Cette thèse
a ainsi contribué à l’élaboration et à l’implémentation d’algorithmes rapides de calcul d’isogénies
en dimensions 2 et 4.
Mots-clés : cryptographie post-quantique, isogénies, isogénies en dimension supérieure, SQISign,
lemme de Kani, actions de groupes cryptographiques.

Unité de recherche
Université de Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France.

Fast computation of higher dimensional isogenies for cryptographic applications

Abstract: In 1995, Shor discovered an algorithm that would enable a sufficiently powerful quantum
computer to attack all public-key cryptographic protocols based on discrete logarithm and prime
factorisation, such as RSA and elliptic curves that are widely used today. Since then, major
research efforts have been made to propose protocols that are resistant to quantum attacks, and
the US National Institute of Standards and Technology (NIST) has organised two international
competitions to standardise these quantum-resistant protocols. Isogeny-based cryptography is
based on the difficulty of finding isogenies between elliptic curves. In 2022, the Supersingular
Isogeny Diffie-Hellman (SIDH) key exchange protocol proposed to the NIST competition came
under major attack. Far from hindering the future of isogeny-based cryptography, these attacks
gave a major boost to research in this field. The ideas behind these highly effective attacks actually
inspired new cryptographic protocols and improvements to existing ones that do not suffer from
SIDH’s security weaknesses. Our works contributed to improvements of Short Quaternion Isogeny
Signatures (SQIsign), a digital signature scheme also proposed to the NIST competition. SQIsign is
based on the Deuring correspondence between isogenies of supersingular elliptic curves and ideals in
a quaternion algebra. Although very compact, SQIsign was disadvantaged by a very slow signature
algorithm, which consists in translating an ideal of a quaternion algebra into its corresponding
isogeny. Attacks on SIDH led to new ideas to improve this translation algorithm, while enhancing
the protocol’s security proof and compactness. These new algorithms for ideal-to-isogeny translation
were also used to improve the computation of the ideal class group action on oriented supersingular
elliptic curves, involved for instance in the Commutative Supersingular Isogeny Diffie Helmman
(CSIDH) protocol. Attacks on SIDH and the new construction techniques that followed are based on
the efficient calculation of isogenies in dimension greater than 2 (elliptic curves being of dimension 1).
This thesis contributed to the design and implementation of fast algorithms to compute isogenies in
dimensions 2 and 4.
Keywords: post-quantum cryptography, isogenies, higher dimensionsl isogenies, SQIsign, Kani’s
lemma, cryptographic group actions.

2

À maman, qui a été empêchée de me voir devenir docteur.

À mon père, pour son infaillible soutien pendant mes onze années d’études.

Remerciements - Thanks

Je tiens tout d’abord à remercier vivement mes encadrants de thèse. Merci à vous trois pour votre
soutien constant tout au long des trois dernières années et pour les idées lumineuses dont vous m’avez
fait part, sans lesquelles ce travail n’aurait pu aboutir. Toute thèse doit inévitablement beaucoup à
l’aptitude des encadrants à créer un environnement propice à la progression et à l’épanouissement de
leur étudiant. C’est une mission incontestablement réussie, malgré l’éclatement géographique.

Tout d’abord, merci Luca, car c’est grâce à toi que cette belle aventure a commencé. Merci de
m’avoir introduit dans la communauté des isogénistes, et d’avoir bravé les épreuves bureaucratiques
à mes débuts. C’est à tes suggestions judicieuses que je dois également des connaissances bien utiles
et pratiques en programmation (les makefiles et les command line interfaces m’ont vraiment simplifié
la vie). Tu n’as pas non plus perdu patience pour faire progresser mes présentations sur le plan de
la clarté et de la concision. Je garderai toujours un très bon souvenir des randonnées que nous avons
faites dans les montagnes suisses et des après-midi que j’ai passées à Zurich pour monologuer sur les
fonctions thêta devant un public de jeunes isogénistes.

Merci Damien pour m’avoir transmis avec patience des idées théoriques ardues qui ont forgé mon
savoir-faire mathématique, ont largement contribué à mes résultats et continueront certainement à
ouvrir des voies de recherche fructueuses pour la suite de ma carrière. Les fonctions thêta jouent un
rôle central dans ce manuscrit et il aurait été impossible de comprendre la théorie sous-jacente sans
ton aide, tes références, suggestions, explications et corrections. Dernier point essentiel, tu as toujours
su te montrer bienveillant et jamais condescendant, même face à mon ignorance näıve en quelques
occasions.

Merci Benjamin d’avoir montré l’exemple de ce que doit être un travail de recherche de grande
qualité, tant sur le fond que sur la forme. Outre la profondeur des résultats qu’ils présentent, tes
papiers sont unanimement reconnus comme bien écrits, et tes présentations comme très claires. Les
quelques compliments que mes travaux ont reçus doivent beaucoup à ton exemple que je continue à
admirer et à tes exigences en matière de clarté et de rigueur qui m’ont largement fait progresser. Je
te remercie de m’avoir donné le goût de ≪ la bonne science ≫.

Antonin, avec le nombre incalculable de réunions hebdomadaires auxquelles tu as assisté, tu
mériterais certainement de figurer parmi mes encadrants. Cela a été un grand plaisir de collabo-
rer avec toi sur SQIsign, et j’espère pouvoir continuer à le faire à l’avenir. Tes astuces algorithmiques
lumineuses sur les quaternions se sont révélées fort utiles à plusieurs reprises et tu m’as également
bien inspiré pour expliquer la correspondance de Deuring de façon claire dans mes présentations.

I am also very grateful to all my other co-authors. Thank you Sarah Arpin, Andrea Basso, James
Clements, Tako Boris Fouotsa, Arthur Herlédan Le Merdy, Riccardo Invernizzi, Jonathan Komada
Eriksen, Péter Kutas, Luciano Maino, Giacomo Pope, Ryan Rueger and Frederik Vercauteren. It has
been a pleasure to work with you over the course of this PhD.

I would also like to thank Pierrick Gaudry, David Kohel, Sabrina Kunzweiler, Elisa Lorenzo Garcia,
David Lubicz and Federik Vercauteren for your participation in my PhD jury. Merci en particulier
à David Kohel et David Lubicz pour votre travail de rapporteur, vos rapports très positifs et vos
corrections fort utiles.

My experience as a PhD student owes a lot to the isogeny community, who have been very dynamic,
kind and welcoming to me. I would like to thank in particular Maria, Jonathan and Krijn for all their
organisational efforts with The Isogeny Club.

Si rétrospectivement, la thèse a été une période heureuse de ma vie, c’est aussi en grande partie
grâce à mon équipe d’accueil, l’équipe Inria CANARI à l’Institut de Mathématiques de Bordeaux.
Car travailler dans un environnement agréable est essentiel au bien-être. Merci aux permanents de

5

6

l’équipe qui m’ont très bien accueilli. J’ai une pensée particulière pour Andreas, Aurel, Alice, Bill,
Henri, Elena, Razvan (et Damien bien évidemment). Merci également aux irréductibles doctorants du
bureau 319, en particulier Fabrice, Jean et Nicolas, pour tout ce que nous avons partagé ensemble
au travail comme en dehors, allant des discussions animées aux sorties cinéma, en passant par les
pâtisseries vegan. Fabrice, la pause thé hebdomadaire n’aurait pas été la même sans le soft power de
tes gâteaux sans produit d’origine animale. Je n’oublie pas non plus les autres doctorants que j’ai eu le
plaisir de connâıtre : Agathe, Elie, Fabrice (l’autre Fabrice), Alfonso, Guilhem, Wouter et sans doute
d’autres que j’oublie (mille excuses). I am also grateful to Sabrina, Wessel and Marc. It has been a
pleasure to get to know you.

I would also like to thank all those who contributed one way or another to the pursuit of my
research in the near future. Thank you Pierre-Alain Fouque, Aurore Guillevic, André Schrottenloher,
Patrick Gros, Emmanuel Thomé, Jean Kieffer, Xavier Bonnetain, Pierre-Jean Spaenlehauer, Pierrick
Gaudry, Frederik Vercauteren, Wouter Castryck, Péter Kutas, David Lubicz, and of course my PhD
advisors. May your efforts come to fruition (very soon I hope...).

Je remercie finalement les organismes qui ont financé ma recherche, en premier lieu Inria, mais
également l’ANR CIAO (ANR-19-CE48-0008) et le PEPR PQ-TLS sous l’égide du programme France
2030 (ANR- 22-PETQ-0008).

Table des matières

Introduction et résumé substantiel en français 11

Introduction (English) 19

1 Preliminaries 27
1.1 Elliptic curves and isogenies . 27

1.1.1 Elliptic curves . 27
1.1.2 Montgomery elliptic curves and their arithmetic 28
1.1.3 Isogenies . 28
1.1.4 Elliptic curves over finite fields and supersingular elliptic curves 31
1.1.5 Efficient representations of isogenies . 33

1.2 Quaternion algebras and the Deuring correspondence 34
1.2.1 Quaternion algebras, orders, ideals . 34
1.2.2 The quaternion algebra ramified at p and ∞ 36
1.2.3 Ideal equivalence . 37
1.2.4 The Deuring correspondence . 38
1.2.5 Lattices of rank 4 . 41

1.3 Oriented supersingular elliptic curves . 42
1.3.1 Oriented supersingular elliptic curves and isogenies 42
1.3.2 The ideal class group action . 42
1.3.3 Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) 43

1.4 Polarised abelian varieties . 44
1.4.1 Abelian varieties . 44
1.4.2 Line bundles and divisors . 46
1.4.3 Isogenies . 50
1.4.4 Isogenies as quotient maps . 53
1.4.5 The dual abelian variety and polarisations . 55
1.4.6 The Weil pairing . 59

I Cryptographic applications of higher dimensional isogenies 63

2 Improving ideal-to-isogeny translation algorithms 65
2.1 KLPT based techniques of ideal-to-isogeny translation and applications 65

2.1.1 A constructive use of the Deuring correspondence 65
2.1.2 Piecewise ideal-to-isogeny translation . 66
2.1.3 How to translate a piece of ideal . 67
2.1.4 On the practical efficiency of KLPT based techniques 67

2.2 Kani’s embedding lemma and isogeny interpolation . 68
2.2.1 Kani’s embedding lemma . 68
2.2.2 Isogeny interpolation . 73
2.2.3 The SIDH protocol . 74
2.2.4 Attacks against SIDH . 75
2.2.5 Higher dimensional isogeny computation algorithms 79

2.3 Translating ideals of short norm with 4-dimensional isogenies 79

7

8 TABLE DES MATIÈRES

2.3.1 Conditions on the ideal norm . 80

2.3.2 Application of Kani’s lemma . 81

2.3.3 Evaluation of torsion points . 82

2.4 Translating any ideal from a special curve with isogenies in dimension 2 82

2.4.1 Computing an isogeny of arbitrary odd degree from a special curve 82

2.4.2 The ideal-to-isogeny translation algorithm . 84

2.4.3 Improving the norm equation step success probability 89

2.5 Class group action with 4-dimensional isogenies . 92

2.5.1 Step 1: the norm equation . 93

2.5.2 Step 3: evaluating 2-dimensional isogenies of given polarised degree 96

2.5.3 Step 4: computing the 4-dimensional isogeny 98

2.5.4 Step 2: evaluating Elkies’ isogenies . 100

2.5.5 Performance . 102

3 SQIsignHD 105

3.1 An overview of the SQIsign framework . 105

3.1.1 An identification protocol . 105

3.1.2 From SQIsign to SQIsignHD . 106

3.1.3 The Fiat-Shamir transform . 107

3.2 Algorithmic building blocks . 108

3.2.1 Ideal-to-isogeny translations and isogeny of fixed degree 108

3.2.2 Isogeny to ideal . 108

3.2.3 Sampling a uniformly random ideal of fixed norm 109

3.2.4 Sampling a uniformly random ideal of bounded small norm 113

3.3 Main phases of the SQIsignHD identification protocol 117

3.3.1 Key generation . 117

3.3.2 Commitment . 118

3.3.3 Challenge . 119

3.3.4 Response . 121

3.3.5 Verification . 124

3.4 Security analysis . 127

3.4.1 Special soundness . 129

3.4.2 The zero knowledge property . 133

3.4.3 On isogeny generation oracles . 138

3.5 Instantiation of the SQIsignHD signature scheme . 140

3.5.1 Parameter choices and compression techniques 140

3.5.2 Performance . 141

4 SQIsign2D-West 143

4.1 The SQIsign2D-West identification protocol . 143

4.1.1 Setting and algorithmic building blocks . 143

4.1.2 Key generation and commitment . 144

4.1.3 Challenge . 145

4.1.4 Response . 145

4.1.5 Verification . 148

4.2 Security analysis . 148

4.2.1 Special soundness . 150

4.2.2 The zero knowledge property . 151

4.2.3 On the UTO and FIDIO oracles . 152

4.3 Instantiation and performance . 153

4.3.1 Parameter choices and signature sizes . 153

4.3.2 Performance . 154

TABLE DES MATIÈRES 9

II Fast computation of higher dimensional isogenies with the theta
model 157

5 Introduction to the theory of theta functions 159
5.1 Theta structures . 159

5.1.1 The theta group . 159
5.1.2 Descending theta groups . 160
5.1.3 The commutator pairing . 161
5.1.4 Theta structures . 165
5.1.5 Theta functions . 168
5.1.6 When theta functions become coordinates . 170
5.1.7 The theta null point . 171
5.1.8 Action by translation of the theta group on theta functions 173

5.2 Isogenies and theta structures . 173
5.2.1 Compatible theta structures . 173
5.2.2 The isogeny theorem . 176

5.3 Symmetric theta structures and arithmetic applications 177
5.3.1 The theory of symmetric theta structures . 177
5.3.2 The duplication formula . 191
5.3.3 Level 2 symmetric theta structures on Montgomery curves 198

6 Computing 2-isogeny chains 201
6.1 Computing 2-isogenies . 201

6.1.1 Change of level formula and isogeny evaluation 201
6.1.2 Computation of the codomain theta null point 204
6.1.3 The gluing case . 208

6.2 Change of theta coordinates . 212
6.2.1 Heisenberg group automorphisms . 213
6.2.2 Action of automorphisms on symmetric and compatible theta structures 216
6.2.3 Computing the dual of a 2-isogeny . 220

6.3 Computing a chain of 2-isogenies . 221
6.3.1 Computing an adapted theta structure on the domain 222
6.3.2 How the adapted theta structure propagates along the chain 223
6.3.3 Quasi-linear computational strategies . 224
6.3.4 Assumptions on the base field . 227

6.4 Isogenies obtained from Kani’s lemma . 228
6.4.1 Change of theta coordinates on the domain and codomain with full available

torsion . 228
6.4.2 Change of theta coordinates on the domain and codomain with half available

torsion . 232
6.5 Implementation in dimension 2 . 234

6.5.1 Computing an adapted theta structure on the domain 235
6.5.2 Computing and evaluating a generic 2-isogeny 241
6.5.3 Computing and evaluating a gluing 2-isogeny 246
6.5.4 Computing product (theta) coordinates on the codomain 247
6.5.5 Performance results . 251

6.6 Implementation in dimension 4 . 252
6.6.1 Locating gluings . 252
6.6.2 An overview of the isogeny chain computation 252
6.6.3 The first gluing in dimension 2 . 253
6.6.4 The second gluing in dimension 4 . 254
6.6.5 Computing the generic 2-isogenies in the chain 256
6.6.6 Computing product (theta) coordinates on the codomain 256
6.6.7 Adaptations when only half of the torsion is available 258
6.6.8 Performance results . 259

10 TABLE DES MATIÈRES

Introduction et résumé substantiel
en français

Comme le prévoit l’article 21 alinéa 2 de l’arrêté du 25 mai 2016 fixant le cadre national de la formation
et les modalités conduisant à la délivrance du diplôme national de doctorat, nous introduisons et
résumons ici en français les principales contributions de cette thèse portant sur la cryptographie post-
quantique à base d’isogénies. Le reste du document est écrit en anglais et l’introduction qui suit est
également traduite en anglais.

La menace quantique

Au-delà des communications militaires et des actifs financiers de quelques technophiles enthousiastes,
la cryptographie est essentielle à notre quotidien numérique. Il est impossible de naviguer sur internet,
de faire une transaction bancaire ou de signer un document en ligne de manière sécurisée sans utiliser
de protocole cryptographique. Par opposition aux protocoles symétriques, les protocoles asymétriques
(dits aussi à clés publiques) utilisent des clés différentes à l’usage des parties impliquées, l’une étant
publique et l’autre secrète. Les protocoles asymétriques permettent par exemple de signer des docu-
ments numériques ou encore d’échanger une clé secrète entre deux parties de manière sécurisée pour
l’utiliser ensuite dans un protocole de chiffrement symétrique. Aujourd’hui, la sécurité de l’intégralité
des protocoles asymétriques utilisés actuellement repose sur l’un des deux problèmes suivants.

Problème 1 (Factorisation RSA). Étant donné un entier N := p · q, avec deux facteurs premiers p
et q inconnus de taille comparable, trouver p et q.

Problème 2 (Logarithme discret). Étant donnés un groupe cyclique d’ordre premier G = ⟨g⟩ de
générateur g connu et un élément quelconque h ∈ G, trouver x ∈ {0, · · · ,#G− 1} tel que h = gx.

Ces deux problèmes sont réputés difficiles pour un ordinateur classique, les meilleures attaques
génériques connues contre RSA et le logarithme discret étant respectivement de complexité sous ex-
ponentielle [BLP93] et exponentielle [Sha71] en la taille des objets (log(N) ou log(#G)). L’algorithme
de Shor [Sho97] permet cependant de les résoudre en temps polynomial sur un ordinateur quantique.
Par précaution, en prévision des progrès futurs de l’ordinateur quantique, d’importants efforts de
recherche sont consacrés pour trouver des protocoles construits sur des problèmes mathématiques
résistants aux attaques quantiques, que l’on appelle communément protocoles post-quantiques.

Selon les problèmes sous-jacents, les protocoles cryptographiques post-quantiques sont rangés par
famille. Ainsi, la cryptographie à base de réseaux repose sur la difficulté à trouver, dans un réseau
euclidien de grande dimension, des vecteurs courts ou des vecteurs proches d’un vecteur quelconque
[Ajt98 ; DKRS03]. La cryptographie à base de codes repose sur la difficulté à décoder un message bruité
auquel on a appliqué un code correcteur d’erreur linéaire [BMT78]. La cryptographie multivariée
repose sur la difficulté à résoudre des systèmes d’équations polynomiales à plusieurs variables. La
cryptographie à base d’isogénies, qui fait l’objet de cette thèse, repose sur la difficulté à trouver une
isogénies entre deux courbes elliptiques. Parmi les alternatives, la cryptographie à base d’isogénies se
distingue par sa compacité (les tailles de clés ou de signatures sont faibles) et par sa relative lenteur.

L’institut américain de standardisation et des technologies (NIST) a lancé deux compétitions pour
standardiser des protocoles post-quantiques afin d’anticiper leur déploiement industriel. La première
compétition a permis de standardiser deux protocoles de transport de clé et deux protocoles de

11

12 TABLE DES MATIÈRES

signatures électroniques, dont la moitié à base de réseaux euclidiens (voir Tableau 1). Le protocole
d’échange de clés SIDH [JDF11] (Supersingular Isogeny Diffie Hellman) a survécu jusqu’au quatrième
et dernier tour de la compétition mais a fait l’objet d’une attaque (classique) très rapide qui a eu
d’importantes conséquences (positives) sur la cryptographie a base d’isogénies. Le NIST a lancé une
deuxième compétition pour standardiser d’autres signatures électroniques compactes, rapides à vérifier
et reposant sur des hypothèses de sécurité diversifiées1, laissant donc une chance aux isogénies. Le
protocole à base d’isogénies SQIsign [DFKLPW20] (Short Quaternion Isogeny Signature), qui n’est pas
sujet à l’attaque contre SIDH (et en a même paradoxalement bénéficié), a été retenu pour le deuxième
tour de cette compétition. C’est aujourd’hui un candidat sérieux pour un déploiement industriel que
les travaux de cette thèse ont contribué à améliorer.

Fonction Nom Famille

Transport de clé
Crystals-Kyber Réseaux euclidiens

HQC* Codes correcteurs

Signature électronique
Crystals-Dilithium Réseaux euclidiens

Sphincs+ Fonctions de hachage

Table 1 : Schémas cryptographiques standardisés ou voués à être standardisés à l’issue de la première
compétition post-quantique du NIST.
*Standardisation en cours.

Enjeux de la cryptographie à base d’isogénies

Le problème de l’isogénie

Les courbes elliptiques sont des courbes projectives de dimension 1 d’équation affine de la forme
y2 = x3 + Ax + B. Si E est une courbe elliptique définie sur un corps k, alors l’ensemble E(k)
des points k-rationnels de E est dotée d’une structure de groupe abélien dont la loi de groupe est
algébrique et efficace à calculer. Lorsque k est fini, le groupe E(k) est d’ordre fini. Pour cette raison,
les courbes elliptiques définies sur les corps fini ont largement été utilisées pour construire des schémas
cryptographiques à base de logarithme discret.

Les isogénies sont des morphismes non-nuls entre courbes elliptiques en tant que morphismes de
groupes et en tant que morphismes de variétés algébriques, c’est-à-dire pouvant s’exprimer à l’aide
de fractions rationnelles. La cryptographie à base d’isogénies repose sur la difficulté à résoudre le
problème suivant (ou des problèmes proches) pour un ordinateur classique et quantique.

Problème 3 (Problème de l’isogénie). Étant données deux courbes elliptiques E1 et E2 définies sur
un corps fini Fq, trouver une isogénie φ : E1 −→ E2.

La difficulté de ce problème a été largement étudiée et dépend de la structure de l’anneau des
endomorphismes des courbes considérées. Étant donnée une courbe elliptique E, l’anneau des endo-
morphismes End(E) est constitué des isogénies E −→ E et du morphisme nul. Si E est défini sur un
corps fini, on distingue deux cas [Sil09, Theorem V.3.1] :

• End(E) est isomorphe à un ordre quadratique imaginaire, auquel cas E est dite ordinaire ;

• End(E) est isomorphe à un ordre maximal dans une algèbre de quaternions, auquel cas E est
dite supersingulière.

Une courbe ordinaire ne peut pas être isogène à une courbe supersingulière, étant donné qu’une
isogénie transporte en partie la structure de l’anneau des endomorphismes d’une courbe à l’autre. Si
E1 et E2 sont ordinaires et que leurs anneaux d’endomorphismes sont isomorphes End(E1) ≃ End(E2),
alors on sait qu’il existe un algorithme quantique capable de trouver une isogénie entre E1 et E2 en
temps sous-exponentiel en log(q), où q est la caractéristique du corps de base [CJS14]. Les meilleurs

1C’est-à-dire pas seulement des réseaux euclidiens.

TABLE DES MATIÈRES 13

algorithmes classiques et quantiques connus pour résoudre le problème de l’isogénie entre deux courbes
elliptiques supersingulières sont tous de complexité exponentielle en log(q) [DG16 ; Gro96 ; BJS14],
sauf dans le cas particulier des courbes orientées dont le graphe d’isogénies a des propriétés analogues
à celui des courbes ordinaires. Les courbes supersingulières sont préférées aux courbes ordinaires en
cryptographie en partie pour ces garanties de sécurité mais également pour des raisons d’efficacité qui
seront vues en Section 1.1.4.

Attaque par interpolation en dimension supérieure

Le problème de l’isogénie devient facile lorsque l’on ajoute l’image de l’isogénie φ : E1 −→ E2 à
trouver par certains points aux informations connues de l’attaquant. En effet, grâce à un résultat dû
à Ernst Kani [Kan97], on peut construire des algorithmes d’interpolation utilisant des isogénies en
dimension ≥ 2 capable d’évaluer φ en tout point en temps polynomial étant donnés E1, E2 et l’image
des points connus de l’attaquant [CD23 ; MMPPW23 ; Rob23]. Ces algorithmes d’interpolation ont
été utilisés pour attaquer le protocole d’échange de clés SIDH [JDF11] qui rendait public l’image de
certains points par les isogénies servant à construire la clé secrète partagée.

On aurait pu penser que cette attaque était dévastatrice pour la cryptographie à base d’isogénies.
Ce fut en réalité tout le contraire. Les algorithmes d’interpolation en dimension supérieure sont si
efficaces qu’ils ont pu être utilisés pour construire de nouveaux protocoles et accélérer des protocoles
existants. Les contributions les plus importantes de cette thèse découlent naturellement de cette idée.
Ainsi, le protocole de signature SQIsignHD [DLRW24], dérivé de SQIsign, a été l’une des premières
propositions. Il a été suivi de SQIsign2D-West [BDF+25] qui sert aujourd’hui de référence pour la
soumission de SQIsign au deuxième tour de la compétition du NIST [AAA+25].

Accélération de la correspondance de Deuring effective

Correspondance de Deuring et applications cryptographiques

SQIsign est construit grâce à la correspondance de Deuring [Deu41] entre idéaux d’une algèbre de
quaternions et isogénies entre courbes elliptiques supersingulières. Si E1 et E2 sont deux courbes
elliptiques supersingulières définies sur Fp, alors leurs anneaux d’endomorphismes sont isomorphes
à des ordres maximaux O1 ≃ End(E1) et O2 ≃ End(E2) dans une même algèbre de quaternions
B = O1 ⊗Q = O2 ⊗Q. À toute isogénie φ : E1 −→ E2 correspond un idéal Iφ connectant O1 et O2,
c’est-à-dire un idéal à gauche pour O1 et à droite pour O2.

La correspondance de Deuring permet de trouver une isogénie entre E1 et E2 lorsque leurs anneaux
d’endomorphismes sont connus. La première étape consiste à trouver un idéal I connectant O1 et O2.
Cet idéal peut ensuite être traduit en une isogénie φI : E1 −→ E2 en temps polynomial [EHLMP18 ;
DFKLPW20]. Cette méthode – qui constitue le principe de l’algorithme de signature dans SQIsign –
est bien adaptée aux applications cryptographiques en raison de sa complexité polynomiale et de ses
garanties de sécurité. En effet, sans connaissance des anneaux d’endomorphismes (qui constituent une
information secrète), trouver une isogénie entre E1 et E2 revient à résoudre le problème de l’isogénie
supersingulière réputé difficile. De plus, il a été démontré que le calcul de l’anneau des endomorphismes
d’une courbe elliptique supersingulière est équivalent au problème de l’isogénie supersingulière [Wes22 ;
MW25].

Des algorithmes plus rapides pour traduire les idéaux en isogénies

Toutefois, l’algorithme de signature de la version originelle de SQIsign est lent en pratique en raison
des contraintes de l’algorithme de traduction d’un idéal I en une isogénie φI : E1 −→ E2. Avec les
techniques standards précédant les attaques d’interpolation de SIDH, il n’était possible de traduire
que des idéaux de normes friables. Un idéal de norme friable connectant O1 et O2 devait donc être
calculé en utilisant un algorithme dû à Kohel, Lauter, Petit et Tignol (KLPT) [KLPT14], produisant
des idéaux de norme certes friable mais très grande. Cet idéal de très grande norme était donc coûteux
à traduire en isogénie. En outre, la nature non-uniforme des distributions d’idéaux obtenues grâce à
l’algorithme KLPT rendaient plus difficile la preuve de sécurité de SQIsign.

14 TABLE DES MATIÈRES

2020− 2021

2022

2023

2024

SQIsign [DFKLPW20 ; DLW22]

Attaques SIDH [CD23 ; MMPPW23 ; Rob23]

SQIsignHD [DLRW24]

Variantes de SQIsign2D [NOC+25 ; BDF+25 ; DF25]

Idéal vers isogénie KLPT

Introduction des isogénies
de dim. sup. en cryptologie

Idéal vers isogénie 4D

Idéal vers isogénie 2D

Figure 1 : Frise chronologique de SQIsign et ses variantes.

Les algorithmes d’interpolation en dimension supérieure ont permis de contourner totalement ces
difficultés. En utilisant ces algorithmes pour la traduction d’idéal en isogénie, il n’est plus nécessaire
d’imposer que la norme de l’idéal soit friable. Les idéaux connectants de norme non friable peuvent
ainsi atteindre des normes plus petites et sont donc plus rapides à traduire (malgré le recours à la
dimension supérieure) et ont de meilleures distributions que ceux de SQIsign. Un premier algorithme
de traduction d’idéal en isogénie s’appuyant sur un calcul d’isogénie en dimension 4 a été proposé pour
construire SQIsignHD. Des travaux ultérieurs [PR23 ; NO24] ont ensuite mené à la construction d’un
algorithme de traduction d’idéal en isogénie avec un calcul en dimension 2. SQIsign2D-West s’appuie
sur cet algorithme plus récent.

Nous présenterons ces nouveaux algorithmes de traduction en dimensions 2 et 4 dans le Chapitre 2
qui s’appuie notamment sur les travaux suivants menés au cours de la thèse :

• [DLRW24] Dartois, P., Leroux, A., Robert, D., Wesolowski, B. (2024). SQIsignHD : New Di-
mensions in Cryptography. Advances in Cryptology – EUROCRYPT 2024, Springer Nature
Switzerland, 3-32.

• [BDF+25] Basso, A., Dartois, P., De Feo, L., Leroux, A., Maino, L., Pope, G., Robert, D.,
and Wesolowski, B. (2025). SQIsign2D-West : the Fast, the Small, and the Safer. Advances in
Cryptology – ASIACRYPT 2024, Springer Nature Singapore, 339-370.

Améliorations successives de SQIsign

Ces améliorations algorithmiques ont permis d’accélérer considérablement la signature de SQIsign et
d’obtenir des preuves de sécurité plus naturelles et moins heuristiques. Dans SQIsignHD, le calcul
d’isogénie en dimension 4 est réalisé lors de la vérification mais pas lors de la signature. L’algorithme
de signature obtenu est ainsi très rapide, au détriment de la vérification. Par rapport à la première
implémentation NIST de SQIsign [CSSD+23], la signature de la dernière implémentation de SQIsi-
gnHD est respectivement 63,5 et 728,5 fois plus rapide aux niveaux de sécurité NIST-I et NIST-V
(voir Tableau 2). Bien qu’il n’existe pas encore d’implémentation bas niveau de la vérification (il
s’agit d’un travail en cours), la performance de la preuve de concept implémentée en SageMath est
encourageante. La vérification termine en 600 ms au niveau de sécurité NIST-I sur une CPU Intel
Core i5-1335U 4600MHz.

Dans SQIsign2D-West, la signature recourt à plusieurs calculs d’isogénies en dimension 2 et la
vérification utilise un seul calcul d’isogénie en dimension 2. Cela permet d’accélérer considérablement la
vérification, respectivement 3,1 et 24,3 fois plus rapide que la version originelle de SQIsign aux niveaux
de sécurité NIST-I et NIST-V. La signature de SQIsign2D-West est moins rapide que SQIsignHD mais
reste respectivement 9,5 et 99,9 fois plus rapide que SQIsign aux niveaux de sécurité NIST-I et NIST-V.
D’autres versions de SQIsign en dimension 2, SQIsign2D-East [NOC+25] et SQIPrime [DF25], ont été
proposées parallèlement à SQIsign2D-West (voir Figure 1). Bien qu’elles n’aient pas été implémentées
en C ou en un langage bas niveau de performance comparable, ces variantes sont probablement plus
performantes que SQIsign2D-West, au prix d’une preuve de sécurité plus heuristique. C’est pourquoi
SQIsign2D-West a servi de référence pour la soumission de SQIsign au tour 2 du NIST, avec de

TABLE DES MATIÈRES 15

nouveaux gains de performance par rapport à la première implémentation de SQIsign2D-West (voir
Tableau 2).

Niveau de sécurité NIST-I NIST-III NIST-V

SQIsign NIST v 1.0
Génération de clé (ms) 355,72 5 625,72 22 445,3

Signature (ms) 554,78 10 553,18 41 322,21

Vérification (ms) 7,77 195,86 571,77

SQIsignHD
Génération de clé (ms) 14,85 48,5 112,31

Signature (ms) 8,74 25,68 56,72

SQIsign2D-West
Génération de clé (ms) 16,53 52,24 113,18

Signature (ms) 58,17 220,26 413,46

Vérification (ms) 2,53 9,77 23,57

SQIsign NIST v 2.0
Génération de clé (ms) 10,63 32,05 51,37

Signature (ms) 24,53 74,20 126,72

Vérification (ms) 1,13 4,10 8,49

Table 2 : Durée en ms de signature, génération de clé et vérification de differentes versions de
SQIsign implémentées en C sur une CPU Intel Core i5-1335U 4600MHz. La version NIST 2.0 dérivée
de SQIsign2D-West a été implémentée avec une arithmétique des corps finis optimisée en assembleur
pour les processeurs Intel. La vérification de SQIsignHD n’est pas affichée faute d’une implémentation
en C.

Ces gains de performance et de sécurité ont également été associés à des gains de compacité. Ainsi,
la taille des signatures est respectivement 40% et 15% plus faible dans SQIsignHD et SQIsign2D-West
que dans la version originelle de SQIsign (voir Tableau 3). La description et l’analyse de sécurité des
protocoles SQIsignHD et SQIsign2D-West seront présentés dans les Chapitres 3 et 4.

Niveau de sécurité NIST-I NIST-III NIST-V

SQIsign (octets) 177 263 335
SQIsignHD (octets) 108 160 212

SQIsign2D-West (octets) 150 222 294

Table 3 : Comparaison des tailles de signatures (en octets) de SQIsign, SQisignHD et SQIsign2D-
West.

Action non restreinte du groupe des classes sur les courbes supersingulières
orientées

Si O est un ordre quadratique imaginaire, une courbe supersingulière E est dite O-orientée lorsqu’elle
est munie d’un plongement O ↪−→ End(E) qui ne peut être étendu à un ordre plus grand. Le groupe
des classes d’idéaux Cl(O) agit sur l’ensemble des (classes d’isomorphismes des) courbes O-orientées
de telle sorte que pour toute courbe supersingulière O-orientée E, tout idéal a ⊆ O corresponde à une
isogénie φa : E −→ a · E dont le codomaine a · E est le résultat de l’action de a sur E.

L’action de Cl(O) sur les courbesO-orientées est une action de groupe cryptographique, c’est-à-dire
notamment qu’elle est :

• Facile à calculer : on peut calculer calculer a · E à partir de a et E en temps polynomial ;

• Difficile à inverser : il est difficile de calculer la classe de a à partir de E et a · E.

16 TABLE DES MATIÈRES

L’intérêt des actions de groupe cryptographiques est de pouvoir ≪ traduire ≫ dans le monde post-
quantique des protocoles construits sur des logarithmes discrets. De telles actions de groupes ont
d’abord été construites sur les courbes ordinaires [Cou06 ; RS06] avant leur introduction pour les
courbes supersingulières, plus efficaces en pratique. Les protocoles d’échange de clé à base d’isogénies
CSIDH [CLMPR18], OSIDH [CK20] et Scallop [FFK+23] ainsi que les signatures électroniques [BKV19]
et protocoles plus avancés qui en découlent sont construits à partir d’actions de groupes sur les courbes
supersingulières orientées.

En fait, l’action du groupe des classes d’idéaux Cl(O) sur les courbes O-orientées ne définit pas
une action de groupe cryptographique parfaite mais restreinte. Cela signifie que l’on peut calculer
facilement l’action par des idéaux de petites normes mais pas par n’importe quel idéal. Heureusement,
ces idéaux de petites normes engendrent Cl(O) et on peut donc ≪ mimer ≫ l’action de l’ensemble du
groupe des classes en considérant des produits d’idéaux.

Cependant, cette solution n’est pas sans inconvénients. En effet, il est utile dans certains proto-
coles d’agir par des classes d’idéaux ayant une distribution proche de l’uniforme dans Cl(O). C’est
le cas par exemple dans le schéma de signature électronique CSI-FiSh [BKV19] dérivé de CSIDH.
Pour échantillonner des idéaux avec une telle distribution comme produit d’idéaux générateurs de
petites normes, il convient de précalculer la structure de Cl(O) et le réseau des relations des idéaux
générateurs. Ce calcul est de complexité sous-exponentielle en log |disc(O)| et ne peut donc être réalisé
pour de grands paramètres.

Or une attaque quantique connue due à Kuperberg [Kup05] contre le problème d’inversion des
actions de groupes cryptographiques est elle-même de complexité sous-exponentielle. Des estimations
prudentes conduisent donc à choisir de grands paramètres pour assurer un niveau de sécurité suffisant
[BS20 ; Pei20 ; CSCDJRH21]. Pour CSIDH (et CSI-FiSh), il faudrait par exemple travailler sur un corps
avec une caractéristique d’environ 4000 bits pour garantir un niveau de sécurité NIST-I [CSCDJRH21].
CSI-FiSh a donc un gros problème de passage à l’échelle.

Bien que Scallop [FFK+23] et son dérivé Scallop-HD [CLP24] aient été proposés pour résoudre
ce problème, leur efficacité pratique n’est pas encore tout à fait satisfaisante. Une nouvelle approche
algorithmique [PR23] qui a également inspiré SQIsign2D-West a permis de construire l’algorithme PE-
GASIS (practical effective group action using 4-dimensional isogenies) calculant l’action du groupes
des classes par n’importe quel idéal. Cet algorithme qui utilise des techniques d’interpolation en di-
mension 4, se compare favorablement à l’approche concurrente KLaPoTi [PPS24] utilisant uniquement
la dimension 2 ainsi qu’aux différentes implémentations d’actions de groupes cryptographiques res-
treintes de Scallop (voir Tableau 4). Implémenté en SageMath pour CSIDH, PEGASIS est le premier
algorithme calculant des actions de groupes non-restreintes terminant en temps raisonnable même à
niveau de sécurité élevé (4000 bits). Les premiers résultats sont donc déjà très encourageants et une
implémentation en C devrait suivre (elle sera également utile à SQIsignHD et d’autres protocoles
utilisant des isogénies de dimension 4).

Nous présenterons PEGASIS dans le Chapitre 2 consacré aux algorithmes de traduction des idéaux
en isogénies en nous appuyant sur la prépublication suivante :

• [DEF+25] Dartois, P., Komada Eriksen, J., Fouotsa, T. B., Herlédan Le Merdy, A., Invernizzi,
R., Robert, D., Rueger, R., Vercauteren, F., and Wesolowski, B. (2025). PEGASIS : Practi-
cal Effective Class Group Action using 4-Dimensional Isogenies. Preprint. Cryptology ePrint
Archive, Paper 2025/401.

Calcul rapide d’isogénies en dimension supérieure

SQIsignHD et SQIsign2D-West n’auraient pu voir le jour sans algorithmes efficaces pour le calcul
d’isogénies en dimension supérieure. La conception et l’implémentation de tels algorithmes est une
contribution centrale de cette thèse. Nos travaux ont principalement porté sur le calcul de 2e-isogénies
(dont le degré est une puissance de 2) en dimensions 2 [DMPR25] et 4 [Dar24]. En dimension 1
comme en dimension supérieure, les 2e-isogénies sont en effet les plus rapides à calculer car on peut
les décomposer en châınes d’isogénies élémentaires appelées 2-isogénies qui sont elles-mêmes rapides
à calculer.

TABLE DES MATIÈRES 17

Papier Langage 500 1000 1500 2000 4000

SCALLOP [FFK+23]* C++ 35s 12m30s – – –

SCALLOP-HD [CLP24]* Sage 88s 19m – – –

PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m – –

KLaPoTi [PPS24]
Sage 200s – – – –

Rust 1.95s – – – –

PEGASIS (ce travail) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table 4 : Comparaison entre PEGASIS et d’autres actions de groupe cryptographiques dans la
littérature sur une CPU Intel Core i5-1235U. Les 5 dernières colonnes donnent les temps correspon-
dant aux différents niveaux de sécurité, où s/m donne le nombre de secondes/minutes. SCALLOP et
SCALLOP-HD sont étoilés car ils ont été mesurés sur une configuration matérielle différente.

En dimension 2, les anciennes techniques pour calculer les 2-isogénies consistaient à utiliser les
coordonnées de Mumford sur le modèle Jacobien (isogénies de Richelot) et ses dérivés. L’usage des
coordonnées thêta de niveau 2 a permis de trouver des formules beaucoup plus rapides (cf. Tableau 5).
Bien que les coordonnées thêta existent en d’autres niveaux que le niveau 2, ce choix est optimal
en termes de complexité car il donne le nombre minimal de coordonnées thêta2 pour obtenir une
arithmétique non triviale (4 en dimension 2 et 16 en dimension 4). Les travaux précédents sur le calcul
d’isogénies en coordonnées thêta [LR12 ; LR15 ; LR22] avaient une visée plus théorique (optimiser
la complexité asymptotique des algorithmes) et ne permettaient pas de calculer des 2-isogénies en
niveau 2.

Thêta Thêta Richelot Richelot Kummer
Rust Sage Sage Sage Sage

log2(p) e [DMPR25] [DMPR25] [OP22] [Kun22] [Kun22]

254 126 2.13 108 1028 760 467
381 208 9.05 201 1998 1478 858
1293 632 463 1225 12840 9196 5150

Table 5 : Temps d’exécution en ms du calcul d’une 2e-isogénie en dimension 2 sur le corps de base
Fp2 en Rust et en Sagemath sur une CPU Intel Core i7-9750H (2.6 GHz).

Une contribution ultérieure de cette thèse [Dar24] a permis de généraliser les algorithmes de calcul
des 2-isogénies en coordonnées thêta de niveau 2 à toute dimension pour les implémenter en dimension
4 en SageMath3. Les résultats obtenus sont encourageants (cf. Tableau 6) et une implémentation C
(en cours) devrait permettre de gagner un facteur 50 sur les temps d’exécution. À ce stade, cette
implémentation en SageMath permet déjà de casser toutes les instances de SIDH en quelques secondes.
À titre de comparaison, les implémentations précédentes4 utilisant la dimension 2 et un certain nombre
d’astuces couteuses pouvaient prendre plusieurs heures.

Après une introduction à la théorie des fonctions thêta due à Mumford [Mum66] au Chapitre 5,
nous présentons au Chapitre 6 nos travaux sur le calcul d’isogénies en dimension supérieure en coor-
données thêta en nous appuyant sur les deux contributions suivantes :

• [DMPR25] Dartois, P., Maino, L., Pope, G., and Robert, D. (2025). An Algorithmic Approach to
(2, 2)-Isogenies in the Theta Model and Applications to Isogeny-Based Cryptography. Advances
in Cryptology – ASIACRYPT 2024, Springer Nature Singapore, 304-338.

2En général, sur une variété abélienne de dimension g, il y a ng coordonnées thêta de niveau n.
3Voir ici https://github.com/Pierrick-Dartois/Theta_dim4.
4Voir https://github.com/GiacomoPope/Castryck-Decru-SageMath et https://github.com/Breaking-SIDH/

direct-attack.

https://github.com/Pierrick-Dartois/Theta_dim4
https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack

18 TABLE DES MATIÈRES

log2(p) e Dimension 4 Dimension 1 (G. Pope)

121 64 695 37
254 128 1428 83
365 192 2320 137

Table 6 : Temps d’exécution en ms du calcul d’une 2e-isogénie en dimension 4 et en dimension 1 sur
le corps de base Fp2 en SageMath sur une CPU Intel Core i5 double coeur (2.7 GHz).

• [Dar24] Dartois, P. (2024). Fast Computation of 2-Isogenies in Dimension 4 in the Theta model
and Cryptographic Applications. Preprint, Cryptology ePrint Archive, Paper 2024/1180.

Une réduction entre problèmes à base d’isogénies

Nous avons choisi de ne pas présenter un article plus éloigné de la problématique centrale de la thèse
que nos autres contributions :

• [ACD+24] Arpin, S., Clements, J., Dartois, P., Komada Eriksen, J., Kutas, P., and Wesolowski,
B. (2024). Finding orientations of supersingular elliptic curves and quaternion orders. Designs,
Codes and Cryptography 92(11), 3447–3493.

Nous discutons brièvement de sa portée ici.
La sécurité de la cryptographie reposant sur un ensemble de problèmes réputés difficiles, com-

prendre la difficulté relative de ces problèmes et donc les réductions entre ces problèmes est une
démarche naturelle en cryptologie. L’une des contributions de l’article [ACD+24], due en grande par-
tie à l’auteur de ces lignes, a porté sur une réduction du problème calculatoire consistant à trouver
l’orientation d’une courbe elliptique O-orientable vers le problème décisionnel consistant à déterminer
si une courbe estO-orientable ou non. L’article proposait aussi une solution au problème (analogue par
correspondance de Deuring) consistant à trouver un plongement d’un ordre quadratique imaginaire
dans un ordre d’une algèbre de quaternions.

Pour trouver une O-orientation d’une courbe elliptique, il suffit de trouver un endomorphisme
pouvant s’identifier à un générateur de O. Un tel endomorphisme peut être trouvé en parcourant
le graphe d’isogénies des courbes O-orientées à l’aide d’un oracle déterminant si une courbe est O-
orientable ou non. On obtient ainsi une réduction sous-exponentielle du problème calculatoire vers le
problème décisionnel d’O-orientation. Cela démontre qu’un oracle pour le problème décisionnel fournit
une information non triviale puisque les meilleurs algorithmes connus pour trouver un endomorphisme
d’une courbe elliptique supersingulière quelconque sont de complexité exponentielle.

Structure de la thèse

Dans le Chapitre 1, nous commençons par une série de préliminaires introduisant les notions et
résultats fondamentaux sur les isogénies, la correspondance de Deuring, les courbes supersingulières
orientées et les variétés abéliennes, qui seront utiles dans toute la suite.

Puis, dans une première partie, nous présentons les applications cryptographiques des algorithmes
d’interpolation en dimension supérieure. Le Chapitre 2 est consacré aux algorithmes de traduction
d’idéaux d’une algèbre de quaternions en isogénie et à PEGASIS, dont la démarche est proche. Le
Chapitre 3 présente SQIsignHD et le Chapitre 4 présente SQIsign2D-West.

La deuxième partie de cette thèse est dédiée au calcul d’isogénies en dimension supérieure en
coordonnées thêta. Le Chapitre 5 introduit la théorie des fonctions thêta due à Mumford [Mum66] et
le Chapitre 6 présente plus spécifiquement nos travaux et les implémentations en dimensions 2 et 4
qui y sont associées.

Introduction

The quantum menace

Beyond military communications and the financial assets of a few enthusiastic technophiles, crypto-
graphy is essential to our digital daily lives. It has become impossible to browse the internet, make
a bank transaction or sign an online document securely without using cryptography. As opposed to
symmetric protocols, asymmetric protocols (also known as public key protocols) use different keys for
the parties involved, one being public and the other secret. Asymmetric protocols can be used, for
example, to sign digital documents or to securely exchange a secret key between two parties, which
can then be used in a symmetric encryption protocol. Today, the security of all asymmetric protocols
currently in use is based on one of the following two problems.

Problem 1 (RSA Factorisation). Given an integer N := p · q, with two unknown prime factors p and
q of comparable size, find p and q.

Problem 2 (Discrete logarithm). Given a cyclic group of prime order G = ⟨g⟩ of known generator g
and any element h ∈ G, find x ∈ {0, · · · ,#G− 1} such that h = gx.

These two problems are strongly assumed to be difficult for a classical computer, the best known
generic attacks against RSA and the discrete logarithm problem being respectively of sub-exponential
complexity [BLP93] and exponential complexity [Sha71] in the size of the objects (log(N) or log(#G)).
However, Shor’s algorithm [Sho97] can be used to solve them in polynomial time on a quantum
computer. As a precaution, in anticipation of future advances in quantum computing, major research
efforts have been devoted to finding protocols built on mathematical problems that are resistant to
quantum attacks, also called post-quantum protocols.

Depending on the underlying problems, post-quantum protocols are classified into families. For
instance, lattice-based cryptography relies on the difficulty of finding, in a high-dimensional Euclidean
lattice, short vectors or vectors close to any vector [Ajt98 ; DKRS03]. Code-based cryptography relies
on the difficulty of decoding a noisy message to which a linear error-correcting code has been ap-
plied [BMT78]. Multivariate cryptography is based on the difficulty of solving systems of polynomial
equations with several variables. Isogeny-based cryptography, which is the main focus of this thesis,
is based on the difficulty of finding an isogeny between two elliptic curves. Among the alternatives,
isogeny-based cryptography is distinguished by its compactness (key or signature sizes are small) and
its relative slowness.

The US National Institute of Standards and Technology (NIST) has launched two competitions
to standardise post-quantum protocols in order to anticipate their industrial deployment. The first
competition resulted in the standardisation of two key encapsulation mechanisms (KEM) and two
digital signature protocols, half of which are lattice-based (see Table 7). The SIDH (Supersingular
Isogeny Diffie Hellman) key exchange protocol made it to the fourth and final round of the competition
but was subject to a very fast (classical) attack which had important (ironically positive) consequences
for isogeny-based cryptography. The NIST launched a second competition to standardise other digital
signatures that were compact, quick to verify and based on diversified security assumptions5, thus
giving isogenies a chance. The isogeny-based protocol SQIsign (Short Quaternion Isogeny Signature),
which is not subject to the SIDH attack (and ironically has even benefited from it), has been selected
for the second round of this competition. It is now a serious candidate for industrial deployment,
which has been greatly improved by the works presented in this thesis.

5i.e. not only lattice-based.

19

20 TABLE DES MATIÈRES

Type of scheme Name Family

Key encapsulation (KEM)
Crystals-Kyber Euclidean lattices

HQC* Linear codes

Digital signature
Crystals-Dilithium Euclidean lattices

Sphincs+ Hash functions

Table 7 : Cryptographic schemes already standardised or to be standardised after the first NIST
post-quantum competition.
*Standard yet to be published.

Challenges in isogeny-based cryptography

The isogeny problem

Elliptic curves are 1-dimensional projective curves with affine equations of the form y2 = x3+Ax+B.
If E is an elliptic curve defined over a field k, then the set E(k) of k-rational points of E has an
abelian group structure whose group law is algebraic and efficient to compute. When k is finite, the
group E(k) is of finite order. For this reason, elliptic curves defined over finite fields have been widely
used to construct cryptographic schemes based on discrete logarithms.

Isogenies are non-zero morphisms between elliptic curves as group homomorphisms and as mor-
phisms of algebraic varieties, i.e. they can be expressed using rational fractions. Isogeny-based cryp-
tography relies on the difficulty of solving the following problem (or similar problems) for a classical
and a quantum computer.

Problem 3 (Isogeny Problem). Given two elliptic curves E1 and E2 defined over a finite field Fq,
find an isogeny φ : E1 −→ E2.

The difficulty of this problem has been widely studied and depends on the structure of the endo-
morphism ring of the curves under consideration. Given an elliptic curve E, the endomorphisms ring
End(E) is made of all isogenies E −→ E and of the zero homomorphism. If E is defined over a finite
field, then there are two cases [Sil09, Theorem V.3.1] :

• End(E) is isomorphic to a quadratic imaginary order, in which case E is called ordinary ;

• End(E) is isomorphic to a maximal order in a quaternion algebra, in which case E is called
supersingular.

An ordinary curve cannot be isogenic to a supersingular curve, since an isogeny partly carries the
structure of the ring of endomorphisms from one curve to the other. If E1 and E2 are ordinary and their
endomorphism rings are isomorphic End(E1) ≃ End(E2), then we know that there exists a quantum
algorithm that can find an isogeny between E1 and E2 in sub-exponential time in log(q), where q
is the characteristic of the base field [CJS14]. The best known classical and quantum algorithms for
solving the isogeny problem between two supersingular elliptic curves are all of exponential complexity
in log(q) [DG16 ; Gro96 ; BJS14], except in the special case of oriented curves, whose isogeny graph
has properties very similar to the ordinary isogeny graph. Supersingular elliptic curves are preferred
to ordinary elliptic curves in cryptography partly for these security guarantees but also for efficiency
reasons which will be explained in Section 1.1.4.

Interpolation attack in higher dimension

The isogeny problem becomes easy when we add the image of the isogeny φ : E1 −→ E2 to be
found by certain points to the information known by the attacker. Indeed, with a result due to Ernst
Kani [Kan97], it is possible to construct interpolation algorithms using isogenies in dimension ≥ 2 to
evaluate φ at any point in polynomial time given E1, E2 and the image of the points known to the
attacker [CD23 ; MMPPW23 ; Rob23]. These interpolation algorithms were used to attack the SIDH
key exchange protocol [JDF11] which made public the image of certain points by the isogenies used
to construct the shared secret key.

TABLE DES MATIÈRES 21

One might think that this attack would be devastating for isogeny-based cryptography. It was
actually the opposite. Higher-dimensional interpolation algorithms are so efficient that they have
been used to build new protocols and speed up existing ones. The most important contributions
of this thesis follow naturally from this idea. The SQIsignHD digital signature scheme, derived from
SQIsign, was one of the first proposals. It was followed by SQIsign2D-West [BDF+25], which has been
used as reference for SQIsign’s submission to the second round of the NIST [AAA+25] competition.

Accelerating effective Deuring correspondence

The Deuring correspondence and cryptographic applications

SQIsign is constructed with the Deuring correspondence [Deu41] between quaternion ideals and iso-
genies between supersingular elliptic curves. If E1 and E2 are two supersingular elliptic curves defi-
ned over Fp, then their endomorphism rings are isomorphic to maximal orders O1 ≃ End(E1) and
O2 ≃ End(E2) in the same quaternion algebra B = O1⊗Q = O2⊗Q. To every isogeny φ : E1 −→ E2

corresponds an ideal Iφ connecting O1 and O2, i.e. a left O1-ideal which is also a right O2-ideal.

The Deuring correspondence can be used to find an isogeny between E1 and E2 when their en-
domorphism rings are known. The first step is to find an ideal I connecting O1 and O2. This ideal
can then be translated into an isogeny φI : E1 −→ E2 in polynomial time [EHLMP18 ; DFKLPW20].
This method – which is the principle of SQIsign signature algorithm – is well suited to cryptographic
applications because of its polynomial complexity and security guarantees. Indeed, without knowledge
of the rings of endomorphisms (which are secret information), finding an isogeny between E1 and E2

is equivalent to solving the supersingular isogeny problem, which is strongly assumed to be difficult.
Moreover, it has been proved that computing the endomorphism ring of a supersingular elliptic curve
is equivalent to the supersingular isogeny problem [Wes22 ; MW25].

Faster algorithms for ideal-to-isogeny translations

However, the signature algorithm in the original version of SQIsign is slow in practice due to the
constraints of the algorithm translating an ideal I into an isogeny φI : E1 −→ E2. With standard
techniques known before the SIDH interpolation attacks, it was only possible to translate ideals of
smooth norms. An ideal of smooth norm connecting O1 and O2 therefore had to be computed using an
algorithm due to Kohel, Lauter, Petit and Tignol (KLPT) [KLPT14] that returned an output of very
large norm. This ideal of very large and smooth norm was therefore costly to translate into isogeny. In
addition, the non-uniform nature of the ideal distributions obtained using the KLPT algorithm made
it more difficult to prove the security of SQIsign.

Higher-dimensional interpolation algorithms have made it possible to completely overcome these
difficulties. By using these algorithms to translate ideals into isogenies, it is no longer necessary to
require ideals to be of smooth norm. Non-smooth norm connecting ideals can thus reach smaller norms,
are therefore faster to translate (despite the use of the higher dimension) and have better distributions
than those of SQIsign. A first ideal-to-isogeny translation algorithm based on a 4-dimensional isogeny
calculation, has been proposed for the SQIsignHD variant of SQIsign. Subsequent work [PR23 ; NO24]
then led to the construction of an ideal-to-isogeny translation algorithm with 2-dimensional isogeny
computations only. SQIsign2D-West is based on this more recent algorithm.

We shall present these new ideal-to-isogeny translation algorithms in dimensions 2 and 4 in Chap-
ter 2 which is based, in particular, on the following works carried out for this thesis :

• [DLRW24] Dartois, P., Leroux, A., Robert, D., Wesolowski, B. (2024). SQIsignHD : New Di-
mensions in Cryptography. Advances in Cryptology – EUROCRYPT 2024, Springer Nature
Switzerland, 3-32.

• [BDF+25] Basso, A., Dartois, P., De Feo, L., Leroux, A., Maino, L., Pope, G., Robert, D.,
and Wesolowski, B. (2025). SQIsign2D-West : the Fast, the Small, and the Safer. Advances in
Cryptology – ASIACRYPT 2024, Springer Nature Singapore, 339-370.

22 TABLE DES MATIÈRES

2020− 2021

2022

2023

2024

SQIsign [DFKLPW20 ; DLW22]

SIDH attacks [CD23 ; MMPPW23 ; Rob23]

SQIsignHD [DLRW24]

SQIsign2D variants [NOC+25 ; BDF+25 ; DF25]

Ideal-to-isogeny with KLPT

Introduction of HD
isogenies in cryptology

4D ideal-to-isogeny

2D ideal-to-isogeny

Figure 2 : Timeline of SQIsign and its variants.

Successive improvements of SQIsign

These algorithmic improvements have made it possible to speed up SQIsign’s signature considerably
and to obtain more natural and less heuristic security proofs. In SQIsignHD, the computation of a
4-dimensional isogeny is performed during the verification, but not during the signature. This results
in a very fast signature algorithm, at the expense of the verification. Compared with the first NIST
implementation of SQIsign [CSSD+23], the signature of the latest SQIsignHD implementation is
respectively 63.5 and 728.5 times faster at NIST-I and NIST-V security levels (see Table 8). Although
there is no low-level implementation of the verification for now (this is a work in progress), the proof-of-
concept implementation in SageMath is encouraging. The verification takes 600 ms at NIST-I security
level on an Intel Core i5-1335U 4600MHz CPU.

In SQIsign2D-West, signing uses several isogeny computations in dimension 2, and verification
uses a single isogeny computation in dimension 2. This speeds up verification considerably, by a factor
of 3.1 and 24.3 respectively, compared with the original version of SQIsign at NIST-I and NIST-V
security levels. The SQIsign2D-West signature is slower than SQIsignHD, but remains 9.5 and 99.9
times faster than SQIsign at NIST-I and NIST-V security levels respectively. Other versions of SQI-
sign in dimension 2, SQIsign2D-East and SQIPrime, have been proposed alongside SQIsign2D-West
(see Figure 2). Although they have not been implemented in C or a comparable low-level language,
these variants are probably more powerful than SQIsign2D-West, at the expense of a more heuristic
security proof. This is why SQIsign2D-West was selected as a reference for SQIsign’s submission at the
second round of the NIST competition, with further performance gains over the first SQIsign2D-West
implementation (see Table 8).

These performance and security gains have also been combined with gains in compactness. For
example, signature sizes are respectively 40% and 15% smaller in SQIsignHD and SQIsign2D-West
than in the original version of SQIsign (see Table 9). The description and security analysis of the
SQIsignHD and SQIsign2D-West protocols will be presented in Chapters 3 and 4.

Unrestricted action of the ideal class group on oriented supersingular elliptic
curves

If O is a quadratic imaginary order, a supersingular elliptic curve E is called O-oriented when there is
an embedding O ↪−→ End(E) which cannot be extended to a superorder. The ideal class group Cl(O)
acts on (isomorphism classes of) O-oriented curves so that for any O-oriented supersingular curve E,
any ideal a ⊆ O corresponds to an isogeny φa : E −→ a · E whose codomain a · E is the result of the
action of a on E.

The action of Cl(O) on O-oriented curves is a cryptographic group action, which means in parti-
cular that it is :

• Easy to compute : one can compute a · E from a and E in polynomial time ;

• Difficult to invert : it is difficult to compute the class of a from E and a · E.

The main interest of cryptographic group actions is to ”translate” protocols built on the discrete
logarithm problem into the post-quantum world. Such group actions were first constructed on ordinary

TABLE DES MATIÈRES 23

Security level NIST-I NIST-III NIST-V

SQIsign NIST v 1.0
Key generation (ms) 355.72 5 625.72 22 445.3

Signature (ms) 554.78 10 553.18 41 322.21

Verification (ms) 7.77 195.86 571.77

SQIsignHD
Key generation (ms) 14.85 48.5 112.31

Signature (ms) 8.74 25.68 56.72

SQIsign2D-West
Key generation (ms) 16.53 52.24 113.18

Signature (ms) 58.17 220.26 413.46

Verification (ms) 2.53 9.77 23.57

SQIsign NIST v 2.0
Key generation (ms) 10.63 32.05 51.37

Signature (ms) 24.53 74.20 126.72

Verification (ms) 1.13 4.10 8.49

Table 8 : Key generation, signing and verification times of different versions of SQIsign on an Intel
Core i5-1335U 4600MHz CPU. The NIST v 2.0 version based on SQIsign2D-West was implemented
with an assembly optimised finite field arithmetic for Intel processors. SQIsignHD verification has not
been implemented in C so verification times were not displayed for this scheme.

Security level NIST-I NIST-III NIST-V

SQIsign (bytes) 177 263 335
SQIsignHD (bytes) 108 160 212

SQIsign2D-West (bytes) 150 222 294

Table 9 : Comparison of signature sizes (in bytes) in SQIsign, SQisignHD and SQIsign2D-West.

curves [Cou06 ; RS06] before being introduced for supersingular curves, which are more efficient in
practice. The isogeny-based key exchange protocols CSIDH [CLMPR18], OSIDH [CK20] and Scallop
[FFK+23] as well as the digital signature schemes [BKV19] and more advanced protocols derived from
them are built from group actions on oriented supersingular elliptic curves.

Actually, the ideal class group action of Cl(O) on O-oriented curves does not define a perfect
cryptographic group action but a restricted one. This means that we can easily compute the action
by ideals of small norms but not by any ideal. Fortunately, these ideals of small norms generate Cl(O)
and we can therefore ”mimic” the action of the whole ideal class group by considering products of
ideals.

However, this solution has drawbacks. Indeed, it is useful in some protocols to act by ideal classes
with a distribution close to uniform in Cl(O). This is the case, for instance, in the CSI-FiSh [BKV19]
digital signature scheme derived from CSIDH. To sample ideals with such a distribution as a product
of generating ideals of small norms, we need to precompute the structure of Cl(O) and the relations
lattice of the generating ideals. This computation is of sub-exponential complexity in log |disc(O)|
and cannot therefore be carried out for large parameters.

However, a known quantum attack by Kuperberg [Kup05] against the inversion problem of crypto-
graphic group actions is itself of sub-exponential complexity. Conservative estimates therefore lead to
choosing large parameters to ensure a sufficient security level [BS20 ; Pei20 ; CSCDJRH21]. For CSIDH
(and CSI-FiSh), we would have to work on a field of characteristic around 4000 bits to guarantee a
NIST-I security level [CSCDJRH21]. CSI-FiSh therefore has a major scaling issue.

Although Scallop [FFK+23] and its derivative Scallop-HD [CLP24] have been proposed to solve
this problem, their practical efficiency is not entirely satisfying. A new algorithmic approach [PR23]
which also inspired SQIsign2D-West has made it possible to construct the PEGASIS algorithm (prac-
tical effective group action using 4-dimensional isogenies) which computes the ideal class group action

24 TABLE DES MATIÈRES

by any ideal. This algorithm using interpolation techniques in dimension 4, compares favourably with
the competing approach KLaPoTi [PPS24] using dimension 2 only, and with the various implemen-
tations of Scallop’s restricted cryptographic group actions (see Table 10). Implemented in SageMath
for CSIDH, PEGASIS is the first algorithm to compute unrestricted group actions terminating in
reasonable time even at high security level (4000 bits). These initial results are therefore already very
encouraging and a C implementation should follow (it will also be useful for SQIsignHD and other
protocols using dimension 4 isogenies).

We shall present PEGASIS in Chapter 2 devoted to ideal-to-isogeny translation algorithms, based
on the following pre-publication :

• [DEF+25] Dartois, P., Komada Eriksen, J., Fouotsa, T. B., Herlédan Le Merdy, A., Invernizzi,
R., Robert, D., Rueger, R., Vercauteren, F., and Wesolowski, B. (2025). PEGASIS : Practi-
cal Effective Class Group Action using 4-Dimensional Isogenies. Preprint. Cryptology ePrint
Archive, Paper 2025/401.

Paper Impl. 500 1000 1500 2000 4000

SCALLOP [FFK+23]* C++ 35s 12m30s – – –

SCALLOP-HD [CLP24]* Sage 88s 19m – – –

PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m – –

KLaPoTi [PPS24]
Sage 200s – – – –

Rust 1.95s – – – –

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table 10 : Comparison between PEGASIS and other effective group actions in the literature. The
last 5 columns gives the timings corresponding to the different security levels, where s/m gives the
number of seconds/minutes in wall-clock time. SCALLOP and SCALLOP-HD are starred because
they were measured on a different hardware setup.

Fast computation of higher-dimensional isogenies

SQIsignHD and SQIsign2D-West would not have been possible without efficient algorithms to com-
pute higher-dimensional isogenies. The design and implementation of such algorithms is a central
contribution of this thesis. Our work has mainly focused on the computation of 2e-isogenies (whose
degree is a power of 2) in dimensions 2 [DMPR25] and 4 [Dar24]. In dimension 1, as in higher dimen-
sions, the 2e-isogenies are indeed the fastest to compute because they can be decomposed into chains
of elementary isogenies called 2-isogenies, which are themselves fast to compute.

In dimension 2, the former techniques for computing 2-isogenies used Mumford coordinates on the
Jacobian model (Richelot isogenies) and its derivatives. The use of level 2 theta coordinates has made
it possible to find much faster formulae (see Table 11). Although theta coordinates exist in levels other
than 2, this choice is optimal in terms of complexity because it gives the minimum number of theta
coordinates6 to obtain non-trivial arithmetic (4 in dimension 2 and 16 in dimension 4). Previous works
on computing isogenies in theta coordinates had a more theoretical focus (optimising the asymptotic
algorithmic complexity) and did not allow to compute 2-isogenies with level 2 theta coordinates.

Another contribution of this thesis [Dar24] generalised the algorithms to compute 2-isogenies with
level 2 theta coordinates in any dimension and proposed a 4-dimensional implementation in Sage-
Math7. The obtained results are encouraging (cf. Table 12) and a C implementation (in progress)
should make it possible to reduce execution times by a factor of 50. At this stage, the SageMath
implementation can already break all SIDH instances in a few seconds. In comparison, previous im-
plementations8 using 2-dimensional isogenies and some expensive tricks could take several hours.

6In general, on an abelian variety of dimension g, there are ng theta coordinates of level n.
7See https://github.com/Pierrick-Dartois/Theta_dim4.
8See https://github.com/GiacomoPope/Castryck-Decru-SageMath and https://github.com/Breaking-SIDH/

https://github.com/Pierrick-Dartois/Theta_dim4
https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack

TABLE DES MATIÈRES 25

Theta Theta Richelot Richelot Kummer
Rust Sage Sage Sage Sage

log2(p) e [DMPR25] [DMPR25] [OP22] [Kun22] [Kun22]

254 126 2.13 108 1028 760 467
381 208 9.05 201 1998 1478 858
1293 632 463 1225 12840 9196 5150

Table 11 : Execution time in ms of a 2e-isogeny computation in dimension 2 over the base field Fp2
in Rust and Sagemath on an Intel Core i7-9750H CPU (2.6 GHz).

log2(p) e Dimension 4 Dimension 1 (G. Pope)

121 64 695 37
254 128 1428 83
365 192 2320 137

Table 12 : Execution time in ms of a 2e-isogeny computation in dimension 4 and in dimension 1 over
the base field Fp2 in SageMath on a dual-core Intel Core i5 CPU (2.7 GHz).

After an introduction to the theory of theta functions due to Mumford [Mum66] in Chapter 5, we
shall present in Chapter 6 our work on the computation of higher dimensional isogenies with theta
coordinates based on the following two contributions :

• [DMPR25] Dartois, P., Maino, L., Pope, G., and Robert, D. (2025). An Algorithmic Approach to
(2, 2)-Isogenies in the Theta Model and Applications to Isogeny-Based Cryptography. Advances
in Cryptology – ASIACRYPT 2024, Springer Nature Singapore, 304-338.

• [Dar24] Dartois, P. (2024). Fast Computation of 2-Isogenies in Dimension 4 in the Theta model
and Cryptographic Applications. Preprint, Cryptology ePrint Archive, Paper 2024/1180.

A reduction between isogeny-based problems

We have chosen not to present a paper further away from the central questions of the thesis than our
other contributions :

• [ACD+24] Arpin, S., Clements, J., Dartois, P., Komada Eriksen, J., Kutas, P., and Wesolowski,
B. (2024). Finding orientations of supersingular elliptic curves and quaternion orders. Designs,
Codes and Cryptography 92(11), 3447–3493.

We briefly present its main results here.
Since cryptographic security is based on a set of problems that are known to be difficult, unders-

tanding the relative difficulty of these problems and hence the reductions between them is a natural
approach in cryptology. One of the contributions of the article [ACD+24], largely due to the author
of these lines, concerned a reduction from the computational problem of finding the orientation of an
O-orientable elliptic curve to the decision problem of determining whether a curve is O-orientable or
not. The paper also proposed a solution to the problem (analogous by Deuring correspondence) of
finding an embedding of a quadratic imaginary order into an order of a quaternion algebra.

To find an O-orientation of an elliptic curve, all we need to do is find an endomorphism that
can be identified with a generator of O. Such an endomorphism can be found by walking on the
isogeny graph of O-oriented curves using an oracle that determines whether a curve is O-orientable
or not. This results in a sub-exponential reduction of the computational problem to the O-orientation
decision problem. This proves that an oracle for the decision problem provides non-trivial information
since the best known algorithms for finding an endomorphism of any supersingular elliptic curve have
exponential complexity.

direct-attack.

https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack
https://github.com/Breaking-SIDH/direct-attack

26 TABLE DES MATIÈRES

Structure of this thesis

In Chapter 1, we begin with a series of preliminaries introducing the fundamental notions and results
on isogenies, the Deuring correspondence, oriented supersingular elliptic curves and abelian varieties,
which will be useful throughout this thesis.

Then, in the first part, we present cryptographic applications of higher-dimensional interpola-
tion algorithms. Chapter 2 is devoted to algorithms translating quaternion ideals into isogenies and
to PEGASIS, whose approach is similar. Chapter 3 and 4 respectively introduce SQIsignHD and
SQIsign2D-West.

The second part of this thesis is dedicated to the computation of higher dimensional isogenies with
theta coordinates. Chapter 5 introduces the theory of theta functions due to Mumford [Mum66] and
Chapter 6 more specifically presents our work and the associated implementations in dimensions 2
and 4.

Chapter 1

Preliminaries

1.1 Elliptic curves and isogenies

The reader of this thesis should be familiar with elliptic curves and isogenies but we recall some
fundamental results in this section. We refer to the book by Silverman [Sil09] for a good introduction
to this topic. In the following, we fix a field k.

1.1.1 Elliptic curves

Definition 1.1.1. An elliptic curve over k is a projective curve of the projective plane E ⊂ P2(k)
which is of genus 1 (as defined by the Riemann-Roch theorem [Har77, Theorem 1.3]) together with
some base point 0E ∈ E. Note that such a curve is always smooth by definition.

In the following, we shall always assume that char(k) ̸= 2, 3, as this will be the case in our
cryptographic applications. In that case, we can always translate the base point 0E of an elliptic
curve E to (0 : 1 : 0) and rescale its equation to put it into (short) Weierstrass form:

Y 2Z = X3 +AXZ2 +BZ3,

with A,B ∈ k. This equation admits an affine form

y2 = x3 +Ax+B,

with x := X/Z and y := Y/Z. The base point 0E = (0 : 1 : 0) cannot be represented on this
affine curve and is called for that reason the point a infinity. Since E is smooth, the discriminant
∆(E) := 4A3 + 27B2 is non-zero and we can define the j-invariant of E:

j(E) = 1728
4A3

∆(E)
.

Two elliptic curves are isomorphic over k if and only if they have the same j-invariant [Sil09, Proposi-
tion III.1.4.b]. Besides, if j0 ∈ k, then there exists an elliptic curve defined over k(j0) with j-invariant
j0 [Sil09, Proposition III.1.4.c].

Elliptic curves admit an abelian group law [Sil09, § III.2] whose definition is very geometric. If
E/k is an elliptic curve, and k′/k is a field extension, then E(k′) is a group given by the following
law. Let P,Q ∈ E(k′) be distinct points and consider the line (PQ) in P2(k′). This line intersects E
at a third point R ∈ E(k′) and we may consider the the symmetric S of R with respect to the axis
y = 0. Then P +Q = S. When P = Q, we replace the line (PQ) by the tangent of E at P . With this
group law, the point at infinity 0E is the neutral element and the opposite of a point P = (x, y) in
affine coordinates is −P = (x,−y). Also note that the group law is algebraic, which means formally
that (P,Q) ∈ E2 7−→ P + Q ∈ E is a morphism of algebraic varieties and more concretely that the
coordinates of P +Q are expressed as explicit rational fractions in the coordinates of P and Q [Sil09,
Algorithm III.2.3]. This group law have been exploited in pre-quantum cryptographic schemes based
on the hardness of the discrete logarithm problem.

27

28 CHAPTER 1. PRELIMINARIES

1.1.2 Montgomery elliptic curves and their arithmetic

A fast elliptic curve arithmetic is a crucial feature for both pre-quantum and isogeny based cryptog-
raphy. Some models of elliptic curves are more appropriate than the Weierstrass model introduced
above (e.g. Edwards, Jacobian, Montgomery...). In this thesis, we shall use the Montgomery model
quite often. A Montgomery elliptic curve E over k has an affine equation of the form:

By2 = x3 +Ax2 + x,

with A,B ∈ k. Unless explicitly stated otherwise, we shall assume that Montgomery curves have
coefficient B = 1. When B is a quadratic non-residue in k, we say that E is a quadratic twist of the
curve E′ : y2 = x3 +Ax2 + x since it is isomorphic to E′ over a quadratic extension of k but not over
k. When k is a finite field and E/k is a Montgomery curve, it can be proved that #E(k) is always
divisible by 4 [CS17, § 2.3], so E contains a k-rational point of 4-torsion or the full 2-torsion subgroup
E[2] ≃ (Z/2Z)2 is k-rational. Indeed, the structure of torsion subgroups of elliptic curves is always
given by the following.

Proposition 1.1.2. [Sil09, Corollary III.6.4] Let E/k be an elliptic curve.

(i) If n ∈ N∗ is not divisible by char(k), then the n-th torsion subgroup E[n] is isomorphic to
(Z/nZ)2.

(ii) If p = char(k) > 0, then we either have E[pn] ≃ (Z/pnZ) for all n ∈ N∗ or E[pn] = {0} for all
n ∈ N∗.

For efficiency reasons, we often work on Montgomery curves with projective coordinates X and Z
only (forgetting the Y). This allows for fast arithmetic formulas (see [CS17]) at the expense of the sign
of points which is determined by the Y coordinate. Indeed, with Montgomery (X : Z)-coordinates,
we no longer work on the elliptic curve E itself but on the Kummer line E/± ≃ P1

k. This means in
particular that we can still perform point duplications ±P 7−→ ±[2]P but no longer perform simple
point additions. If we want to add ±P and ±Q we can obtain either ±(P + Q) or ±(P − Q). To
lift this sign ambiguity, we can obtain ±(P +Q) from ±P,±Q and the additional ±(P −Q). This is
called differential addition.

1.1.3 Isogenies

Definition 1.1.3. An isogeny φ : E1 −→ E2 between elliptic curves over k is a non-constant mor-
phism of k-varieties (in practice given by rational fractions in X,Y, Z over k) such that φ(0E1

) = 0E2
.

If E1 and E2 are elliptic curves defined over k, then for every algebraic extension k′/k, we can see
E1 and E2 as defined over k′ by extension of scalars and consider isogenies E1 −→ E2 defined over k′

but not necessarily over k.

Theorem 1.1.4. [Sil09, Theorem III.4.8] An isogeny E1 −→ E2 between elliptic curves over k induces
a group homomorphism E1(k) −→ E2(k).

If E1 is an elliptic curve over k with equation Y 2Z = f(X,Z), its field of functions is given by
k(E1) = Frac(k[X,Y, Z]/(Y 2Z − f(X,Z))). If φ : E1 −→ E2 is an isogeny, then it induces a map:

φ∗ : s ∈ k(E2) 7−→ s ◦ φ ∈ k(E1).

The degree of φ denoted by deg(φ) is the degree of the extension [k(E1) : φ
∗k(E2)]. By convention,

the degree of 0 (which is a morphism but not an isogeny) is 0. The degree is a multiplicative map.
An isogeny of degree d will also be called a d-isogeny in the following.

Theorem 1.1.5. [Sil09, Theorem III.4.10] Let φ : E1 −→ E2 be an isogeny. Then:

(i) φ is surjective with finite kernel.

(ii) #ker(φ) divides deg(φ).

1.1. ELLIPTIC CURVES AND ISOGENIES 29

We say that an isogeny φ : E1 −→ E2 is separable when deg(φ) = #ker(φ). Most of the time
the isogenies we shall consider will be separable. When char(k) = 0, all isogenies between elliptic
curves defined over k are separable. When p := char(k) > 0, isogenies of degree coprime with p are
separable. This is a general result also valid for isogenies between abelian varieties (Corollary 1.4.44).

An isogeny is called cyclic when its kernel is cyclic. In the literature, some authors generally
assume that d-isogenies are cyclic isogenies of degree d. However, in the following, for consistency
with abelian varieties (see Definition 2.2.1), we shall not assume that d-isogenies are cyclic.

Example 1.1.6. 1. If E is an elliptic curve over k, then for all n ∈ Z \ {0}, the multiplication
by [n] is an isogeny E −→ E of degree n2 over k. It can be expressed explicitly coordinate-wise as
[n](x, y) = (fn(x, y), gn(x, y)) with the use of division polynomials. It is separable when char(k) ∤ n.

2. If k is of characteristic p (e.g. if k is finite) and E is an elliptic curve defined over k, we may
consider the p-th Frobenius πp : (x, y) ∈ E −→ (xp, yp) ∈ E(p), where E(p) is the elliptic curve of
equation y2 = x3 + Apx + Bp obtained by action of the p-th Frobenius automorphism of k on the
coefficients of the equation y2 = x2 + Ax + B of E. The p-th Frobenius is an inseparable isogeny of
degree p.

We define the pn-th Frobenius for all n ∈ N∗ similarly which is an inseparable isogeny of degree
pn. When the base field k is the finite field Fq, the q-th Frobenius πq is an endomorphism E −→ E.
Actually, it can be proved that all inseparable isogenies are a product of a Frobenius and a separable
isogeny [Sil09, Corollary II.2.12].

3. We terminate this series of examples with a concrete one. Let E1 : y2 = x3 + x + 4 and
E2 : y2 = x3 − x+ 4 be elliptic curves defined over F7. Then

φ : E1 −→ E2

(x, y) 7−→

(
x2 − 2x− 1

x− 2
, y
x2 + 3x− 2

(x− 2)2

)

is a separable cyclic 2-isogeny with kernel ker(φ) = ⟨(2, 0)⟩.

The following result ensures that separable isogenies are determined by their kernel up to post-
composition by an isomorphism. This is particularly convenient for computational applications (see
Section 1.1.5) as we can compute an isogeny from its kernel. The work of Vélu [Vé71] provides
explicit formulas to express the rational fractions defining a cyclic separable isogeny φ coordinate-
wise φ(x, y) = (f(x, y), g(x, y)) from the knowledge of its kernel generator in time O(deg(φ)).

Theorem 1.1.7. [Sil09, Proposition III.4.12] Let K ⊂ E be a finite subgroup of an elliptic curve.
Then there exists a separable isogeny φ : E −→ E′ of kernel K. If φ′ : E −→ E′′ is another separable
isogeny with kernel K then there exists an isomorphism λ : E′ ∼−→ E′′ such that λ ◦ φ = φ′.

Proposition 1.1.8. [Sil09, Corollary III.4.11] Let φ : E −→ E′ and φ′ : E −→ E′′ be two isogenies.
Assume that ker(φ) ⊆ ker(φ′) and φ is separable. Then there exists an isogeny ψ : E′ −→ E′′ such
that ψ ◦ φ = φ′.

The dual isogeny

Theorem 1.1.9. [Sil09, Theorems III.6.1 and III.6.2] Let φ : E1 −→ E2 be an isogeny. Then there
exists a unique isogeny φ̂ : E2 −→ E1 such that φ̂ ◦ φ = [deg(φ)]E1

called the dual isogeny of φ.
The dual satisfies the following properties:

(i) φ ◦ φ̂ = [deg(φ)]E2 .

(ii) If ψ : E2 −→ E3 then ψ̂ ◦ φ = φ̂ ◦ ψ̂.

(iii) If φ′ : E1 −→ E2 then φ̂+ φ′ = φ̂+ φ̂′.

(iv) [̂n] = [n] for all n ∈ Z.

(v) deg(φ̂) = deg(φ).

30 CHAPTER 1. PRELIMINARIES

(vi) ̂̂φ = φ.

Definition 1.1.10. Let E1 and E2 be two elliptic curves and consider Hom(E1, E2) the set of ho-
momorphisms E1 −→ E2 which are either isogenies or the zero map. This set is naturally equipped
with a Z-module structure. When E1 = E2, Hom(E1, E1) = End(E1) has a ring structure for the
composition of morphisms.

Theorem 1.1.9 admits an immediate and very useful corollary.

Corollary 1.1.11. [Sil09, Corollary III.6.4] Let E1 and E2 be two elliptic curves. Then:

(i) The degree map deg : Hom(E1, E2) −→ Z is a positive definite quadratic form.

(ii) If φ ∈ End(E1), then φ + φ̂ is the multiplication by an integer that we call the trace of φ and
denote by Tr(φ).

(iii) If φ ∈ End(E1), then χφ := X2 − Tr(φ)X + deg(φ) is an annihilating polynomial of φ that we
call the characteristic polynomial of φ.

Proof. (i) Since deg(φ) ≥ 0 for all φ ∈ Hom(E1, E2) and deg(φ) = 0 if and only if φ = 0, φ is positive
definite. We only have to prove that

(φ,ψ) ∈ Hom(E1, E2)
2 7−→ ⟨φ,ψ⟩ := deg(φ+ ψ)− deg(φ)− deg(ψ) ∈ Z,

is bilinear. By Theorem 1.1.9, we obtain that for all φ,ψ ∈ Hom(E1, E2),

[⟨φ,ψ⟩] = [deg(φ+ ψ)]− [deg(φ)]− [deg(ψ)] = φ̂+ ψ ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ

= (φ̂+ ψ̂) ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ = φ̂ ◦ ψ + ψ̂ ◦ φ,

so the bilinearity follows immediately.

(ii) We notice that [Tr(φ)] = φ+ φ̂ = [⟨φ, [1]⟩].
(iii) Finally,

φ2 − [Tr(φ)]φ+ [deg(φ)] = φ ◦ φ− (φ+ φ̂) ◦ φ+ φ̂ ◦ φ = 0.

Pushforward and pullbacks

Let φ : E1 −→ E2 be an a-isogeny and ψ : E1 −→ E3 be a b-isogeny, with a, b ∈ N∗ coprime. Then
we can construct the following commutative diagram of isogenies:

E3
φ′
// E4

E1

ψ

OO

φ
// E2

ψ′

OO

with deg(φ′) = a and deg(ψ′) = b. The commutative diagram above is sometimes called an (a, b)-
isogeny diamond (see Definition 2.2.5). The isogenies φ′ and ψ′ are given by ker(φ′) = ψ(ker(φ)) and
ker(ψ′) = φ(ker(ψ)).

Definition 1.1.12. We say that φ′ is the pushforward of φ by ψ and denote φ′ := [ψ]∗φ. Similarly,
ψ′ = [φ]∗ψ is the pushforward of ψ by φ.

We also say that φ is the pullback of φ′ by ψ and denote φ = [ψ]∗φ′. Also note that equivalently,

φ is the pushforward of φ′ by ψ̂: φ = [ψ]∗φ′ = [ψ̂]∗φ
′.

1.1. ELLIPTIC CURVES AND ISOGENIES 31

1.1.4 Elliptic curves over finite fields and supersingular elliptic curves

In the following, we consider elliptic curves defined over finite fields which are the only ones to be
used in cryptographic applications.

Theorem 1.1.13 (Hasse-Weil). [Sil09, Theorem V.1.1] Let E be an elliptic curve defined over a finite
field Fq. Then the set of Fq-rational points E(Fq) is finite and has cardinality:

#E(Fq) = q + 1− Tr(πq),

where πq is the q-th Frobenius endomorphism. Furthermore, |Tr(πq)| ≤ 2
√
q.

Proof. We notice that the points of E(Fq) are exactly points of E that are fixed by the q-th Frobenius,
so E(Fq) = ker([1]−πq). Besides, it can be proved that [1]−πq is separable by computing its differential
[Sil09, Corollary III.5.5], so that by Theorem 1.1.9 and Corollary 1.1.11.(ii),

#E(Fq) = #ker([1]− πq) = deg([1]− πq) = 1 + deg(πq)− Tr(πq) = 1 + q − Tr(πq)

Besides, if we denote by ⟨, ⟩ the bilinear map associated to the degree quadratic form, we have seen in
the proof of Corollary 1.1.11 that Tr(πq) = ⟨πq, [1]⟩. Then Cauchy-Shwarz inequality applies [Sil09,
Lemma V.1.2] and ensures that:

Tr(πq) = ⟨πq, [1]⟩ ≤
√
⟨πq, πq⟩⟨[1], [1]⟩ = 2

√
deg(πq) deg([1]) = 2

√
q.

Supersingular elliptic curves

Theorem 1.1.14. [Voi21, Lemma 42.1.5 and Theorem 42.1.9] Let E be an elliptic curve defined over
any field k. Then the endomorphism ring End(E) is either isomorphic to:

(i) The ring of integers Z.

(ii) An order in a quadratic imaginary field.

(iii) If p := char(k) > 0, a maximal order an a quaternion algebra ramifying at p and ∞ (see
Sections 1.2.1 and 1.2.2).

In the last two cases, we say that E has complex multiplication.

If E is defined over a finite field Fq, the endomorphism ring End(E) not only contains Z but also
the q-th Frobenius πq, which, in most cases, is not a scalar. Actually, it can be proved that.

Theorem 1.1.15. [Sil09, Theorem V.3.1] If E is an elliptic curve over a finite field Fq, then E
always has complex multiplication.

Theorem 1.1.16. [Sil09, Theorems V.3.1 and V.4.1.a] Let E be an elliptic curve over a field Fq of
characteristic p > 0. Then the following are equivalent:

(i) There exists n ∈ N∗ such that E[pn] = {0}.

(ii) For all n ∈ N∗, E[pn] = {0}.

(iii) End(E) is a maximal order in a quaternion algebra ramifying at p and ∞.

(iv) Tr(πq) ≡ 0 mod p.

(v) The coefficient of xp−1 in f(x)(p−1)/2 is zero, where y2 = f(x) is the equation of E.

If the above conditions are satisfied, we say that E is supersingular and ordinary otherwise. If E
is supersingular, we also have j(E) ∈ Fp2 so E is isomorphic (over Fp) to an elliptic curve defined
over Fp2 .

In cryptographic applications, we mainly use supersingular elliptic curves for two reasons:

32 CHAPTER 1. PRELIMINARIES

• Security reasons (see Section 2.1): hard problems regarding supersingular elliptic curves are
assumed to be very hard even for quantum computers with well-known security reductions.
Mainly, the problem of finding an isogeny between supersingular elliptic curves is equivalent
to the problem of computing the endomorphism ring problem of a supersingular elliptic curve
[Wes22; MW25]. All known algorithms to solve these problems are of exponential complexity in

log(p) [DG16; EHLMP20; FIKMN25; BJS14] (Õ(
√
p) classically and Õ(p1/4) quantumly).

• Efficiency reasons: we have some control over the number of points over Fp2 of a supersingular
elliptic curve, which gives some control over torsion subgroups defined over Fp2 that are used to
compute isogenies. Indeed, by Theorem 1.1.16 and Theorem 1.1.13, if E/Fp2 is supersingular,
then the trace of the p2-th Frobenius is divisible by p and satisfies |Tr(πp2)| ≤ 2p, so Tr(πp2) ∈
{−2p,−p, 0, p, 2p} and #E(Fp2) = p2 + 1 − Tr(πp2) can take only five distinct values. In some
cases, we can even say more on #E(Fp2).

Lemma 1.1.17. Let p be a prime ≡ 3 mod 4 and E be a supersingular Montgomery curve defined
over Fp2 . Then:

(i) E(Fp2) ≃ (Z/(p+1)Z)2 or E(Fp2) ≃ (Z/(p− 1)Z)2. We say that E is maximal in the first case
and minimal in the second case.

(ii) If E has equation y2 = x3 + Ax2 + x where A− 2 and A+ 2 are quadratic residue in Fp2 then
E is maximal.

Proof. (i) By Theorem 1.1.13, we have #E(Fp2) = p2+1−Tr(πp2) and |Tr(πp2)| ≤ 2p and since E is
supersingular, Tr(πp2) ∈ {−2p,−p, 0, p, 2p} by Theorem 1.1.16. Since E is in Montgomery form, we
have #E(Fp2) ≡ 0 mod 4 by [CS17, § 2.3]. Since p ≡ 3 mod 4, it follows that Tr(πp2) ≡ 2 mod 4,
so that Tr(πp2) = ±2p and #E(Fp2) = (p∓ 1)2.

Furthermore, the characteristic polynomial of the p2-th Frobenius πp2 is χπp2
= X2∓ 2pX + p2 =

(X ∓ p)2, so that (πp2 ∓ [p])2 = 0 and πp2 = ±[p] since End(E) is integral. We then have by
Proposition 1.1.2:

E(Fp2) = ker(πp2 − [1]) = ker(±[p]− [1]) = E[p∓ 1] ≃ (Z/(p∓ 1)Z)2.

(ii) When A− 2 and A+2 are quadratic residue in Fp2 , we have 8|#E(Fp2) by [CS17, Table 1] so
Tr(πp2) = p2+1−#E(Fp2) ≡ 2 mod 8 and Tr(πp2) must equal −2p, so that E(Fp2) ≃ (Z/(p+1)Z)2
and E is maximal. This completes the proof.

Remark 1.1.18. Note that every maximal elliptic curve defined over Fp2 i.e. with maximal number
of Fp2 -rational points #E(Fp2) = (p+1)2 is supersingular since its Frobenius endomorphism has trace
Tr(πp2) = −2p ≡ 0 mod p. In that case, we also have E(Fp2) ≃ (Z/(p + 1)Z)2 since Tr(πp2) = −2p
ensures that πp2 = −[p].

As claimed previously, the torsion defined over Fp2 of maximal elliptic curves over Fp2 can be
controlled. If N |p + 1 then by Lemma 1.1.17.(i), any maximal elliptic curve E over Fp2 satisfies
E[N] ⊆ E(Fp2). If we want the N -torsion to be defined over Fp2 , we only have to choose a prime p
such that N |p+1. This will be crucial for our cryptographic applications in the following. Indeed, we
shall mainly work in the connected graph made of supersingular elliptic curves which are isogenous
over Fp2 to a special supersingular elliptic curve curve E0 : y2 = x3 + x together with their isogenies.

Lemma 1.1.19. Let p ≡ 3 mod 4. Then the elliptic curve E0 : y2 = x3 + x defined over Fp is
maximal, and every elliptic curve E isogenous to E0 over Fp2 is maximal.

Proof. We have

(x3 + x)(p−1)/2 = x(p−1)/2(x2 + 1)(p−1)/2 = x(p−1)/2

(p−1)/2∑
k=1

(
(p− 1)/2

k

)
x2k

and (p − 1)/2 + 2k = p − 1 if and only if k = (p − 1)/4 but p ≡ 3 mod 4 so (p − 1)/4 is not an
integer and the coefficient of xp−1 in (x3 + x)(p−1)/2 is 0. By Theorem 1.1.16, it follows that E0 is
supersingular.

1.1. ELLIPTIC CURVES AND ISOGENIES 33

Since E0 is a Montgomery curve with coefficient A = 0 and since −2, 2 ∈ Fp are quadratic residues
in Fp2 (like every element of Fp), Lemma 1.1.17.(ii) ensure that E0 is maximal.

In addition, a classical theorem due to Tate [Tat66, Theorem 1] on abelian varieties ensure that a
supersingular elliptic curve E isogenous to E0 over Fp2 satisfies #E(Fp2) = #E0(Fp2) = (p + 1)2 so
is maximal. This completes the proof.

The supersingular isogeny graph

Now, let us consider the supersingular isogeny graph whose vertices are isomorphism classes (over Fp)
of supersingular elliptic curves i.e. j-invariants and edges are isogenies up to post-composition by an
isomorphism. We can actually count the number of vertices with an easy formula.

Theorem 1.1.20. [Sil09, Theorem V.4.1.c] If p ≥ 5, the supersingular isogeny graph has the following
number of vertices: ⌊ p

12

⌋
+

 0 if p ≡ 1 mod 12
1 if p ≡ 5 mod 12 or p ≡ 7 mod 12
2 if p ≡ 11 mod 12

Theorem 1.1.21. The supersingular isogeny graph is connected. If E,E′/Fp are supersingular elliptic
curves, then they are isogenous over Fp and Hom(E,E′) is even a Z-module of rank 4.

The connectivity properties of the supersingular isogeny graph are exceptional. It has been proved
that this graph is Ramanujan even when we restrict to subgraphs with isogenies of certain degrees
only [Piz90]. In particular, a random walk in this graph converges quickly to the uniform distribution
(see Proposition 3.3.1 in particular). These properties offer good security guarantees as they ensure
that it is easy ”to get lost” in supersingular isogeny graphs.

1.1.5 Efficient representations of isogenies

In isogeny based cryptography, isogenies are often secret information that we want to hide from
potential attackers. But what does it mean for a given party in a cryptographic protocol to know
an isogeny? The knowledge of an isogeny can be formally defined naturally as some data called an
efficient representation that gives the ability to evaluate the isogeny at any point in polynomial time.

Definition 1.1.22 (Efficient representation). [Wes24, Definition 1.3] Let A be a polynomial time
algorithm. We say that A is an efficient isogeny evaluator if for any sequence of bits D ∈ {0, 1}∗
such that A (validity, D) returns True, there exists an isogeny φ : E −→ E′ defined over a finite field
Fq such that:

(i) A (curves, D) returns (E,E′).

(ii) A (degree, D) returns deg(φ).

(iii) A (eval, D, P) with P ∈ E(Fqr) returns φ(P).

If D is of polynomial size in log(deg(φ)) and log(q), then we say that D is an efficient representation
of φ (with respect to A). In that case, A (curves, D) and A (degree, D) run in polynomial time in
log(deg(φ)) and log(q) and A (eval, D, P) runs in polynomial time in log(deg(φ)), log(q) and r.

This definition generalises to isogenies between abelian varieties that will be introduced in Defini-
tion 1.4.25.

When we mention efficient representations, the efficient isogeny evaluator A is rarely mentioned.
As [Wes24] puts it, A may be seen as an algorithm implementing all the standard techniques to
evaluate isogenies and we may require that efficient representations with respect to A specify which
technique to use. We give some efficient isogeny representations that are widely used below.

Example 1.1.23. 1. If φ : E −→ E′ is a d-isogeny between elliptic curves defined over a finite field
Fq, where d =

∏n
i=1 ℓi is a smooth integer with prime factors ℓi bounded by a polynomial in log(d),

then φ can be decomposed into a chain of isogenies:

E
φ1−−−→ E1

φ2−−−→ E2 · · · En−2
φn−1−−−→ En−1

φn−−−→ E′, (1.1)

34 CHAPTER 1. PRELIMINARIES

where φi is an ℓi-isogeny for all i ∈ J1 ; nK and φ = φn ◦· · ·◦φ1. Each φi can be expressed by rational
fractions φi(x, y) = (fi(x, y), gi(x, y)) with numerators and denominators of linear degree in ℓi. To
evaluate P ∈ E(Fqr), we can compute φ(P) = φn ◦ · · · ◦φ1(P) by evaluating the φi successively. Such
an isogeny chain is an efficient representation of φ.

2. If furthermore, the d-isogeny φ from above is cyclic i.e. has cyclic kernel, a generator P ∈ E(Fqr)
of ker(φ) with r bounded by a polynomial in log(d) is an efficient representation of φ. Indeed, we can
obtain the isogeny chain described in Eq. (1.1) from the knowledge of P in polynomial time (in log(d)
and log(q)). Indeed, each isogeny φi can be expressed by rational fractions φi(x, y) = (fi(x, y), gi(x, y))
from the knowledge of its kernel ker(φi) in O(ℓi) operations over the field of definitions of ker(φi) with
Vélu’s formulas [Vé71], or even in O(

√
ℓi) operations with further improvements from [BDFLS20].

Besides, for all i ∈ J1 ; nK, ker(φi) is generated by [ℓi+1 · · · ℓn]φi−1 ◦ · · · ◦ φi(P) which can also be
computed in polynomial time.

3. Prior to the introduction of higher dimensional isogeny interpolation algorithms, 1 and 2 were
almost the only known efficient isogeny representations and we could only efficiently represent isogenies
of smooth degrees. Now, we can efficiently represent isogenies of non smooth degree as follows. If
φ : E −→ E′ is a d-isogeny defined over Fq and N > d is a smooth integer (with a smoothness bound
polynomial in log(d)) and (P,Q) is a basis of E[N] defined over Fqr with r polynomial in log(d),
then (φ(P), φ(Q)) is an efficient representation of φ. Basically, this means that from the knowledge
of the interpolation data (P,Q, φ(P), φ(Q)), we can evaluate φ everywhere else. More details on the
underlying higher dimensional isogeny interpolation algorithms will be given in Section 2.2.

By abuse of words, we say usually say that we compute an isogeny when we compute an efficient
representation of this isogeny or translate an efficient representation from one to another. For instance,
we say that we compute an isogeny when we translate a generator of its kernel into an isogeny chain, as
explained in point 2 of Example 1.1.23. Similarly, from the interpolation data mentioned in point 3 of
Example 1.1.23, we can compute an efficient representation of a higher dimensional isogeny embedding
φ given as a chain similar to Eq. (1.1), from which φ can be evaluated everywhere.

1.2 Quaternion algebras and the Deuring correspondence

As we have seen in Theorem 1.1.16, the endomorphism rings of supersingular elliptic curves are
isomorphic to maximal orders in the quaternion algebra ramifying at p and ∞. In this section, we
define quaternion algebras properly and introduce some basic properties of these objects. We also
introduce the Deuring correspondence relating quaternions and supersingular elliptic curves beyond
Theorem 1.1.16. We shall see in particular how quaternion ideals and isogenies are related, a property
which is crucial to this thesis.

1.2.1 Quaternion algebras, orders, ideals

Definition 1.2.1. A quaternion algebra B over a field F is a central simple algebra of dimension 4
over F . If char(F) ̸= 2, such a quaternion algebra is always isomorphic to a(

a, b

F

)
:= F ⊕ Fi⊕ Fj ⊕ Fk

with i2 = a, j2 = b, k = ij = −ji and a, b ∈ F ∗ non-squares in F ∗ [Voi21, Lemma 2.2.5].

Definition 1.2.2. If B := (a, b/F) is a quaternion algebra over a field F with char(F) ̸= 2, we define
the conjugation (also called standard involution), the reduced trace and reduced norm of B as follows:

α = x+ iy + jz + kt ∈ B 7−→ α = x− iy − jz − kt ∈ B,

α = x+ iy + jz + kt ∈ B 7−→ Tr(α) = α+ α = 2x ∈ F,

α = x+ iy + jz + kt ∈ B 7−→ nrd(α) = αα = x2 + ay2 + bz2 + abt2 ∈ F.

In the following, we fix R a Dedekind domain and F its ring of fractions (e.g. R = Z and F = Q)
and we fix a quaternion algebra B over F .

1.2. QUATERNION ALGEBRAS AND THE DEURING CORRESPONDENCE 35

Ideals and orders

Definition 1.2.3. A (R-)lattice I ⊂ B is an R-module of finite type such that I ⊗R F = B. An
(R-)order O ⊂ B is a (R-)lattice which is also a ring with unit (1 ∈ O). A maximal order O ⊂ B is
an order which is maximal for the inclusion: any order O′ ⊂ B such that O ⊆ O′ must be equal to O.

If O ⊂ B is an order, a fractional left O-ideal I is a lattice I ⊂ B such that O · I ⊆ I and a
fractional right O-ideal J is a lattice J ⊂ B such that J · O ⊆ J . Conversely, if I ⊂ B is a lattice, we
can construct the left order and the right order of I respectively as:

OL(I) := {α ∈ B | α · I ⊆ I} and OR(I) := {α ∈ B | I · α ⊆ I}.

By construction, I is a fractional left OL(I)-ideal and a fractional right OR(I)-ideal. We say that two
lattices I and J are compatible when OR(I) = OL(J), so that the intermediate orders of the product
I · J ”match-up”.

Lemma 1.2.4. [Voi21, Lemma 16.6.7] If I ⊂ B is a lattice, we have OL(I) = OR(I) and OR(I) =
OL(I), where I := {α | α ∈ I}.

A lattice I ⊂ B is principal if it is of the form I = OL(I)α = αOR(I) for some α ∈ B and locally
principal if for all prime p ideal of R, the localisation I(p) = I ⊗R R(p) is principal.

The reduced norm

The reduced norm of a lattice I ⊂ B denoted by nrd(I) is the R-submodule of F generated by
{nrd(α) | α ∈ I}. The reduced norm nrd(I) is a fractional ideal of R, so it is finitely generated over
R [Voi21, Lemma 16.3.2]. By abuse, when R = Z (which is principal), we denote by nrd(I) ∈ Q the
unique non-negative generator of nrd(I). The norm is a multiplicative function.

Lemma 1.2.5. [Voi21, Lemma 16.3.7] Let I, J ⊂ B be compatible lattices with either I or J locally
principal. Then nrd(I · J) = nrd(I) nrd(J).

Lemma 1.2.6. [Voi21, Lemma 16.3.8] Let I ⊂ B be a locally principal lattice. Then α ∈ I generates
I if and only if nrd(I) = nrd(α)R.

Integrality

Definition 1.2.7. We say that a lattice I ⊂ B is integral if I ⊆ OR(I) ∩OL(I).

Lemma 1.2.8. [Voi21, Lemma 16.2.8] Let I ⊂ B be a lattice. Then the following are equivalent:

(i) I is integral.

(ii) I2 ⊆ I.

(iii) I ⊆ OL(I).

(iv) I ⊆ OR(I).

If I is integral, then every element of I is integral over R i.e. is the root of a monic polynomial with
coefficients in R.

In particular, an order O ⊂ B is an integral lattice and all of its elements are integral over R
and the trace Tr(α) and reduced norm nrd(α) of any element α ∈ O are defined over R, since
X2 − Tr(α) + nrd(α) is the minimal polynomial of α over F , except when α ∈ R.

36 CHAPTER 1. PRELIMINARIES

Invertibility

Definition 1.2.9. A lattice I ⊂ B is left invertible if there exists a lattice I ′ ⊂ B such that I ′ is
compatible with I and I ′ · I = OR(I).

A lattice I ⊂ B is right invertible if there exists a lattice I ′ ⊂ B such that I is compatible with I ′

and I · I ′ = OL(I).
A lattice I ⊂ B is invertible if there exists a lattice I ′ ⊂ B (two sided inverse) such that I ′ is

compatible with I, I is compatible with I ′, I ′ · I = OR(I) and I · I ′ = OL(I).

Theorem 1.2.10. [Voi21, Lemma 16.7.7] Let I ⊂ B be a lattice. Then the following are equivalent:

(i) I is invertible.

(ii) I is left invertible.

(iii) I is right invertible.

(iv) I is locally principal.

If furthermore, R = Z and I is integral, the above conditions are equivalent to:

(v) nrd(I)2 = [OL(I) : I].

(vi) nrd(I)2 = [OR(I) : I].

Proposition 1.2.11. [Voi21, Proposition 16.6.15] Let I ⊂ B be a lattice. Then:

(i) There exists two orders O,O′ ⊂ B such that OL(I) ⊂ O, OR(I) ⊂ O′, I · I = nrd(I)O and
I · I = nrd(I)O′.

(ii) If either OL(I) or OR(I) is maximal, then both orders are maximal and I is invertible. In
particular, I · I = nrd(I)OL(I) and I · I = nrd(I)OR(I).

In the following, we shall only work with definite quaternion algebras over Q (R = Z and F = Q),
which are of the form B := (a, b/Q) with a, b < 0, so that the reduced norm nrd is a positive definite
quadratic form. We shall only consider integral lattices I ⊂ B which are left O-ideals for some
maximal order O(= OL(I)). Such ideals are always invertible and are right ideals for a maximal order
O′ = OR(I) by Proposition 1.2.11.(ii) so they satisfy the assumptions of Theorem 1.2.10.

1.2.2 The quaternion algebra ramified at p and ∞
Theorem 1.2.12. [Voi21, Theorem 5.4.4] If F is a field with char(F) ̸= 2, then a quaternion algebra
B over F is either a division algebra or isomorphic to M2(F), the algebra of 2 × 2 matrices with
coefficients in F .

Let B be a quaternion algebra over Q. Then, for every place v of Q (v = p a prime or v = ∞),
B ⊗Qv is either a division algebra or isomorphic to the matrix algebra M2(Qv). Note that Qp is the
field of p-adic integers for all prime number p and that Q∞ = R.

Definition 1.2.13. We say that a quaternion algebra B over Q ramifies at a place v of Q if B ⊗Qv
is a division algebra and that B splits at v otherwise i.e. if B ⊗Qv ≃M2(Qv).

Theorem 1.2.14. [Voi21, Theorem 14.1.3]

(i) A quaternion algebra over Q ramifies at a finite and even number of places.

(ii) Two quaternion algebras over Q are isomorphic if and only if they ramify at the same places.

(iii) For all finite set of places of Q with even cardinality, there exists a quaternion algebra ramifying
at those places.

1.2. QUATERNION ALGEBRAS AND THE DEURING CORRESPONDENCE 37

We define the discriminant of a quaternion algebra B denoted by disc(B) as the product of finite places
where B ramifies. By the above, the discriminant determines the isomorphism class of B.

Corollary 1.2.15. Let p be a prime. Then there exists a unique quaternion algebra Bp,∞ over Q up
to isomorphism ramifying at p and ∞ i.e. of discriminant p.

(i) If p = 2, then Bp,∞ = (−1,−1/Q).

(ii) If p ≡ 3 mod 4, then Bp,∞ = (−1,−p/Q).

(iii) If p ≡ 1 mod 4, then Bp,∞ = (−q,−p/Q), where q is a prime ≡ 3 mod 4 which is a not a
quadratic residue modulo p.

Proof. See [Voi21, Example 14.2.13].

In the following, we shall see that the quaternion algebra Bp,∞ is crucial for the Deuring corre-
spondence. Indeed, we have seen in Theorem 1.1.16 that endomorphism rings of supersingular elliptic
curves are isomorphic to maximal orders in Bp,∞. The following gives a criteria to identify maximal
orders.

Definition 1.2.16. If O ⊂ B is an order in a quaternion algebra defined over Q, and (α1, · · · , α4) is
Z-basis of O, we define the discriminant of O as:

disc(O) = |det(Tr(αiαj))1≤i,j≤4|

This quantity is a well-defined invariant of O as does not depend on the Z-basis. It can be proved
that disc(O) is always a square in N∗ and define the reduced discriminant as discrd(O) :=

√
disc(O)

[Voi21, Lemma 15.4.7].

Theorem 1.2.17. [Voi21, Theorem 15.5.5] Let B/Q be a quaternion algebra and O ⊂ B be an order.
Then O is maximal if and only if discrd(O) = disc(B).

In particular, if B = Bp,∞, then O is maximal if and only if discrd(O) = p.

1.2.3 Ideal equivalence

Definition 1.2.18. Let B := (a, b/Q) with a, b < 0. Two lattices I, J ⊂ B are (right) equivalent and
we denote I ∼ J if there exists α ∈ B∗ such that J = Iα.

We can define a left equivalence similarly, but it will not be used. Only the right equivalence
is useful for the Deuring correspondence. The reader will find below an explicit way to describe
equivalent integral left ideals of a maximal order and how their right orders relate.

Lemma 1.2.19. Let B := (a, b/Q) with a, b < 0 and I ⊂ B be an integral ideal such that OL(I) is
maximal. Then:

(i) The map:

χI : α ∈ I \ {0} 7−→ I
α

nrd(I)

is a surjection to the set of integral ideals (right) equivalent to I.

(ii) For all α, β ∈ I \ {0}, χI(α) = χI(β) if and only if there exists γ ∈ OR(I)× such that β = αγ.

(iii) If J = χI(α) is an integral ideal (right) equivalent to I, with α ∈ I \ {0}, then we have

OR(J) = α ·OR(I) · α−1, OR(α
−1 · J · α) = OR(I), and OL(α

−1 · J · α) = OR(I).

Proof. Points (i) and (ii) are due to [DFKLPW20, Lemma 1]. Their proof being simple, we recall it
here.

(i) If α ∈ I \ {0}, then J := χI(α) = Iα/nrd(I) is equivalent to a fractional ideal equivalent to I.
Besides, Iα ⊆ I · I = nrd(I)OL(I) by Proposition 1.2.11, so that J ⊆ OL(I) and J is integral.

38 CHAPTER 1. PRELIMINARIES

Conversely, if J ⊂ B is an integral ideal right equivalent to I, then J = I ·β, with β ∈ B \{0}. We
then have I · J = I · I · β = nrd(I)OR(I) · β by Proposition 1.2.11 and it follows that nrd(I)β ∈ I · J .
In addition, J ⊆ OL(J) = OL(I) = OR(I) since J is integral, so that I · J ⊆ I and nrd(I)β ∈ I \ {0}.
Hence, there exists α ∈ I \ {0}, such that β = α/nrd(I), so finally J = χI(α).

(ii) If χI(α) = χI(β), then Iα/nrd(I) = Iβ/nrd(I), so I · Iα/nrd(I) = I · Iβ/nrd(I) i.e.
OR(I)α = OR(I)β by Proposition 1.2.11. It follows that there exits γ, δ ∈ OR(I) such that γα = β
and α = δβ so that γδβ = β and γδ = 1, so γ ∈ OR(I)× and finally β = αγ with γ ∈ OR(I)×. The
converse being trivial, this proves (ii).

(iii) We have:

OR(J) = {β ∈ Bp,∞ | Jβ ⊆ J} =
{
β ∈ Bp,∞

∣∣∣∣ I αβ

nrd(I)
⊆ I α

nrd(I)

}
=

{
β ∈ Bp,∞

∣∣∣∣ I αβα

nrd(α)
⊆ I
}

= {β ∈ Bp,∞ | Iα−1βα ⊆ I} = {β ∈ Bp,∞ | α−1βα ∈ OR(I)} = α ·OR(I) · α−1.

Similarly,

OR(α
−1 · J · α) = {β ∈ Bp,∞ | α−1 · J · αβ ⊆ α−1 · J · α}

=

{
β ∈ Bp,∞

∣∣∣∣ α−1 · I · ααβ

nrd(I)
⊆ α−1 · I · αα

nrd(I)

}
= {β ∈ Bp,∞| I · β ⊆ I} = OR(I).

It follows that OL(α−1 · J · α) = OR(α
−1 · J · α) = OR(I). But

α−1 · J · α = α · J · α−1 = nrd(α)α−1 · J · α

nrd(α)
= α−1 · J · α

This completes the proof.

1.2.4 The Deuring correspondence

We now get to the main topic of this section: the Deuring correspondence which owes its name
and discovery to Max Deuring [Deu41]. As we have seen in Theorem 1.1.16 endomorphism rings of
supersingular elliptic curves defined over Fp are isomorphic to a maximal order in the quaternion
algebra Bp,∞ ramifying at p and ∞. We can actually not only connect endomorphism rings with
quaternions but also isogenies as follows.

Let E/Fp be a supersingular elliptic curve, O ⊂ Bp,∞ be a maximal order isomorphic to End(E)

via ε : O ∼−→ End(E) and I be a left O-ideal (integral by assumption as previously stated). We can
consider the subgroup:

E[I] =
⋂
α∈I

ker(ε(α)) ⊂ E(Fp),

If nrd(I) is coprime with p, by Theorem 1.1.7 we can associate to I a separable isogeny φI : E −→ EI
of kernel E[I]. If p|nrd(I), we can factor I = P rI ′ with I ′ a left O-ideal of norm coprime with p and
P the unique two sided ideal of O of norm p (whose existence and uniqueness is ensured by [Voi21,
Theorem 18.1.3]). Then we associate to I the isogeny φI := φI′ ◦ πpr , where πpr : E −→ E(pr) is the
pr-th Frobenius corresponding to P r. Note E(pr) is isomorphic to E if r is even and E(p) if r is odd.

Remark 1.2.20. In [Voi21, Chapter 42], Voight defines E[I] as a group scheme to deal with the
inseparable case. We shall introduce group schemes in Section 1.4.4 but we prefer here the elementary
point of view from above.

The map I 7−→ φI defines a correspondence between left O-ideals and isogenies with domain E,
since it has an inverse map associating a left O-ideal:

Iφ = {α ∈ O | ∀P ∈ ker(φ), ε(α)(P) = 0}

to any isogeny φ : E −→ E′. The ideal Iφ is called the kernel ideal of φ. The correspondence satisfies
the following properties.

1.2. QUATERNION ALGEBRAS AND THE DEURING CORRESPONDENCE 39

Proposition 1.2.21.

(i) nrd(I) = deg(φI).

(ii) IφI
= I, which proves that I 7−→ φI has an inverse map.

(iii) Hom(EI , E) is isomorphic to I as a left O-module via the map:

Hom(EI , E)
∼−→ I

ψ 7−→ ε−1(ψ ◦ φI)

(iv) End(EI) is isomorphic to OR(I) as a ring via the map:

End(EI)
∼−→ OR(I)

ψ 7−→
1

nrd(I)
ε−1(φ̂I ◦ ψ ◦ φI)

(v) If J ∼ I is a left O-ideal equivalent to I, then the respective codomains EI and EJ of φI and
φJ are isomorphic.

(vi) If J is an integral ideal compatible with I (i.e. such that OL(J) = OR(I)), then φI·J = φJ ◦φI .

(vii) For all α ∈ O \ {0}, the isogeny φOα : E −→ EOα associated to the principal ideal Oα is the
endomorphism ε(α) ∈ End(E).

(viii) The isogeny φI : EI −→ EI associated to I is the dual φ̂I : EI −→ E.

Proof. (i) and (ii) are [Voi21, Proposition 42.2.16], (iii) is [Voi21, Lemma 42.2.7], (iv) is [Voi21,
Lemma 42.2.9], (v) is [Voi21, Lemma 42.2.13], (vi) is [Wat69, Proposition 3.12], (vii) follows from the
definition of the Deuring correspondence and (viii) follows from (vi), (vii) and Proposition 1.2.11.(ii).

From the above properties, we obtain the main theorem of the Deuring correspondence.

Theorem 1.2.22 (Deuring correspondence).

(i) For every isogeny φ : E −→ E′, there exists a left O-ideal I and an isomorphism λ : EI
∼−→ E′

such that φ = λ ◦ φI .

(ii) For any maximal order O′ ⊂ Bp,∞, there exists a supersingular elliptic curve E/Fp2 such that
End(E′) ≃ O′.

(iii) The map [I] 7−→ j(EI) induces a bijection between equivalence classes of left O-ideals and
isomorphism classes of supersingular elliptic curves over Fp.

Proof. (i) We refer to the proof of [Voi21, Corollary 42.2.21].
(ii) We give the argument which is actually very instructive for isogeny based cryptography. Let

O′ ⊂ Bp,∞ be a maximal order. Then we can construct a connecting ideal I between O and O′

i.e. a left O-ideal which is also a right O′-deal as follows. For instance, we take I := NO · O′

where N := [O · O′ : O] or any common denominator. We then consider φI : E −→ EI where
End(EI) ≃ OR(I) by Proposition 1.2.21 and OR(I) = O′ by construction.

(iii) We refer to [Voi21, Corollary 42.3.7]. The definition of the map [I] 7−→ j(EI) makes sense
by Proposition 1.2.21.(v). The surjectivity is a consequence of (ii) and the injectivity comes from
Proposition 1.2.21.(iii) and the fact that left O-ideals that are isomorphic as left O-modules are
(right) equivalent [Voi21, Lemma 17.3.3].

In the spirit of Theorem 1.2.22.(iii), a natural question arises: is there a bijection between super-
singular j-invariants and maximal orders? The answer is no, but this is close to be true.

Proposition 1.2.23. [Voi21, Lemma 42.4.1] Let O ⊂ Bp,∞. Then there exists at most two isomor-
phism classes of supersingular elliptic curves E such that End(E) ≃ O. These classes are given by
j(E) and its Galois conjugate j(E)p = j(E(p)).

40 CHAPTER 1. PRELIMINARIES

Supersingular elliptic curves Quaternions

j(E) or j(E)p supersingular O ≃ End(E) maximal order in Bp,∞
φ : E −→ E′ left O-ideal and right O′-ideal Iφ

φ,ψ : E −→ E′ Iφ ∼ Iψ
φ̂ Iφ

φ ◦ ψ Iψ · Iφ
α ∈ End(E) Oα

deg(φ) nrd(Iφ)

Table 1.1: The Deuring correspondence (credits to [DFKLPW20]).

The Deuring correspondence can be summarised in Table 1.1 due to [DFKLPW20].
We terminate this presentation of the properties of the Deuring correspondence with a technical

lemma that will be used quite often.

Lemma 1.2.24. Let E be a supersingular elliptic curve defined over Fp2 , O be a maximal order of

Bp,∞ isomorphic to End(E) via the isomorphism ε : O ∼−→ End(E) and I, J be two (right) equivalent
integral left-ideals of O such that J = χI(α) = I · α/nrd(I) with α ∈ I \ {0}. Then, we have:

φ̂J ◦ φI = ε(α).

Proof. By Lemma 1.2.19.(iii), we have OL(α
−1 · J · α) = OR(I) so I and α−1 · J · α are compatible

and we can consider their product:

I · α−1 · J · α = I · α
−1 · α

nrd(I)
· I · α =

1

nrd(I)
I · I · α = O · α.

By the Deuring correspondence (Proposition 1.2.21.(vi) and (vii)), I ·α−1 ·J ·α corresponds to φ̂J ◦φI ,
so that φ̂J ◦ φI = ε(α).

An easy instance of the endomorphism ring problem

The Deuring correspondence is used to compute isogenies and construct cryptographic protocols (as
we shall see in Section 2.1.1). The Deuring correspondence cannot be used effectively without knowing
the endomorphism ring of the starting curve, and computing it is a hard problem in general. However,
there are easy instances of this problem. The following is a classical easy instance that will be used
without moderation in the rest of this thesis.

Lemma 1.2.25. Let p be a prime ≡ 3 mod 4 and E0 be defined over Fp by the equation y2 = x3+x.
Then E0 is supersingular (and even maximal) and its endomorphism ring is isomorphic to O0 :=
⟨1, i, (i+ j)/2, (1 + ij)/2⟩ ⊂ Bp,∞ via the isomorphism:

ε0 : O0
∼−→ End(E0)

i 7−→ ι : (x, y) 7−→ (−x, ζ4y)
j 7−→ πp : (x, y) 7−→ (xp, yp)

where ζ4 ∈ Fp2 is a square root of −1.

Proof. This endomorphism ring computation is very classical in the literature but there is no formal
proof available, so we provide it here. By Lemma 1.1.19, E0 is maximal so it is supersingular and its
p-th Frobenius endomorphism satisfies π2

p = πp2 = −[p] by Remark 1.1.18.
We also verify immediately that ι2 = [−1] and obtain that:

πp ◦ ι(x, y) = ((−x)p, ζp4yp) = (−xp,−ζp4yp) = −(−xp, ζ
p
4y

p) = −ι ◦ πp(x, y),

1.2. QUATERNION ALGEBRAS AND THE DEURING CORRESPONDENCE 41

where we used the fact that p ≡ 3 mod 4. Hence, ι and πp corresponds to i and j in Bp,∞ respectively.
Finally, E0[2] = {0, (0, 0), (ζ4, 0), (−ζ4, 0)} and

πp(0, 0) = (0, 0) = ι(0, 0), ι ◦ πp(0, 0) = (0, 0),

πp(ζ4, 0) = (ζp4 , 0) = (−ζ4, 0) = ι(ζ4, 0), ι ◦ πp(ζ4, 0) = (−ζp4 , 0) = (ζ4, 0),

πp(−ζ4, 0) = ((−ζ4)p, 0) = (ζ4, 0) = ι(−ζ4, 0), ι ◦ πp(−ζ4, 0) = ((−ζ4)p, 0) = (ζ4, 0),

so that ι+πp and 1+ ι◦πp annihilate E0[2] and factor through [2]. This proves that ε0 is well-defined.
To conclude, it suffices to prove that O0 is a maximal order in Bp,∞, which will ensure that ε0 is

surjective, so is an isomorphism (since it is trivially injective). We have:

discrd(O0) =

∣∣∣∣∣∣∣∣∣∣∣∣

Tr(1) Tr(i) Tr
(
i+j
2

)
Tr
(

1+ij
2

)
Tr(i) Tr(ii) Tr

(
i i+j2

)
Tr
(
i 1+ij2

)
Tr
(
i+j
2

)
Tr
(
i+j
2 i
)

Tr
(
i+j
2

i+j
2

)
Tr
(
i+j
2

i+j
2

)
Tr
(
1+ij
2

)
Tr
(
1+ij
2 i
)

Tr
(

1+ij
2

i+j
2

)
Tr
(

1+ij
2

1+ij
2

)

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

=

∣∣∣∣∣∣∣∣
2 0 0 1
0 2 1 0

0 1 p+1
2 0

1 0 0 p+1
2

∣∣∣∣∣∣∣∣
1
2

=

∣∣∣∣∣∣∣∣
1 0 0 p+1

2

0 1 p+1
2 0

0 2 1 0
2 0 0 1

∣∣∣∣∣∣∣∣
1
2

=

∣∣∣∣∣∣∣∣
1 0 0 p+1

2

0 1 p+1
2 0

0 0 −p 0
0 0 0 −p

∣∣∣∣∣∣∣∣
1
2

= p = disc(Bp,∞)

It follows that O0 is a maximal order by Theorem 1.2.17. This completes the proof.

1.2.5 Lattices of rank 4

Quaternion ideals can be seen as full-rank Euclidean lattices via an embedding into R4. Namely,
B = (a, b/Q) can be embedded via the map ι : B ↪−→ R4,

1 7−→ (1, 0, 0, 0), i 7−→ (0,
√
|a|, 0, 0), j 7−→ (0, 0,

√
|b|, 0), ij 7−→ (0, 0, 0,

√
|ab|), (1.2)

which is an isometry because ∥ι(α)∥2 = nrd(α) for all α ∈ B. In the course of this thesis, for
algorithmic applications of the Deuring correspondence, we shall study short vectors of quaternion
ideals so we give some definitions and preliminary results that will be needed.

Definition 1.2.26. Let Λ ⊂ Rd be a lattice of rank d. For all i ∈ J1 ; dK, the i-th minimum of Λ
denoted by λi(Λ) is the quantity:

λi(Λ) = min

{
max
1≤j≤i

∥vj∥
∣∣∣∣v1, · · · , vi ∈ Λ are linearly independent

}
.

In general, there is no basis reaching all successive minima of a lattice. For algorithmic applications
and to prove some bounds on the successive minima (as defined above) of quaternion ideals, we use
basis of short vectors that are Minkowski reduced in the following sense.

Definition 1.2.27. Let Λ ⊂ Rd be a lattice of rank d. We say that a basis (b1, · · · , bd) of Λ is
Minkowski reduced if for all i ∈ J1 ; dK, bi has minimal norm such that (b1, · · · , bi) can be extended
into a basis of Λ. In particular, ∥b1∥ ≤ · · · ≤ ∥bd∥.

In low dimension, Minkowski reduced basis reach the successive minima, as desired.

Theorem 1.2.28. [Wae56] If Λ is a lattice of rank d and (b1, · · · , bd) is a Minkowski reduced basis
of Λ, then ∥bi∥ = λi(Λ) for all 1 ≤ i ≤ min(d, 4). In particular, if d ≤ 4, then a Minkowski reduced
basis of Λ reaches all successive minima of Λ.

42 CHAPTER 1. PRELIMINARIES

Additionally, in practice, Minkowski reduced basis can be computed efficiently in dimension up to
four.

Theorem 1.2.29. [NS09, Theorem 4.2.1] Let Λ ⊂ Rd be a full rank lattice with d ≤ 4. Then, given
(b1, · · · , bd), a basis of Λ with ordered vectors ∥b1∥ ≤ · · · ≤ ∥bd∥, a Minkowski reduced basis of Λ can
be computed in time O(log ∥bd∥(1 + log ∥bd∥ − log λ1(Λ))).

1.3 Oriented supersingular elliptic curves

In the previous section, we have seen the Deuring correspondence between quaternion ideals and
isogenies between supersingular elliptic curves. There is also an analogue for ordinary elliptic curves
with complex multiplication by some quadratic imaginary order O i.e. whose endomorphism ring is
isomorphic to O. The ideal class group Cl(O) acts faithfully on these curves. Unlike the quaternion
ideal action (where ideal equivalence classes do not even define a group), this is a commutative group
action. This commutativity property has been leveraged to propose cryptographic schemes like Diffie-
Hellman key exchange [Cou06; RS06]. Later, a commutative group action has been introduced for
supersingular elliptic curves to define the CSIDH scheme (Commutative Supersingular Isogeny Diffie-
Hellman) [CLMPR18] followed-up by more general works by Leonardo Colò, David Kohel [CK20] and
Horoshi Onuki [Onu21].

1.3.1 Oriented supersingular elliptic curves and isogenies

The key idea is to restrict to a subring of the endomorphism ring of supersingular elliptic curves
defining an orientation.

Definition 1.3.1. Let E be a supersingular elliptic curve and K be a quadratic imaginary field.
A K-orientation of E is an embedding ι : K ↪−→ End(E) ⊗ Q. If O ⊂ K is an order such that
ι(O) ⊂ End(E), we say that ι is an O-orientation. If furthermore, O = ι−1(End(E)) i.e. if there is no
superorder of O mapping to End(E), we say that ι is a primitive O-orientation. We say that (E, ι) is
a K or O-oriented supersingular elliptic curve.

In the following, we shall only consider primitive orientations and drop the mention of primitive
when there is no ambiguity.

Definition 1.3.2. If K is a quadratic imaginary order, a K-oriented isogeny between two K-oriented
elliptic curves φ : (E, ι) −→ (E′, ι′) is a an isogeny satisfying:

∀α ∈ K, ι′(α) = φ∗(ι)(α) :=
1

deg(φ)
φ ◦ ι(α) ◦ φ̂.

Given a K-orientation ι on E and an isogeny φ : E −→ E′, one can always define a K-orientation ι′

on E′ by the above formula.
If (E, ι) and (E′, ι′) are respectively (primitively) O and O′-oriented elliptic curves then, we say

that:

• φ is descending if O′ ⊊ O.

• φ is horizontal if O′ = O.

• φ is ascending if O ⊊ O′.

1.3.2 The ideal class group action

In the following, we fix O an order of a quadratic imaginary field K. Let (E, ι) be a (primitively)
O-oriented elliptic curve. Then, we can define the action of an ideal a ⊆ O of norm N(a) coprime
with p like in the Deuring correspondence as follows. Let:

E[a] =
⋂
α∈a

ker(ι(α)) ⊂ E(Fp),

and consider the separable isogeny φa : E −→ Ea with kernel E[a] and the induced K-orientation
ιa := φa∗(ι). This action by O-ideals satisfies natural properties of the Deuring correspondence.

1.3. ORIENTED SUPERSINGULAR ELLIPTIC CURVES 43

Proposition 1.3.3. (i) φa is either horizontal or ascending. If a is invertible in O, then φa is
horizontal.

(ii) deg(φa) = N(a).

(iii) If a, b ⊆ O are invertible and of norms coprime with p, then φab = φb ◦ φa.

(iv) If a, b ⊆ O are invertible and of norms coprime with p, then a · (E, ι) ≃ a · (E, ι) via a K-
oriented isomorphism if and only if a and b are equivalent i.e. are equal up to multiplication by
an element of K∗.

(v) If (E1, ι1) and (E2, ι2) are O-oriented elliptic curves, then there exists an invertible ideal a ⊆ O

of norm coprime with p such that (E2, ι2) ≃ a · (E1, ι1) or (E
(p)
2 , πp∗(ι2)) ≃ a · (E1, ι1), the latter

resulting from the application of the p-th Frobenius isogeny on (E2, ι2).

Proof. (i) is [Onu21, Proposition 3.5], (ii) is [Wat69, Proposition 3.15], (iii) is [Wat69, Proposi-
tion 3.12], (iv) have been proved in the proof of [Onu21, Theorem 3.4] and (v) is [Onu21, Propo-
sition 3.3].

Note that a is always invertible if O = OK is the maximal order or if the norm N(a) is coprime
with the conductor [OK : O] of O [Cox13, Lemma 7.18]. In that case, by Proposition 1.3.3.(i),
a · (E, ι) := (Ea, ιa) is also O-oriented. Also, by Proposition 1.3.3, the isomorphism class of a · (E, ι)
only depends on the ideal class [a] and we can compose this action by ideals. This defines a free
action of the ideal class group Cl(O) on isomorphism classes of O-oriented elliptic curves denoted by
Ellp(O).

Theorem 1.3.4. [Onu21, Theorem 3.4] The map

([a], [(E, ι)]) ∈ Cl(O)× Ellp(O) 7−→ [a · (E, ι)]

introduced above defines a free group action which is either transitive or admits two orbits which are
conjugate of each other by application of the p-th Frobenius isogeny.

1.3.3 Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

In CSIDH [CLMPR18], we consider supersingular elliptic curves E defined over Fp and the orientations
mapping to EndFp

(E), the subring of End(E) (of rank 2) made of Fp-rational endomorphisms. The
ring EndFp

(E) always contains the p-th Frobenius endomorphism πp : (x, y) ∈ E 7−→ (xp, yp) ∈ E.
Since E is supersingular and defined over Fp, Tr(πp) ≡ 0 mod p by Theorem 1.1.16 and |Tr(πp)| ≤
2
√
p by Hesse-Weil’s bound (Theorem 1.1.13) so Tr(πp) = 0 and π2

p = −[p]. As a consequence,
πp identifies with

√
−p so that E is oriented by Q(

√
−p) so it is primitively oriented either by the

maximal order Z[(1+
√
−p)/2] if EndFp(E) = Z[(1+πp)/2] or by the order of conductor 2 if Z[

√
−p] if

EndFp
(E) = Z[πp]. Note that in either case, the orientation is naturally induced by the Frobenius ι :√

−p 7−→ πp and needs not to be specified. This greatly simplifies the class group action computation.
The supersingular isogeny graph over Fp made of supersingular elliptic curves and their isogenies

all defined over Fp has a volcano structure with two levels. On the crater or the surface of the volcano
stand the curves oriented by the maximal order Z[(1 +

√
−p)/2]. On the floor of the volcano stand

the order Z[
√
−p] of conductor 2. The ideal class group action acts on each level of the volcano.

Nonetheless, 2-isogenies can change levels. When p ≡ 3 mod 8, 2 does not split in Q(
√
−p) so there

is no prime ideal of norm 2 and in particular, all 2-isogenies starting from the surface are descending
isogenies. When p ≡ 7 mod 8, 2 splits Q(

√
−p) and the action of prime ideals lying above 2 yield

horizontal isogenies. As a consequence, there are two horizontal and one descending 2-isogenies
starting from each curve on the surface [CD20] (see Figures 1.1 and 1.2).

In CSIDH, curves on the floor i.e. oriented by Z[
√
−p] have been considered. The group action

induced by Cl(Z[
√
−p]) on Ellp(Z[

√
−p]) is a restricted cryptographic group action also called restricted

effective group action [ADFMP20] since:

• It is free and transitive;

44 CHAPTER 1. PRELIMINARIES

Z
[
1+

√
−p

2

]
Z[
√
−p]

• • •

• • • • • • • • •

Figure 1.1: Volcano structure of the supersingular isogeny graph over Fp when p ≡ 3 mod 8.

Z
[
1+

√
−p

2

]
Z[
√
−p]

• • •

• • •

Figure 1.2: Volcano structure of the supersingular isogeny graph over Fp when p ≡ 7 mod 8.

• It can be efficiently computed but only on ideals of smooth norms (which generate the ideal
class group)1;

• The vectorisation problem which requires to compute [a] ∈ Cl(Z[
√
−p]) from E ∈ Ellp(Z[

√
−p])

and a · E, is a hard problem even for a quantum computer.

This restricted cryptographic group action have been used to construct a Diffie-Hellman key ex-
change quite similar to the pre-quantum discrete logarithm based El Gamal as follows. A public
curve E0 ∈ Ellp(Z[

√
−p]) is fixed. Alice chooses a secret ideal a ⊆ O (of smooth norm) and sends

a · E0 to Bob. Similarly, Bob chooses a secret ideal b ⊆ O (of smooth norm) and sends b · E0 to
Alice. Then Alice computes a · (b · E0) = (ab) · E0 and Bob computes b · (a · E0) = (ab) · E0. By
commutativity of Cl(O), the final key (ab) · E0 is shared between the two parties. These convenient
cryptographic group action properties have also been used to build various cryptographic schemes
including the digital signature scheme CSI-FiSh [BKV19], threshold [DFM20] and ring [BKP20] sig-
natures, oblivious transfer [SGOPS20; LGSG21], oblivious pseudo-random functions [BKW20] and
hash proof systems [ADFMP20]. Other cryptographic group actions based on other orientations than
CSIDH and its analogue on the surface [CD20] also have been proposed [CK20; FFK+23; CLP24]. In
all of these orientation based primitives, the restriction to smooth norm ideals can limit cryptographic
applications in practice. A solution to overcome this limitation is a contribution of this thesis (see
Section 2.5).

Another limitation to these schemes based on cryptographic group action is their vulnerability to
Kuperberg’s quantum subexponential attack (in log(p)) on the verctorisation problem [Kup05]. There
is currently no consensus on the efficiency of this attack on CSIDH (or similar schemes), hence on the
security parameters that guarantee enough security [CSCDJRH21; BS20; Pei20]. According to the
most conservative estimates, a base prime p of 4000 bits would be necessary to ensure a NIST-I level
of security for CSIDH.

1.4 Polarised abelian varieties

In this section, we give the necessary algebraic geometry background to work with abelian varieties,
following Milne’s approach [Mil86]. This will be needed especially in Chapter 5 dedicated to theta
functions. We do not require the reader to be a professional algebraic geometer but some familiarity
with schemes and line bundles is recommended. We refer to [Har77, Chapter II, Sections 1-7] for an
introduction to scheme theory. It will become clear in Chapter 5 that we only use some algebraic
geometry to focus mainly on arithmetic aspects that are relevant for isogeny computations.

1.4.1 Abelian varieties

Informally, abelian varieties are a higher dimensional generalisation of elliptic curves. In particular,
they have a group structure. However, we need some scheme theoretic notions to define them properly.

1This restriction of effectiveness to some group elements is why the cryptographic group action is restricted.

1.4. POLARISED ABELIAN VARIETIES 45

Definition 1.4.1 (Abelian variety). Let k be a field. An abelian variety A over k is a complete and
geometrically integral group variety over k.

We shall now give explicit definitions of those terms:

Variety: A k-variety V also called a variety defined over k is k-scheme that is separated and of finite
type. This means that there is a structural morphism π : V −→ Spec(k) (k-scheme), that the
diagonal map ∆ : V −→ V ×k V is a closed immersion (separateness), that V is quasi-compact
as a topological space and for every open affine subset U ⊆ V , Γ(U,OV) is a finite type k-algebra
(finite type).

Complete: A k-scheme X is complete if for all k-scheme Y , the right projection q : X ×k Y −→ Y
is closed.

Geometrically integral: A k-scheme X is geometrically integral if for every field extension k′/k,
Xk′ is integral. We say that a scheme X is integral if for all open subset U ⊆ X, Γ(U,OX) is
an integral domain. Equivalently, X is integral if X is reduced and irreducible (as a topological
space). A scheme X is reduced if for all x ∈ X, OX,x is reduced i.e. does not contain non-zero
nilpotent element. If X is integral, it is in particular connected (as a topological space).

Group variety: A group scheme G over k is a k-scheme together with two morphisms of k-schemes
m : G ×k G −→ G and inv : G −→ G and an element e ∈ G(k) such that m and inv induce
a group structure on G(k) with neutral element e. A group variety over k is a group scheme
which is a k-variety.

This formal definition is almost never used in practice (the group structure excepted) and we
usually rely on the following properties.

Theorem 1.4.2. Let A be an abelian variety over a field k. Then:

(i) The group law on A(k) is commutative.

(ii) A is smooth.

(iii) A is a projective variety. In other words, there exists a closed immersion A ↪−→ Pnk .

Proof. (i) The proof follows [Mil86, Corollary 2.4] and is a consequence of the rigidity theorem [Mil86,
Theorem 2.1]. We prove that the inversion map inv : A −→ A induces a group homomorphism on
A(k). Using the notations of Definition 1.4.1, consider φ := m(inv ◦m, inv ◦m◦ (inv× inv)), which is a
map A×A −→ A acting on points as φ(a, a′) = (a ·a′)−1 ·(a−1 ·a′−1)−1. We have φ(a, e) = e = φ(e, a)
for all a ∈ A(k). Since A is complete and φ(A× {e}) = φ({e} × A) = {e}, the rigidity lemma below
applies to φ so φ = e, which proves (i). As a consequence, we shall denote the group law on A(k)
additively and denote 0 or 0A instead of e.

Lemma 1.4.3 (Rigidity Lemma [Mil86, Theorem 2.1]). Let f : V × W −→ U be a morphism of
k-varieties. Assume that V is complete and that there exist u0 ∈ U(k), v0 ∈ V (k), w0 ∈ W (k) such
that f({v0} ×W) = f(V × {w0}) = {u0}. Then f(V ×W) = {u0}.

(ii) The proof follows [Mil86, § 1]. By [GW10, Theorem 6.28], A is smooth if and only if Ak is
smooth. Hence, we assume that k is algebraically closed (A = Ak). Smooth points x ∈ A admit an
open affine neighbourhood U ⊆ A such that there exists an open immersion

j : U ↪−→ Spec k[T1, · · · , Tn]/(f1, · · · , fn−d)

with a Jacobian at x: (
∂fi
∂Tj

(j(x))

)
1≤i≤n−d
1≤j≤n

∈Mn−d,n(κ(x))

of rank n− d [GW10, Definition 6.14]. This is an open condition. Since A is integral, it is reduced so
the smooth locus Asm of A is dense by [GW10, Theorem 6.19]. In particular, Asm ̸= ∅.

For all x ∈ A, consider the translation tx : A −→ A, a 7−→ a + x ∈ A (well defined because the
group law extends to A(κ(x))). For all x ∈ A, tx is an isomorphism so the points of tx(Asm) are also

46 CHAPTER 1. PRELIMINARIES

smooth i.e. tx(Asm) ⊆ Asm. In particular, if x0 ∈ Asm, then for all x ∈ A, x+ x0 ∈ Asm so A = Asm
i.e. A is smooth.

(iii) We refer to [Mil86, Theorem 7.1] for a complete proof. We give an overview of the proof in
Theorem 1.4.21.

The previous result confirms that abelian varieties generalise elliptic curves. Like elliptic curves,
their group law is commutative and they are projective. This means that they can be described very
concretely as a set of projective points annihilated by homogeneous polynomials. These polynomials
can be explicitly computed with Riemann relations [Rob10, Theorem 4.7.1] due to Mumford [Mum66,
pp. 336-349]. However, they are of limited use for our algorithmic applications.

1.4.2 Line bundles and divisors

Line bundles on abelian varieties are very useful because they provide a richer structure. The notion
of polarised abelian variety follows naturally from the notion of line bundle. Line bundles are also used
to construct maps from abelian varieties to projective spaces and to prove that abelian varieties are
projective. As we shall see in Chapter 5, such maps to projective spaces define systems of coordinates
which can be used to perform arithmetic operations on abelian varieties.

Line bundles: definition and basic properties

Let (X,OX) be a locally ringed space. A line bundle also called invertible sheaf L on X is a locally
free OX -module of rank 1. That is to say that X can be covered by open subsets U ⊆ X such that
L|U is an OX |U -module of rank 1. In particular, OX is a line bundle called the trivial line bundle.
Every line bundle isomorphic to OX is also called trivial.

Proposition 1.4.4. Isomorphism classes of line bundles on X form an abelian group for the the
tensor product over OX with the trivial line bundle OX as neutral element. This group is called the
Picard group of X and denoted by Pic(X).

Proof. We refer to [GW10, § 7.5] for a proof of this result. In particular, if L and L′ are line bundles
on X, L⊗OX

L′ is also a line bundle on X. Besides, if L′′ ≃ L′ is another line bundle on X isomorphic
to L′ then L⊗OX

L′ ≃ L⊗OX
L′′. Therefore, if L′ ≃ OX , then L⊗OX

L′ ≃ L⊗OX
OX = L. Moreover,

if L is a line bundle on X, then L∨ := HomOX
(L,OX) is a line bundle on X and L∨ ⊗OX

L ≃ OX
[GW10, p. 7.5.8]. Hence, the isomorphism class [L] admits an inverse.

In the following, we shall denote the group law multiplicatively. In particular, we shall denote
L−1 := L∨ and Ln := L⊗n for all n ∈ N∗.

Correspondence with divisors

When X is a smooth and irreducible k-variety, line bundles can be seen as sheaves of functions on
X or as divisors. This provides a ”more concrete” way to look at them that is very useful in several
proofs.

Consider a k-variety X. A prime divisor on X is a closed subvariety of codimension 1 in X. A
(Weil) divisor D on X is a formal sum

D =
∑

Z∈P (X)

nZ [Z],

where P (X) is the set of prime divisors on X and the nZ are integers that are zero except on a finite
number of prime divisors Z. The set of divisors on X denoted by Div(X) form an abelian group.

Example 1.4.5. On a plane or projective curve (e.g. an elliptic curve), prime divisors are points and
divisors are formal finite sums of points.

Assume that X is a smooth and irreducible k-variety. X being integral, there exists a unique
generic point η ∈ X i.e. a point dense in X. This point corresponds to the zero-ideal in every open
affine subvariety of X. Besides OX,η is an integral domain so we can define its field of fractions

1.4. POLARISED ABELIAN VARIETIES 47

k(X) := Frac(OX,η) called the function field of X. The generic point η being dense in X, we have
injective maps Γ(U,OX) ↪−→ Γ(V,OX) ↪−→ k(X) for all open subsets V ⊆ U ⊆ X [GW10, Proposition
3.29] so sections of X can be viewed as functions of X.

Example 1.4.6. If E := Proj(k[x, y, z]/(y2z − x3 −Axz2 −Bz3)) with ∆(A,B) := 4A3 + 27B2 ̸= 0
is an elliptic curve, then the function field of E is:

k(E) := Frac(k[x, y, z]/(y2z − x3 −Axz2 −Bz3)).

Every prime divisor Z ∈ P (X) of the k-variety X admits a generic point ξ ∈ Z and OX,ξ has Krull
dimension 1 since Z has codimension 1 in X. We denote OZ := OX,ξ. The variety X being smooth,
OZ is a discrete valuation ring2 for all Z ∈ P (X) [GW10, Lemma 6.26 and Proposition 11.37]. We
denote by ordZ the valuation of OZ . Since Frac(OZ) = k(X) [GW10, Proposition 3.29], ordZ defines
a valuation on k(X). Besides X is noetherian (as any k-variety), so for all f ∈ k(X)∗, ordZ(f) ̸= 0
on a finite subset of prime divisors Z ∈ P (X). Hence, we can define:

div : k(X)∗ −→ Div(X)
f 7−→ div(f) :=

∑
Z∈P (X) ordZ(f)[Z]

This is a group homomorphism. A divisor lying in the image of div is said principal. We denote
Princ(X) := div(k(X)∗).

If D :=
∑
Z∈P (X) nZ [Z] is a divisor on X, we denote D ≥ 0 if nZ ≥ 0 for all Z ∈ P (X). For all

open subset U ⊆ X, we also define the restriction:

D|U :=
∑

Z∈P (X)
Z∩U ̸=∅

nZ [Z ∩ U].

We define the sheaf of OX -modules L(D) given by:

Γ(U,L(D)) := {f ∈ k(X)∗ | div(f)|U +D|U ≥ 0},

for all open subset U ⊆ X.

Theorem 1.4.7.

(i) For all D ∈ Div(X), L(D) is a line bundle on X.

(ii) The map D 7−→ L(D) induces a group isomorphism Div(X)/Princ(X)
∼−→ Pic(X).

Proof. We refer to [GW10, Theorem 11.38]. The proof relies on the fact that divisors are locally
principal on normal varieties, i.e. that for all D ∈ Div(X), there exists an open covering (Ui)i∈I of
X such that for all i ∈ I, there exists fi ∈ k(X) such that D|Ui

= div(fi)|Ui
. In other words, Weil

divisors are in bijection with Cartier divisors (as defined in [GW10, Definition 11.24]).

Theorem 1.4.7 ensures that line bundles are in correspondence with divisors. This means that
every result (e.g. in Chapter 5) using the language of line bundles could be translated in the language
of divisors. We also obtained an explicit description of line bundles as sheaves of functions (up to
isomorphism).

Ample line bundles and projective maps

On Pnk = Proj(k[T0, · · · , Tn]), we consider the twisted sheaf of Serre defined by O(1) := M̃ , where
M :=

∑n
i=0 Tik[T0, · · · , Tn]. This is a sheaf of OPn

k
-modules of rank 1 i.e. a line bundle. This sheaf is

generated by global sections T0, · · · , Tn ∈ Γ(Pnk ,O(1)) =M in the sense of the following definition.

Definition 1.4.8. A line bundle L on a k-scheme X is generated by global sections s0, · · · , sn ∈
Γ(X,L) if for all x ∈ X, the stalk Lx is generated by the images of s0,x, · · · , sn,x as an OX,x-module.

2The smoothness of X is a stronger assumption than necessary. By [GW10, Proposition 11.37], it suffices to assume
that X is normal i.e. that OX,x is normal for all x ∈ X i.e. that the localisation of OX,x at every prime is integrally
closed.

48 CHAPTER 1. PRELIMINARIES

By pulling-back O(1) on a scheme X, we obtain a line bundle generated by global sections which
determines a projective map X −→ Pnk . This defines a correspondence between line bundles generated
by global sections and projective maps.

Theorem 1.4.9. [Har77, § II.7.1] Let X be a k-scheme.

(i) If φ : X −→ Pnk is a morphism of k-scheme, then φ∗O(1) is line bundle on X which is generated
by global sections si = φ∗(Ti) for i ∈ J0 ; nK.

(ii) Conversely, if L is a line bundle on X generated by global sections s0, · · · , sn ∈ Γ(X,L), then
there is a unique morphism of k-schemes φ : X −→ Pnk such that L ≃ φ∗O(1) and si = φ∗(Ti)
for all i ∈ J0 ; nK.

Definition 1.4.10. Let X be a k-scheme of finite type and L be a line bundle on X.

(i) We say that L is very ample when there exists a close immersion φ : X ↪−→ Pnk such that
L ≃ φ∗O(1).

(ii) We say that L is ample when there exists n ∈ N∗ such that Ln is very ample.

(iii) Similarly, we say that a divisor D on X is (very) ample when L(D) is (very) ample.

Remark 1.4.11. 1. The definition of ample line bundles we provide is different from the one pro-
vided by [Har77, p. 153] but is equivalent over k-schemes of finite type by [Har77, Theorem 7.6].

2. If L is an ample line bundle on a complete k-variety X, then there exists n ∈ N∗ such that Ln is
generated by global sections so L has global sections. Hence, L−1 may not be ample, except if
it is trivial L ≃ OX . Indeed, L and L−1 have global sections if and only if L is trivial by [Mil86,
Lemma 5.4].

Proposition 1.4.12. If L andM are ample line bundles on a k-scheme of finite type X, then L⊗M
is ample.

Proof. See [Har77, Exercise II.7.5].

Lemma 1.4.13. [The24, Tag 01PU] If X is a k-scheme of finite type and Y ⊆ X is a closed subscheme
then for every ample line bundle L on X, L|Y is ample on Y .

Line bundles on abelian varieties

Let A be an abelian variety over k. Then A is a smooth and irreducible k-variety so all the previous
results on line bundle and divisors apply. If f : X −→ A is a morphism of k-schemes and L is a line
bundle of A, the pull back f∗L is a line bundle on X. The scheme theoretic definition of the pullback
is provided in [Har77, § II.1] (for a general sheaf). Concretely, sections of f∗L can be seen as rational
functions of A precomposed with f . In this paragraph, we present the properties of pullbacks of line
bundles on A. The main result we shall prove is the theorem of the square (Theorem 1.4.19).

Theorem 1.4.14 (Seesaw principle). Let V be a complete k-variety and T be an integral scheme of
finite type over k. Let L and M be line bundles over V × T such that L|V×{t} ≃ M|V×{t} for all
t ∈ T and there exists v ∈ V (k) such that L|{v}×T ≃M|{v}×T . Then L ≃M.

Proof. See [Mil86, Theorem 5.1 and Corollary 5.2].

From the seesaw principle, one can obtain the theorem of the cube:

Theorem 1.4.15 (Theorem of the Cube [Mil86, Theorem 6.1]). Let U, V,W be complete geometrically
integral k-varieties, L a line bundle on U × V ×W and u0 ∈ U(k), v0 ∈ V (k), w0 ∈ W (k). Assume
that L is trivial on {u0}×V ×W , U ×{v0}×W and U ×V ×{w0}. Then L is trivial on U ×V ×W .

https://stacks.math.columbia.edu/tag/01PU

1.4. POLARISED ABELIAN VARIETIES 49

Corollary 1.4.16. Let A be an abelian variety over k and pi : A
3 −→ A be the projection of the i-th

component for all i ∈ {1, 2, 3}, pij := pi + pj for all i, j ∈ {1, 2, 3} and p123 := p1 + p2 + p3. Let L be
a line bundle on A. Then

p∗123L ⊗ p∗12L−1 ⊗ p∗23L−1 ⊗ p∗13L−1 ⊗ p∗1L ⊗ p∗2L ⊗ p∗3L

is trivial.

Proof. Let p, q : A2 −→ A be the projections on the first and second component of A respectively
and m : A2 −→ A be the addition map. Then, on {0} × A× A identified with A× A, the above line
bundle becomes:

m∗L ⊗ p∗L−1 ⊗m∗L−1 ⊗ q∗L−1 ⊗ p∗L ⊗ qL,

which is trivial. We prove similarly that the restrictions to A× {0} ×A and A×A× {0} are trivial.
The result follows from the theorem of the cube (Theorem 1.4.15).

Corollary 1.4.17. Let A be an abelian variety over k, V be a complete and geometrically integral
k-variety, f, g, h : V −→ A be three morphisms and L be a line bundle on A. Then

(f + g + h)∗L ⊗ (f + g)∗L−1 ⊗ (g + h)∗L−1 ⊗ (f + h)∗L−1 ⊗ f∗L ⊗ g∗L ⊗ h∗L

is trivial.

Proof. We apply the pullback of the f × g× h : V 3 −→ A3 to the line bundle of Corollary 1.4.16.

Corollary 1.4.18. Let A be an abelian variety and [n] : A −→ A be the the multiplication by n ∈ Z
map. Then:

[n]∗L ≃ Ln(n+1)/2 ⊗ [−1]∗Ln(n−1)/2.

In particular, if L is symmetric ([−1]∗L ≃ L), then [n]∗L ≃ Ln2

and if L is antisymmetric ([−1]∗L ≃
L−1), then [n]∗L ≃ Ln.

Proof. We proceed by induction on n ∈ N. The case n = 0 is [0]∗L ≃ OA which is true since
the pullback by a constant map is always trivial. The case n = 1 is [1]∗L ≃ L, which is trivially
true. For n ≥ 1, we assume that the result holds for n − 1 and n. We apply Corollary 1.4.17 with
f = [n], g = [1] = idA and h = [−1] and we obtain that:

[n]∗L ⊗ [n+ 1]∗L−1 ⊗ [n− 1]∗L−1 ⊗ [n]∗L ⊗ L⊗ [−1]∗L ≃ OA,

with [n]∗L ≃ Ln(n+1)/2 ⊗ [−1]∗Ln(n−1)/2 and [n− 1]∗L ≃ Ln(n−1)/2 ⊗ [−1]∗L(n−1)(n−2)/2, so that

[n+ 1]∗L ≃ [n]∗L2 ⊗ [n− 1]∗L−1 ⊗ L⊗ [−1]∗L
≃ Ln(n+1) ⊗ [−1]∗Ln(n−1) ⊗ L−n(n−1)/2 ⊗ [−1]∗L−(n−1)(n−2)/2 ⊗ L⊗ [−1]∗L
≃ L(n+1)(n+2)/2 ⊗ [−1]∗Ln(n+1)/2

This proves the result for n + 1. Now, if n ∈ Z \ N, we apply [−1]∗ to the formula obtained for −n.
This completes the proof.

Theorem 1.4.19 (Theorem of the Square). Let A be an abelian variety over k and L be a line bundle
on A. Then, for all a, b ∈ A(k), we have:

t∗a+bL ⊗ L ≃ t∗aL ⊗ t∗bL.

Proof. We apply Corollary 1.4.17 with f = idA, g the constant map equal to a and h the constant
map equal to b.

Remark 1.4.20. If D :=
∑
Z∈P (A) nX [Z] is a divisor on A and ta : A −→ A is the translation map

x 7−→ x+ a by a ∈ A(k), then t∗aL(D) = L(D − a), where D − a :=
∑
Z∈P (A) nX [Z − a]. Hence, the

theorem of the square ensures that (D − a− b) +D ∼ (D − a) + (D − b) for all a, b ∈ A(k).

50 CHAPTER 1. PRELIMINARIES

Why abelian varieties are projective

Theorem 1.4.21. [Mil86, Theorem 7.1] Abelian varieties are projective. In other words, if A is an
abelian variety over k, there exists a very ample line bundle on A.

Proof. The proof from Milne [Mil86, Theorem 7.1] is made of two steps. We only give a very brief
overview and refer to [Mil86] for details.

First, we assume that k is algebraically closed and find a line bundle L on A generated by global
sections s0, · · · , sn ∈ Γ(A,L) forming a k-vector space V = Spank(s0, · · · , sn) that:

• Separates points: for all distinct closed points x, y ∈ A(k), there exists s ∈ V such that sx ∈
mA,xLx and sy ̸∈ mA,yLy.

• Separates tangent vectors: for all closed point x ∈ A(k), {s ∈ V | sx ∈ mA,xLx} spans
mA,xLx/m2

A,xLx as a k-vector space.

Then [Har77, Proposition II.7.3] ensures that L is very ample. To find such a very ample line bundle,
we find a finite set of prime divisors Z1, · · · , Zn ⊂ A (subvarieties of codimension 1) such that⋂n
i=1 Zi = {0} and for all tangent vector t ∈ T0(A) = (mA,0/m

2
A,0)

∗, there exists i ∈ J1 ; nK such

that t ̸∈ T0(Zi) = (mZi,0/m
2
Zi,0

)∗ (viewed naturally as a subspace of T0(A)). Then, we consider

D :=
∑n
i=1[Zi] and it can be proved that L(3D) is generated by global sections that separate points

and tangent vectors i.e. is very ample. The main ingredient of the proof is the theorem of the square
Theorem 1.4.19 (which translates local properties at 0 everywhere).

In the second step, we do not assume that k is algebraically closed. By the first step we obtain an
ample divisor D on Ak. Then D must be defined over a finite extension k′/k and we may consider
D′ =

∑
σ∈G σ · D with G := Autk(k

′). Then D′ is fixed by the action of G, so is naturally defined
over k′G and it can be proved that D′ is ample as a sum of ample divisors by Proposition 1.4.12. If
k is perfect, then k′G = k and the proof is complete. Otherwise, p := char(k) > 0 and k′G is purely
inseparable i.e. there exists m ∈ N such that k′p

m

= k. It can then be proved that pmD′ is defined
over k and ample, again as a sum of ample divisors.

Theorem 1.4.21 ensures that (very) ample line bundles always exist on an abelian variety A over k
and its proof relies on finding a specific ample line bundle L on A and proving that L3 is very ample.
This is actually a general fact for any ample line bundle on A and its proof also relies on the theorem
of the square.

Theorem 1.4.22. [Mum74, Theorem p. 163] Let A be an abelian variety over k. Then for any ample
line bundle L on A and n ≥ 3, Ln is very ample.

1.4.3 Isogenies

Definition 1.4.23. A homomorphism of abelian varieties f : A −→ B over k is a morphism of
k-schemes that induces a group homomorphism A(k) −→ B(k).

By abuse, we call homomorphism A −→ B a homomorphism f : Ak′ −→ Bk′ defined over an
algebraic extension k′/k. By abuse, we also say that such a homomorphism f is defined over k or
k-rational if f is the base change f = gk′ of a homomorphism g : A −→ B over k.

It is a widely known fact that an algebraic morphism between elliptic curves which maps 0 to 0 is
a homomorphism. This fact generalises to abelian varieties.

Lemma 1.4.24. Let f : A −→ B be morphism of k-schemes between abelian varieties. Then f = ta◦h
where h : A −→ B is a homomorphism of abelian varieties and a := f(0) ∈ B(k). As a consequence,
if f(0) = 0, then f is a homomorphism of abelian varieties.

Proof. Replacing f by t−a ◦ f with a := f(0), we may assume that f(0) = 0. Let mA : A× A −→ A
and mB : B ×B −→ B be the addition maps and φ := f ◦mA −mB ◦ (f × f) : A× A −→ B. Then
φ(0, x) = φ(x, 0) = f(x)− f(x)− f(0) = 0 for all x ∈ A(k) so φ({0} ×A) = φ(A× {0}) = {0} and B
is complete so the rigidity lemma (Lemma 1.4.3) applies and ensures that φ = 0. This completes the
proof.

1.4. POLARISED ABELIAN VARIETIES 51

Any homomorphism (of abelian varieties over k) f : A −→ B has a kernel ker(f) defined as the
scheme theoretic fiber of 0 (see [GW10, Definition 4.25]). This is a closed subgroup scheme of A
[Sha86, p. 35].

Definition 1.4.25. An isogeny f : A −→ B is a homomorphism which is surjective and has finite
kernel. Following Definition 1.4.23, we say that such an isogeny f is defined over k when it is defined
over k as a homomorphism.

Proposition 1.4.26. [Mil86, Proposition 8.1] Let f : A −→ B be a homomorphism. Then the
following are equivalent:

(i) f is an isogeny.

(ii) dim(A) = dim(B) and f is surjective.

(iii) dim(A) = dim(B) and ker(f) is finite.

Example 1.4.27. If f : E1 −→ E2 is a homomorphism between elliptic curves, then dim(E1) =
dim(E2) = 1 so f is an isogeny if and only if it has finite kernel if and only if it is surjective. This
was already a known fact.

When f : A −→ B is an isogeny, its fibers are finite (from a set theoretic point of view). The
associated structure sheaf morphism f# : OB −→ f∗OA also satisfies a finiteness property.

Definition 1.4.28. Let (X,OX) be a locally ringed space and M be an OX -module. Then M is
finite locally free of rank n ∈ N if X is covered by open subsets (Ui)i∈I such that for all i ∈ I,
M|Ui

≃ OnX |Ui
.

A morphism f : X −→ Y of schemes is finite locally free (of rank n) if f∗OX is a finite locally
free OY -module (of rank n) via the structure sheaf morphism f# : OY −→ f∗OX and if f is affine
(preimages of affine subsets are affine subsets).

We introduce the notions of degree and separability of isogenies between abelian varieties, gener-
alising these notions introduced for elliptic curve isogenies.

Proposition 1.4.29. [Mil86, Proposition 8.1] Let f : A −→ B be a homomorphism of abelian
varieties. Then f is an isogeny if and only if it is finite locally free.

Definition 1.4.30. The degree of a morphism f : A −→ B, denoted by deg(f), is the rank of f∗OA
as an OB-module.

It is easy to see that the degree is a multiplicative map. If f : A −→ B and g : B −→ C are
isogenies, then deg(g ◦ f) = deg(f) deg(g). It can also be proved that the degree is stable under base
change (i.e. field extension).

As in differential geometry, we can define the tangent space of a k-scheme X at a point x ∈ X, as
Tx(X) := (mX,x/m

2
X,x)

∗ [GW10, § 6.2], which is a κ(x)-vector space. When X is smooth at x ∈ X,
we have dimκ(x) Tx(X) = dim(X) and the converse also holds [GW10, Corollary 6.29]. If f : X −→ Y
is a morphism of k-schemes, then for all x ∈ X, κ(x) is a field extension of κ(f(x)) induced by the
local map f# : OY,f(x) −→ OX,x and we can define a differential map:

dfx : Tx(X) −→ Tf(x)(Y)⊗κ(f(x)) κ(x)

as in [GW10, Remark 6.3]. When κ(x) = κ(f(x)), dfx is a map Tx(X) −→ Tf(x)(Y). Separable
morphisms are the analogue of local diffeomorphisms in differential geometry.

Definition 1.4.31. Let f : A −→ B be an isogeny. We say that f is separable or étale3 when the
differential map dfx is an isomorphism of κ(x)-vector spaces for all x ∈ A.

The above definition generalises separable isogenies between elliptic curves.

3In general, a morphism of k-schemes f : X −→ Y is étale when it is flat and separable/unramified. The invertibility
of dfx means that the morphism is separable/unramified. If f is an isogeny, it is automatically flat because it is finite
locally free [GW10, Proposition 12.19].

52 CHAPTER 1. PRELIMINARIES

Proposition 1.4.32. Let f : A −→ B be an isogeny. Then #ker(f)|deg(f) and we have #ker(f) =
deg(f) when f is separable.

Proof. Let K := ker(f). The degree being stable under base change, we may assume that k is
algebraically closed. Then, since f is finite locally free, we have by [GW10, Proposition 12.21]:

deg(f) =
∑
x∈K

exfx,

where for all x ∈ K, ex is the ramification of x, defined as the length of OK,x as an OK,x-module
(K = ker(f) being seen as the scheme theoretic fiber of 0) and fx := [κ(x) : k] is the inertia index of x.
In particular, for all x ∈ K, κ(x)/k is finite so κ(x) = k since k is algebraically closed. Besides, since
the translation map is an isomorphism, we obtain that ex = e0 for all x ∈ K, so that deg(f) = e0#K
and #K|deg(f). When f is separable, it is in particular unramified by [The24, Tag 0B2G], so e0 = 1
and deg(f) = #K .

Proposition 1.4.33. [Mil86, Proposition 8.2] Let A be an abelian variety over k of dimension g > 0
and [n] : A −→ A be the multiplication by n ∈ Z∗. Then:

(i) [n] is an isogeny.

(ii) deg([n]) = n2g.

(iii) [n] is separable if and only if char(k) ̸ |n.

Proof. Except for (i), we only provide a sketch of the proof here. We refer to [Mil86, Proposition 8.2]
for a precise proof.

(i) We prove that ker([n]) is finite and conclude by Proposition 1.4.26. By Theorem 1.4.21, there
exists a (very) ample line bundle L on A. Since [−1] is an isomorphism, [−1]∗L is also ample and

L′ := L ⊗ [−1]∗L is ample by Proposition 1.4.12. By construction, L′ is symmetric so [n]∗L′ ≃ L′n2

by Corollary 1.4.18. It follows that M := L′n2

is trivial on ker([n]). Besides, M is ample by
Corollary 1.4.18 and it is also ample on ker([n]) as the restriction of an ample line bundle on a closed
subscheme (Lemma 1.4.13). Since ker([n]) admits a trivial ample line bundle, it must be of dimension 0
so finite. Indeed, if it was not of dimension 0, the intersection number (Mdim(ker([n]) ·ker([n])) would be
positive by multilinearity of intersection numbers [The24, Tag 0BEV]. But (Mdim(ker([n]) ·ker([n])) = 0
sinceM is trivial on ker([n]). Contradiction. For a formal and abstract introduction to intersection
numbers, we refer to [The24, Tag 0BEP] or alternatively [Sha13, § IV.1] for a more elementary one
when k is algebraically closed.

(ii) It can be proved that ([n]∗L′g ·A) = deg([n])(L′g ·A) (see [Mil86, Lemma 8.3] or [The24, Tag

0BET]) and that ([n]∗L′g · A) = ((L′n2

)g · A) = n2g(L′g · A) since [n]∗L′ ≃ L′n2

and by [The24, Tag
0BER]. We also know that ([n]∗L′g ·A) > 0 by [The24, Tag 0BEV] because A has positive dimension
g > 0. Then, deg([n]) = n2g.

(iii) If f, g : A −→ B are morphisms of abelian varieties, it can be proved that d(f+g)0 = df0+dg0
[Mum74, p. 42]. It follows that d[n]0 : T0(A) −→ T0(A) is the multiplication by n map which is an
isomorphism if and only if char(k) ̸ |n. Using translation maps, we conclude that [n] is separable if
and only if char(k) ̸ |n.

Corollary 1.4.34. Let A be an abelian variety over k of dimension g > 0 and n ∈ N∗. If n ̸ | char(k),
then A[n](k) ≃ (Z/nZ)2g.

Proof. The torsion subgroup A[n] is the kernel of [n] which is separable and of degree n2g by Proposi-
tion 1.4.33. Then, Proposition 1.4.32 ensures that #A[n](k) = n2g. We may assume n ≥ 2 (the result
being trivial for n = 1). By the finite abelian group structure theorem, there exists d1, · · · , dr ∈ N∗

such that d1| · · · |dr, d1 ≥ 2 ,
∏r
i=1 di = n2g and:

A[n](k) ≃
r∏
i=1

(Z/diZ).

https://stacks.math.columbia.edu/tag/0B2G
https://stacks.math.columbia.edu/tag/0BEV
https://stacks.math.columbia.edu/tag/0BEP
https://stacks.math.columbia.edu/tag/0BET
https://stacks.math.columbia.edu/tag/0BET
https://stacks.math.columbia.edu/tag/0BER
https://stacks.math.columbia.edu/tag/0BER
https://stacks.math.columbia.edu/tag/0BEV

1.4. POLARISED ABELIAN VARIETIES 53

We also have dr|n by the definition of A[n](k) and d1|dr, so A[d1](k) ⊆ A[n](k), so that A[d1](k) =
A[n](k)[d1] ≃ (Z/d1Z)r. It follows that #A[d1](k) = dr1. But #A[d1](k) = d2g1 , again by Proposi-

tions 1.4.32 and 1.4.33. Hence, r = 2g. The equality
∏2g
i=1 di = n2g with d1| · · · |dr|n then ensures

that d1 = · · · = dr = n, which completes the proof.

Remark 1.4.35. Assume that k has characteristic p > 0 and that A is an abelian variety of dimension
g > 0. Then, it can be proved that there exists an invariant r ∈ J0 ; gK called the p-rank of A such
that A[pn](k) ≃ (Z/pnZ)r for all n ∈ N (see [Mum74, p. 147]). As a group scheme, A[pn] ≃
(Z/pnZ)r × µrpn ×G0

n, with µpn := Spec(k[T]/(T p
n − 1)) and G0

n a local-local group scheme4.

1.4.4 Isogenies as quotient maps

Between elliptic curves, separable isogenies can be defined as quotient maps by their kernel. In this
section, we shall see that this point of view still holds for abelian varieties. We start by defining
quotients by finite group schemes in a paragraph which is a bit abstract and that can be skipped
at first reading. The results are a bit more general than the main statement we make in a second
paragraph but become useful in formal proofs later.

Action of group schemes

Definition 1.4.36. Let G be a group scheme and X be a scheme, both defined over k. An action
of G on X is a map µ : G ×k X −→ X that induces a (group theoretic) action of G(k) on X(k). In
other words, the composition

X ∼= Spec(k)×k X
e×idX−−−−→ G×k X

µ−−→ X

is the identity, where e ∈ G(k) is the identity element; and the following diagram

G×k G×k X

idG×µ
��

m×idX // G×k X

µ

��

G×k X µ
// X

is commutative, where m : G×k G −→ G is the multiplication map.

Definition 1.4.37. An action of a k-group scheme G on a k-scheme X, µ : G×kX −→ X is free (or
faithful) when the map (µ, q) : G ×k X −→ X ×k X is a closed immersion, q : G ×k X −→ X being
the projection on the right component.

Definition 1.4.38. Let µ : G×kX −→ X be an action of k-group scheme and F be a coherent sheaf
on X. A lift of the action µ to F is an isomorphsim λ : q∗F ∼−→ µ∗F of sheaves on G ×k X (where
q : G×k X −→ X is the projection map on the second component), such that the following diagram
of sheaves on G×k G×k X commutes

p∗3F

(m×idX)∗λ
$$

(p2,p3)
∗λ

// ξ∗F

(idG×µ)∗λ
zz

η∗F

where p2 and p3 are respectively the projection maps on the second and third components of G ×k
G×k X, ξ := µ ◦ (p1, p2) and η := µ ◦ (m× idX).

4A local group scheme (i.e. contains a single point) whose Cartier dual (as defined in [Mum74, § 14]) is also local.
See [Mum74, p. 136].

54 CHAPTER 1. PRELIMINARIES

Now, we introduce two theorems which are used to prove several results in the theory of abelian
varieties, including Theorem 1.4.41 (among others). Mumford [Mum74] proved them when the field
k is algebraically closed but this hypothesis is actually not necessary and Mumford’s proofs still hold
otherwise.

Theorem 1.4.39. [Mum74, Theorem 1.(A), p. 111] Let G be a finite k-group scheme acting on a
k-scheme X such that the orbit of every point is contained in an affine open subset of X. Then there
exists a k-scheme Y and a morphism of k-schemes π : X −→ Y such that:

(i) As a topological space, Y is the quotient X/G and π is the associated quotient map.

(ii) As a sheaf morphism, π induces an isomorphism OY
∼−→ (π∗OX)G, where (π∗OX)G is the

subsheaf of π∗OX made of G-invariant functions.

The couple (Y, π) is unique up to isomorphism as it satisfies the following universal property: for
all G-invariant morphism of k-schemes f : X −→ Z, there exists a unique morphism g : Y −→ Z
such that f = g ◦ π.

Theorem 1.4.40. [Mum74, Theorem 1.(B), p. 111] Let G and X be as in Theorem 1.4.39. Assume
furthermore that G = Spec(R) with n := dimk(R). Then π is finite locally free of rank n.

Besides, for all coherent OY -module F , π∗F has a natural G-action lifting the action of G on X
and

F 7−→ π∗F

is an equivalence of categories from coherent OY -modules to coherent OX-modules with G-action,
inducing an equivalence of categories from locally free OY -modules of finite rank to locally free OX-
modules of finite rank with G-action.

Correspondence between separable isogenies and their kernel

As desired, the following theorem generalises the well known correspondence between finite subgroups
and separable elliptic curve isogenies. This is a consequence of Theorem 1.4.39 applied to subgroup
schemes of abelian varieties acting by point translation. In this theorem, the point of view of finite
subgroupsK of an abelian variety defined over a field k seen as sets of points defined over k is equivalent
to the point of view finite subgroup schemes G which are étale i.e. such that #G(k) = dimk Γ(G,OG).
It is in particular true for subgroups of cardinality non-divisible by char(k).

Theorem 1.4.41. [Mum74, Theorem 4, p. 73] Let A be an abelian variety over k. Then, for every
finite subgroup scheme K ⊂ A defined over k, there exists an isogeny f : A −→ B defined over k such
that ker(f) = K. This isogeny is unique up to post-composition by an isomorphism: if g : A −→ C
is another isogeny with kernel K, then there exists an isomorphism λ : B

∼−→ C such that g = λ ◦ f .
Hence, we call B the quotient of A by K and denote B := A/K. When K is étale, f is separable.

Quite often, we apply this theorem to subgroups K ⊂ Ak which are not defined over k. In that
case, we obtain an isogeny f : Ak −→ B with kernel K. A natural question which is crucial for
computational applications is whether this isogeny descends to an isogeny defined over k. The answer
to this question is related to the action on K of automorphisms of k fixing k. Indeed, if A is an abelian
variety over a non algebraically closed field k, then Autk(k) acts naturally on A.

Proposition 1.4.42. [Mil08, Lemma IV.2.1] Let f : A −→ B be a k-rational isogeny between abelian
varieties defined over k. Then ker(f) is stable under the action of Autk(k).

Conversely, if A is an abelian variety over k and if K ⊂ Ak is a finite group scheme stable under

the action of Autk(k), then the induced quotient isogeny f : Ak −→ B = Ak/K via Theorem 1.4.41
is k-rational and the quotient B = A/K is defined over k.

Remark 1.4.43. Note that a finite subgroup K ⊂ Ak can be stable under the action of Autk(k)
without being defined over k (the action by automorphisms might permute points but not fix them).
Of course, when K is defined over k, K is automatically stable under the action of Autk(k).

When k = Fq is a finite field, the Galois group AutFq
(Fq) = Gal(Fq/Fq) is generated by the

Frobenius automorphism σ : x ∈ Fq 7−→ xq ∈ Fq. On an abelian variety A/Fq, the action via σ

1.4. POLARISED ABELIAN VARIETIES 55

defines the (q-th) Frobenius endomorphism πq ∈ End(A) which is an inseparable isogeny of degree q
[EGM22, Proposition 5.15]. In order to apply Proposition 1.4.42 in this context, we only have to
consider the stability of subgroups under the action of πq.

Now, we give a factorisation result of separable isogenies following from Theorem 1.4.41 and its
consequences.

Corollary 1.4.44.

(i) Let f : A −→ B and g : A −→ C be two isogenies between abelian varieties such that ker(g) ⊆
ker(f). Then, there exists a unique isogeny h : C −→ B such that f = h ◦ g.

(ii) Let f : A −→ B be an isogeny of degree d. Then there exists an isogeny g : B −→ A such that
g ◦ f = [d].

(iii) If f : A −→ B be an isogeny between abelian varieties over k of degree d not divisible by char(k).
Then f is separable.

Proof. (i) The inclusion ker(g) ⊆ ker(f) ensures that f is ker(g)-invariant. Therefore, the existence
and uniqueness of h directly follows from Theorem 1.4.39. We simply have to justify that h is an
isogeny. This is a consequence of Proposition 1.4.26. Since f and g are isogenies, dim(A) = dim(B) =
dim(C) and f is surjective so h must be surjective, so it is an isogeny.

(ii) By Proposition 1.4.32, #ker(f)|d so that ker(f) ⊆ A[d] (as groups). The inclusion ker(f) ⊆
A[d] also holds as group schemes (by [EGM22, Exercise 4.4]) so (i) applies and gives the desired result.

(iii) By (ii), there exists g : B −→ A such that g ◦ f = [d]. Furthermore, char(k) ∤ d so [d] is
separable by Proposition 1.4.33 and for all x ∈ A, dgf(x) ◦ dfx = d[d]x is invertible so dfx is invertible
and f is separable.

1.4.5 The dual abelian variety and polarisations

The dual abelian variety

Let A be an abelian variety over k. If L is a line bundle on A, then Theorem 1.4.19 ensures that the
map:

φL : A(k) −→ Pic(Ak)
x 7−→ [t∗xL ⊗ L−1]

(1.3)

is a group homomorphism. When L is ample, we shall see that φL induces an isogeny. The dual
abelian variety of A is constructed to be the codomain of φL that will be called a polarisation. Now,
let us formalize more precise statements.

Definition 1.4.45. We define Pic0(A) ⊂ Pic(A), the subgroup of isomorphism classes of line bundles
M of A such that t∗xM≃M for all x ∈ A(k).

Proposition 1.4.46. (i) φL defined in Eq. (1.3) maps to Pic0(Ak).

(ii) Assume that Γ(A,L) ̸= {0}. Then K(L) := ker(φL) = {x ∈ A(k) | t∗xL ≃ L} is finite if and
only if L is ample.

(iii) If L is ample, the image of φL is Pic0(Ak).

Proof. By the theorem of the square (Theorem 1.4.19), we have for all x, y ∈ A(k),

t∗y(t
∗
xL ⊗ L−1) = t∗x+yL ⊗ t∗yL−1 ≃ t∗xL ⊗ t∗yL ⊗ L−1 ⊗ t∗yL−1 = t∗xL ⊗ L−1,

so that φL(x) = [t∗xL⊗L−1] ∈ Pic0(Ak). This proves (i). (ii) is proved in [Mum74, p. 60] and (iii) in
[Mum74, Theorem 1, p. 77].

Theorem 1.4.47. There exists a unique pair (Â,P) (up to isomorphism), where Â is an abelian

variety over A and P is a line bundle over A× Â satisfying the following universal property:

1. P|{0}×Â is trivial.

56 CHAPTER 1. PRELIMINARIES

2. P|A×{x} ∈ Pic0(Aκ(x)) for all x ∈ Â.

3. For every k-scheme T and line bundle Q on A× T such that Q|{0}×T is trivial and Q|A×{t} ∈
Pic0(Aκ(t)) for all t ∈ T , there exists a unique morphism f : T −→ Â such that (idA×f)∗P ≃ Q.

Â is called the dual abelian variety and P the Poincaré sheaf of A.

Proof. The uniqueness of (Â,P) is a consequence of the universal property (point 3). The construction

of (Â,P) follows from [Mum74, § 13] and [Mil86, § 10]. We only give an overview in the following.
Let L be an ample line bundle of A and consider L∗ := m∗L ⊗ p∗L−1 ⊗ q∗L−1 where m, p, q :

A× A −→ A are respectively the addition, the projection on the first component and the projection
on the second component. Then L∗ is a line bundle on A×A such that L∗

|{0}×A is trivial and for all

x ∈ A, L∗
|A×{x} ≃ t∗xL ⊗ L−1 ∈ Pic0(Aκ(x)) by Proposition 1.4.46.(i). Hence, if the Poincaré sheaf

exists, we must have (idA × φL)
∗P = L∗.

In [Mum74, § 13], Mumford constructs Â as the quotient A/K(L) (which is an abelian variety
by Theorem 1.4.41) and P as the quotient of L∗ by the action of {0} × K(L) lifting the action by
translation of A×A (which exists by Theorem 1.4.40). Note that here, K(L) is not seen as the group
K(L) = {x ∈ A(k) | t∗xL ≃ L} defined in Proposition 1.4.46 but as a group scheme (with the same
underlying topological space). Formally, K(L) is the maximal subscheme of A such that L∗

|A×K(L) is
trivial.

Remark 1.4.48. In the construction of (Â,P), we have seen that (idA×φL)
∗P = L∗ with [L∗

|A×{x}] =

[t∗xL⊗L−1] = φL(x) for all x ∈ A. It follows that P|A×{φL(x)} corresponds to φL(x) for all x ∈ A and

since φL is surjective by Proposition 1.4.46.(iii), that for all y ∈ Â, P|A×{y} ∈ Pic0(Aκ(y)) corresponds
to y canonically.

Remark 1.4.49. Let k′/k be a field extension and consider T := Spec(k′). Then, we have Ak′ =
A ×k Spec(k′) and point 3 of Theorem 1.4.47 ensures that every line bundle L ∈ Pic0(Ak′) uniquely

determines a morphism f : Spec(k′) −→ Â i.e. a point of Â(k′) such that (idA × f)∗P ≃ L. Hence,

we can identify Â(k′) and Pic0(Ak′). We shall even write Â(k′) = Pic0(Ak′). In particular, Â(k) =

Pic0(Ak), which is the image of φL : A −→ Â when L is an ample line bundle of A, as we previously
expected.

Corollary 1.4.50.

(i) When L is an ample line bundle on A, then φL is an isogeny A −→ Â.

(ii) dim(A) = dim(Â).

Proof. (i) is an immediate consequence of Proposition 1.4.46 and Remark 1.4.49. (ii) follows from the
fact that an ample line bundle always exist on A by Theorem 1.4.21, from (i) and from the fact that
isogenies preserve the dimension by Proposition 1.4.26.

Dual isogenies

Not only abelian varieties have duals but also isogenies, so dualisation is a (contravariant) functor.

Proposition 1.4.51. Let f : A −→ B be a homomorphism between abelian varieties over k. Let
PA and PB be the Poincaré sheaves on A × Â and B × B̂ respectively. Then, there exists a unique
homomorphism f̂ : B̂ −→ Â such that (idA × f̂)∗PA ≃ (f × idB̂)

∗PB.
This map f̂ is called the dual homomorphism if f and is defined on points by [M] ∈ Pic0(B) −→

[f∗M] ∈ Pic0(A).

Proof. The line bundle Q := (f × idB̂)
∗PB on A × B̂ satisfies Q|{0}×B̂ = PB|{0}×B̂ ≃ OB̂ by point

1 of Theorem 1.4.47 and for all y ∈ B̂, Q|A×{y} = f∗(PB|B×{y}), with PB|B×{y} ∈ Pic0(Bκ(y)) by

point 2 of Theorem 1.4.47, so that Q|A×{y} ∈ Pic0(Aκ(y)) by the following lemma.

Lemma 1.4.52. Let k′/k be a field extension andM∈ Pic0(Bk′). Then f∗M∈ Pic0(Ak′).

1.4. POLARISED ABELIAN VARIETIES 57

Proof. We have for all x ∈ A(k),

t∗xf
∗M = (f ◦ tx)∗M = (tf(x) ◦ f)∗M = f∗t∗f(x)M≃ f

∗M,

so f∗M∈ Pic0(Ak′).

Hence, the universal property of the Poincaré sheaf PA (point 3 of Theorem 1.4.47) ensures the

existence of a unique map f̂ : B̂ −→ Â such that (idA × f̂)∗PA ≃ (f × idB̂)
∗PB .

As we have seen in Remark 1.4.48, for all x ∈ Â, Lx := PA|A×{x} is the the line bundle of Pic0(Ak)

corresponding to x and for all y ∈ B̂,My := PB|B×{y} is the the line bundle of Pic
0(Bk) corresponding

to y. We then have on the one hand, for all y ∈ B̂, ((f × idB̂)
∗PB)|A×{y} = f∗(PB|B×{y}) = f∗My

and on the other hand ((idA × f̂)∗PA)|A×{y} = PA|A×{f̂(y)} = Lf̂(y). Hence, f̂ : Pic0(A) −→
Pic0(B), [M] 7−→ [f∗M]. This completes the proof.

Proposition 1.4.53. Let f : A −→ B be a homomorphism between abelian varieties over k. Then f
is an isogeny if an only if f̂ is an isogeny. In that case, deg(f) = deg(f̂).

Proof. If f is an isogeny, then ker(f) is a finite group scheme. In [Mum74, Theorem 1, p. 143],

Mumford proved that ker(f̂) is isomorphic to the Cartier dual of ker(f), which is also a finite group

scheme. Since dim(Â) = dim(A) = dim(B) = dim(B̂) by Corollary 1.4.50 and Proposition 1.4.26, it

follows that f̂ is an isogeny by Proposition 1.4.26. The converse will follow from Proposition 1.4.55.(ii).
The equality between degrees is proved in [Mum74, Corollary 4, p. 131] and follows from the

computation of cohomology groups of Poincaré sheaves.

The following proposition ensures that dualisation is an involution i.e. that we can canonically

identify A with
̂̂
A (identification we shall make in the future).

Proposition 1.4.54. Let A be an abelian variety over k and P its associated Poincaré sheaf.

(i) The map x 7−→ P{x}×Â induces a canonical isomorphism ι : A
∼−→ ̂̂

A.

(ii) If L is an ample line bundle, then φL = φ̂L ◦ ι.

Proof. To see that ι maps to
̂̂
A, we have to prove that P{x}×Â ∈ Pic0(Âκ(x)) for all x ∈ A. Let L be

an ample line bundle and L∗ := m∗L ⊗ p∗L−1 ⊗ q∗L−1. Then, P is the quotient of L∗ by the action
of {0} ×K(L) lifting the action by translation of A × A and for all x ∈ A, L∗

|{x}×A = t∗xL ⊗ L−1 ∈
Pic0(Aκ(x)) is invariant by translation over {x}×A so P{x}×Â is invariant by translation over {x}× Â
so is an element of Pic0(Âκ(x)).

Now, we prove (ii). Consider the swap isomorphisms s : (x, y) ∈ A × A −→ (y, x) ∈ A × A and

s′ : (x, y) ∈ Â×A −→ (y, x) ∈ A× Â. Let x ∈ A that we see as a morphism T := Spec(κ(x)) −→ A.
Then, we have

φL(x) = [t∗xL ⊗ L−1] = [L∗
|A×{x}] = [(s∗L∗)|A×{x}] = [(idA × x)∗s∗L∗]

= [(idA × x)∗s∗(idA × φL)
∗P] = [((idA × φL) ◦ s ◦ (idA × x))∗P]

= [(s′ ◦ (φL × idA) ◦ (idA × x))∗P] = [(s′ ◦ (idÂ × x) ◦ (φL × idT))
∗P]

= [(φL × idT)
∗(s′ ◦ (idÂ × x))

∗P] = [(φL × idT)
∗(P|{x}×A)]

= [(φL × idT)
∗(P|{x}×A)] = φ̂L([P|{x}×A]) = φ̂L ◦ ι(x)

This proves (ii).
Now, since L is ample, φL is an isogeny by Proposition 1.4.46. Hence, deg(φL) = deg(φ̂L)

by Proposition 1.4.53. Besides, (ii) implies that ker(ι) ⊆ K(L) is finite so ι is an isogeny since

dim(A) = dim(Â) = dim(
̂̂
A) by Corollary 1.4.50. (ii) also implies that deg(φL) = deg(φ̂L) deg(ι) so

deg(ι) = 1 and ι is an isomorphism. This proves (i) and completes the proof.

58 CHAPTER 1. PRELIMINARIES

Proposition 1.4.55. Let f : A −→ B and g : B −→ C be homomorphisms between abelian varieties
over k. Then:

(i) ĝ ◦ f = f̂ ◦ ĝ.

(ii)
̂̂
f = f , with the canonical identifications A =

̂̂
A and B =

̂̂
B.

Proof. (i) Let PA,PB and PC be the Poincaré sheaves of A,B and C respectively. Then, we have:

(idA × f̂ ◦ ĝ)∗PA = (idA × ĝ)∗(idA × f̂)∗PA ≃ (idA × ĝ)∗(f × idB̂)
∗PB = (f × ĝ)∗PB

= (f × idĈ)
∗(idB × ĝ)∗PB ≃ (f × idĈ)

∗(g × idĈ)
∗PC = ((g ◦ f)× idĈ)

∗PC

By unicity of the homomorphism satisfying (idA × ĝ ◦ f)∗PA = ((g ◦ f) × idĈ)
∗PC , it follows that

ĝ ◦ f = f̂ ◦ ĝ.
(ii) Let PA and PB be the Poincaré sheaves associated to A and B respectively. Let ιA : A

∼−→ ̂̂
A

and ιB : B
∼−→ ̂̂

B be the canonical isomorphisms from Proposition 1.4.54. We prove that
̂̂
f◦ιA = ιB◦f .

Let x ∈ A that we identify with a morphism T := Spec(κ(x)) −→ A. Then, we have:̂̂
f ◦ ιA(x) = [(idT ◦ f̂)∗(PA|{x}×Â)] = [(idT ◦ f̂)∗(x× idÂ)

∗PA]

= [((x× idÂ) ◦ (idT ◦ f̂))
∗PA] = [((idA ◦ f̂) ◦ (x× idB̂))

∗PA]

= [(x× idB̂)
∗(idA ◦ f̂)∗PA] = [(x× idB̂)

∗(f × idB̂)
∗PB]

= [((f × idB̂) ◦ (x× idB̂))
∗PB] = [(f(x)× idB̂)

∗PB] = [PB|{f(x)}×B̂] = ιB ◦ f(x).

This completes the proof.

Polarisations

Definition 1.4.56. A polarisation λ : A −→ Â is an isogeny such that there exists an ample line
bundle L on Ak such that λk = φL (defined in Eq. (1.3)). We say that (A, λ) is a polarised abelian
variety. When λ is an isomorphism, we say that λ is principal and that (A, λ) is principally polarised.

Example 1.4.57. If E/k is an elliptic curve, then it is principally polarised. We may consider
L := L((0E)). Then L is ample and

φL : E −→ Ê
P 7−→ L((−P)− (0E))

is a principal polarisation. It can be proved this is the only one [Mil86, Example 13.1].

Definition 1.4.58. Let (A, λA) and (B, λB) be polarised abelian varieties. An isogeny f : A −→ B

is a polarised isogeny (A, λA) −→ (B, λB) when f̂ ◦ λB ◦ f = λA.

Definition 1.4.59. Two line bundles L andM on an abelian variety A are algebraically equivalent
if L ⊗M−1 ∈ Pic0(A).

Lemma 1.4.60. Let A and B be abelian varieties. Let L andM be ample line bundles on A and B
respectively. Then f : A −→ B is a polarised isogeny (A,φL) −→ (B,φM) if and only if f∗M and L
are algebraically equivalent.

Proof. Assume that f∗M and L are algebraically equivalent i.e. f∗M ⊗ L−1 ∈ Pic0(A). Then,
Proposition 1.4.51 ensures that for all x ∈ A(k),

f̂ ◦ φM ◦ f(x) = [f∗(t∗f(x)M⊗M
−1)] = [(tf(x) ◦ f)∗M⊗ f∗M−1] = [(f ◦ tx)∗M⊗ f∗M−1]

= [t∗xf
∗M⊗ f∗M−1] = [t∗xL ⊗ L−1] = φL(x),

where the last equality comes from the fact that f∗M⊗ L−1 ∈ Pic0(A). Hence, f is a polarised
isogeny (A,φL) −→ (B,φM).

Conversely, if f is a polarised isogeny (A,φL) −→ (B,φM), then the equality f̂ ◦ φM ◦ f = φL
ensures that t∗xf

∗M⊗ f∗M−1 ≃ t∗xL ⊗ L−1 for all x ∈ A(k) i.e. that f∗M⊗L−1 ∈ Pic0(A). This
completes the proof.

1.4. POLARISED ABELIAN VARIETIES 59

Polarisations and cohomology of invertible sheaves

Let A be an abelian variety over k. Then, we can define a cohomology of sheaves of abelian groups on
A given by the right derived functor of Γ(A, ·) (see [Har77, § 3.2]). A theorem due to Grothendieck
[Har77, Theorem 2.7] ensures that if g := dim(A), then for any sheaf F of abelian group on A and
i > g, we have Hi(A,F) = 0.

Definition 1.4.61. In particular, if L is a line bundle on A, we have can define

χ(L) :=
∞∑
i=0

(−1)i dimkH
i(A,L) =

g∑
i=0

(−1)i dimkH
i(A,L).

Then, we have the following results proved in [Mum74, § 16, p.150].

Theorem 1.4.62 (Riemann-Roch). For any line bundle L on A we have:

(i) χ(L) = (Lg · A)/g! where g := dim(A) and (Lg · A) is the self intersection number of L (or of
its associated divisor).

(ii) deg(φL) = χ(L)2.

Theorem 1.4.63. If L is a line bundle on A such that K(L) is finite, then there exists an integer
i(L) ∈ J0 ; gK such that Hi(L)(A,L) ̸= {0} and Hi(A,L) = {0} for all i ∈ N \ {i(L)}.

Corollary 1.4.64. If L is an ample line bundle on A, then i(L) = 0 and χ(L) = dimk Γ(A,L).

Proof. If L is ample, then non trivial global sections exist on L so we have dimk Γ(A,L) > 0. Since
H0(A,L) = Γ(A,L), and K(L) is finite by Proposition 1.4.46.(ii), Theorem 1.4.63 applies with i(L) =
0. We then have χ(L) = dimkH

0(A,L) = dimk Γ(A,L).

1.4.6 The Weil pairing

In this section, we fix an abelian variety A over k. We construct Weil pairings on A following the
proof from Silverman [Sil09, § III.8] over elliptic curves, but in the abelian varieties setting. Unlike in
previous sections, most proofs are fairly elementary here so we give them in extenso.

Lemma 1.4.65. Let L be a line bundle on A. Then the following are equivalent:

(i) [L] ∈ Pic0(A).

(ii) m∗L ≃ p∗L ⊗ q∗L, where m, p, q : A × A −→ A are respectively the addition, the projection on
the first component and the projection on the second component.

(iii) [n]∗L ≃ Ln for all n ∈ Z.

(iv) L is antisymmetric i.e. [−1]∗L ≃ L−1.

(v) There exists n ∈ N∗ such that [Ln] ∈ Pic0(A).

Proof. (i) ⇐⇒ (ii) If L ∈ Pic0(A), then, we have for all x ∈ A(k),

m∗L|A×{x} ≃ t∗xL ≃ L ≃ (p∗L ⊗ q∗L)|A×{x},

and m∗L|{0}×A ≃ L ≃ (p∗L ⊗ q∗L)|{0}×A so the seesaw principle (Theorem 1.4.14) applies and we

have m∗L ≃ p∗L ⊗ q∗L. Conversely, if m∗L ≃ p∗L ⊗ q∗L, then for all x ∈ A(k), we obtain that
t∗xL ≃ L by applying the restriction to A× {x}.

(ii) =⇒ (iii) Assume (ii). We proceed by induction on n ∈ N. For n = 0, the result is trivial. Now,
let n ∈ N∗ and assume the result at rank n− 1. Then, applying ([n− 1]× [1])∗ to (ii), we obtain:

[n]∗L ≃ [n− 1]∗L ⊗ L ≃ Ln−1 ⊗ L = Ln,

We proceed similarly for n ∈ Z \ N.

60 CHAPTER 1. PRELIMINARIES

(iii) =⇒ (iv) is trivial. (iv) =⇒ (v) Assume that L is antisymmetric. Then L2 ≃ [−1]∗L−1 ⊗ L
and for all x ∈ A(k),

φ[−1]∗L−1(x) = [t∗x[−1]∗L−1 ⊗ [−1]∗L] = [[−1]∗(t∗−xL ⊗ L−1)−1],

where t∗−xL⊗L−1 ∈ Pic0(Ak) by Proposition 1.4.46.(iii) so [−1]∗(t∗−xL⊗L−1)−1 ≃ t∗−xL⊗L−1 since
(i) =⇒ (iv), and

φ[−1]∗L−1(x) = [t∗−xL ⊗ L−1] = φL(−x) = −φL(x).

Hence, φ[−1]∗L−1⊗L(x) = −φL(x) + φL(x) = 0 for all x ∈ A(k), so [[−1]∗L−1 ⊗ L] ∈ Pic0(A) and

[L2] ∈ Pic0(A).
(v) =⇒ (i) Let n ∈ N∗ such that [Ln] ∈ Pic0(A). Then for all x ∈ A(k), 0 = φLn(x) = [n]φL(x) =

φL ◦ [n](x) i.e. φL ◦ [n] = 0. Since [n] is surjective (as an isogeny), we have φL = 0 so [L] ∈ Pic0(A).
This completes the proof.

Lemma 1.4.66. Let f : A −→ B be a separable isogeny between abelian varieties over k and s ∈ k(A).
Then, t∗xs = s for all x ∈ ker(f) if and only if there exists t ∈ k(B) such that s = f∗t.

Proof. Let K := ker(f). Our goal is to prove that k(A)K = f∗k(B), where is the subfield of k(A)
fixed by the action of K by translation. We easily prove that f∗k(B) ⊆ k(A)K . Indeed, if t ∈ k(B),
then for all x ∈ K, t∗xf

∗t = (f ◦ tx)∗t = f∗t.
Conversely, consider G := Aut(k(A)/f∗k(B)). Then, by Artin’s lemma [Lan04, Theorem VI.1.8]

we know that k(A)/k(A)G is a finite Galois extension of degree #G. Since f is separable, k(A)/f∗k(B)
is a finite separable extension of degree deg(f) = #K. Since, f∗k(B) is fixed by G, we have f∗k(B) ⊆
k(A)G and we only have to prove that #G = #K to conclude.

We actually prove that K −→ G, x 7−→ t∗x is a group isomorphism (where t∗x is the action by
translation on functions of k(A)). Indeed, if x ∈ K \{0} then t∗x is not trivial, i.e. there exists s ∈ k(A)
such that t∗xs ̸= s. Indeed, A being projective, we may assume that Ak ⊆ Pn

k
= Proj(k[T0, · · · , Tn])

and write x := (x0 : · · · : xn) and 0A := (e0 : · · · : en), with xi ̸= ei for some i ∈ J1 ; nK. Then, the
function s := Ti − xi satisfies s(0A) = ei − xi ̸= 0 and t∗xs(0A) = s ◦ tx(0A) = s(x) = 0 so t∗xs ̸= s. It
follows that x 7−→ t∗x is injective and that #K ≤ #G but #K ≥ #G since f∗k(B) ⊆ k(A)G so this
homomorphism is also surjective. This completes the proof.

Theorem 1.4.67. For all n ∈ N∗ such that char(k) ∤ n, there exists a non-degenerate pairing en :

A[n](k)× Â[n](k) −→ k∗ called the n-th Weil pairing of A.

Proof. Construction: The construction of the Weil pairing on any abelian variety is very similar to
elliptic curves. Let n ∈ N∗ such that char(k) ∤ n. Let y ∈ Â[n](k). Then y is represented canonically
by a divisor Dy ∈ Pic0(Ak) and we have by Lemma 1.4.65.(ii), [n]∗Dy ∼ nDy and nDy ∼ 0 since

[n]y = 0. Hence, there exists sections fy, gy ∈ k(A) such that nDy = div(fy) and [n]∗Dy = div(gy).
The abelian variety A being projective, fy and gy can be seen as functions of a subvariety of the
projective space PNk for some N ∈ N∗. Then we shall denote them as functions, using the composition
instead of the pull-back notation. In particular, we may write

div(fy ◦ [n]) = [n]∗ div(fy) = [n]∗(nDy) = n[n]∗Dy = ndiv(gy) = div(gny). (1.4)

It follows that div(gny /fy◦[n]) = 0 so that gny /fy◦[n] ∈ Γ(Ak,L(0)) = Γ(Ak,OAk
). But Γ(Ak,OAk

) = k
since Ak is a projective variety defined over an algebraically closed field [Har77, Theorem I.3.4] and

we may write c := gny /fy ◦ [n] ∈ k. Informally, a function without zero and poles is constant. Besides,

if x ∈ A[n](k) then we have,

gny ◦ tx = c · fy ◦ [n] ◦ tx = c · fy ◦ t[n]x ◦ [n] = c · fy ◦ [n] = gny ,

so gy/gy ◦ tx is a constant (since ndiv(gy/gy ◦ tx) = 0) and an n-th root of unity in k. We can then

define en(x, y) := gy/gy ◦ tx. This defines a map A[n](k) × Â[n](k) −→ k
∗
. Now, we verify that en

satisfies the desired properties.

1.4. POLARISED ABELIAN VARIETIES 61

Bilinearity: Let x, x′ ∈ A[n](k) and y, y′ ∈ Â[n](k). Then, gy/gy ◦ tx being constant, we have
gy/gy ◦ tx = gy ◦ tx′/gy ◦ tx+x′ , so that:

en(x+ x′, y) =
gy

gy ◦ tx+x′
=

gy ◦ tx′

gy ◦ tx+x′

gy
gy ◦ tx′

=
gy

gy ◦ tx
gy

gy ◦ tx′
= en(x, y)en(x

′, y).

Besides, the canonical isomorphism A0(k) ∼= Pic0(Ak) ensures that Dy+y′ ∼ Dy +Dy′ so there exists

h ∈ k(A) such that div(h) = Dy+y′ −Dy −Dy′ . It follows that:

div(h ◦ [n]) = [n]∗ div(h) = [n]∗Dy+y′ − [n]∗Dy − [n]∗Dy′ = div(gy+y′)− div(gy)− div(gy′),

so that gy+y′ = gy · gy′ · h ◦ [n] up to a constant (that can be ignored). We then have:

en(x, y + y′) =
gy+y′

gy+y′ ◦ tx
=

gy · gy′ · h ◦ [n]
gy ◦ tx · gy′ ◦ tx · h ◦ [n] ◦ tx

=
gy · gy′

gy ◦ tx · gy′ ◦ tx
= en(x, y)en(x, y

′),

where we used the fact that [n] ◦ tx = [n] since [n]x = 0. This proves that en is a pairing.

Non-degeneracy: Let y ∈ Â[n](k) such that for all x ∈ A[n](k), en(x, y) = 1. Then for all x ∈
A[n](k), gy = gy ◦ tx so gy factors through [n] by the Lemma 1.4.66 ([n] being a separable isogeny) i.e.
we may write gy = hy ◦ [n] for some hy ∈ k(A). It follows by Eq. (1.4) that div(fy ◦ [n]) = div(hny ◦ [n])
so that fy ◦ [n] = c · hny ◦ [n] for some c ∈ k∗. Since [n] is an isogeny, it is surjective so fy = c · hny and
nDy = div(fy) = div(hny) = ndiv(hy), so that Dy = div(hy) ∼ 0 and y = 0.

It follows that y ∈ Â[n](k) 7−→ en(., y) ∈ Â[n](k) is injective so it is a group isomorphism since

#Â[n](k) = #A[n](k) = n2g = #Â[n] by Corollary 1.4.34. Hence, if x ∈ A[n](k)\{0}, then there exists

χ ∈ Â[n](k) such that χ(x) ̸= 1 so there exists y ∈ Â[n](k) such that en(., y) = χ and en(x, y) ̸= 1.
This proves that en is non-degenerate and completes the proof.

Remark 1.4.68. If E is an elliptic curve over k, there is a unique canonical principal polarisation
identifying E with its dual Ê (Example 1.4.57). Therefore, the n-th Weil pairing of E defines a map
en : E[n](k)× E[n](k) −→ k∗. However, on an abelian variety A, we have to specify the polarisation

relating A to Â.

When λ : A −→ Â is a homomorphism and n ∈ N∗ is coprime with char(k), we denote by eλn, the
pairing:

eλn : A[n](k)×A[n](k) −→ k
∗
, (x, y) 7−→ en(x, λ(x)).

When λ = φL for some ample line bundle L on Ak, we denote eLn := eλn.

Proposition 1.4.69. If λ : A −→ Â is a polarisation, then eλn is skew-symmetric.

Proof. We follow [Mum74, Theorem 1, p. 186]. It suffices to prove that for all x ∈ A[n](k), we have
eλn(x, x) = 1. Let D be a divisor on Ak representing λ (λ = φL(D)). Then eλn(x, x) = en(x, λ(x)) =
gλ(x)/gλ(x)◦tx with div(gλ(x)) = [n]∗(t∗xD−D) since t∗xD−D is the divisor that canonically represents

λ(x) ∈ Âk = Pic0(Ak). Let y ∈ A(k) such that [n]y = x (which exists since [n] is surjective, as any
isogeny). Then [n] ◦ ty = tx ◦ [n], so that

div(gλ(x)) = [n]∗(t∗xD −D) = t∗y[n]
∗D − [n]∗D,

and for all i ∈ J0 ; n− 1K,

div(gλ(x) ◦ t[i]y) = t∗[i]y div(gλ(x)) = t∗[i+1]y[n]
∗D − t∗[i]y[n]

∗D.

Hence,

div

(
n−1∏
i=0

gλ(x) ◦ t[i]y

)
=

n−1∑
i=0

(t∗[i+1]y[n]
∗D − t∗[i]y[n]

∗D) = t∗[n]y[n]
∗D − [n]∗D

= t∗x[n]
∗D − [n]∗D = [n]∗t∗nxD − [n]∗D = 0,

62 CHAPTER 1. PRELIMINARIES

since nx = 0. Hence, h :=
∏n−1
i=0 gλ(x) ◦ t[i]y is constant and we have:

1 =
h ◦ ty
h

=

∏n−1
i=0 gλ(x) ◦ t[i+1]y∏n−1
i=0 gλ(x) ◦ t[i]y

=
gλ(x) ◦ t[n]y

gλ(x)
=
gλ(x) ◦ tx
gλ(x)

.

Hence eλn(x, x) = gλ(x)/gλ(x) ◦ tx = 1. This completes the proof.

Proposition 1.4.70. Let f : A −→ B be a homomorphism of abelian varieties over k, λ : A −→ Â
be a polarisation and n,m ∈ N∗ such that char(k) ∤ nm. Then:

(i) ∀x ∈ A[n](k), y ∈ B̂[n](k), en(x, f̂(y)) = en(f(x), y).

(ii) ∀x, y ∈ A[n](k), ef̂◦λ◦fn (x, y) = eλn(f(x), f(y)).

(iii) ∀x ∈ A[mn](k), y ∈ Â[mn](k), emn(x, y)n = em([n]x, [n]y).

Proof. (i) Let x ∈ A[n](k) and y ∈ B̂[n](k). Let Dy be the divisor on B representing y and gy ∈ k(B)

such that [n]∗Dy = div(gy). Then f∗Dy represents f̂(y) by Proposition 1.4.51 and [n]∗f∗Dy =
f∗[n]∗Dy = div(gy ◦ f), so that

en(x, f̂(y)) =
gy ◦ f

gy ◦ f ◦ tx
=

gy ◦ f
gy ◦ tf(x) ◦ f

=
gy

gy ◦ tf(x)
= en(f(x), y),

since gy/gy ◦ tf(x) is constant. This proves (i). (ii) follows immediately.

(iii) Let x ∈ A[mn](k) and y ∈ Â[mn](k). Let Dy be the divisor of Ak associated to y and

gy ∈ k(A) such that [nm]∗Dy = div(gy). Then nDy represents [n]y and there exists g[n]y ∈ k(A) such
that [m]∗(nDy) = div(g[n]y). It follows that:

div(g[n]y ◦ [n]) = [n]∗ div(g[n]y) = [n]∗[m]∗(nDy) = n[nm]∗Dy = div(gny),

so that gny = c · g[n]y ◦ [n] for some constant c ∈ k∗. Consequently,

enm(x, y)n =
gny

(gy ◦ tx)n
=

g[n]y ◦ [n]
g[n]y ◦ [n] ◦ tx

=
g[n]y ◦ [n]

g[n]y ◦ (t[n]x ◦ [n])
=

g[n]y

g[n]y ◦ t[n]x
= enm([n]x, [n]y).

This completes the proof.

Part I

Cryptographic applications of
higher dimensional isogenies

63

Chapter 2

Improving ideal-to-isogeny
translation algorithms

In this chapter, we present several algorithms to translate quaternion ideals into isogenies between
supersingular elliptic curves. In Section 2.1, we first give an overview of algorithms introduced in the
first version of SQIsign [DFKLPW20] based on the KLPT method [KLPT14] due to Kohel, Lauter,
Petit and Tignol to smoothen ideal norms. We then present Kani’s embedding lemma [Kan97] in
Section 2.2 that has been used for the first time to completely break the isogeny based protocol and
NIST candidate SIDH (Supersingular Isogeny Diffie Hellman) [JDF11] before being used constructively
in several cryptographic applications. These first two sections are mainly literature reviews without
original result.

We then introduce several contributions of this PhD that led to dramatic improvements of state
of the art ideal-to-isogeny translation algorithms with Kani’s lemma. In Section 2.3, we present one
of the first constructive applications of Kani’s lemma using 4-dimensional isogenies to translate ideals
into isogenies. This construction has been used in SQIsignHD [DLRW24], a variant of the digital sig-
nature scheme and NIST candidate SQIsign [DFKLPW20; DLW22], with significant improvements of
the signing time and security proof at the expense of the verification. In Section 2.4, we present a new
algorithm using 2-dimensional isogenies only based on the Clapoti method (class group action in poly-
nomial time) introduced by Aurel Page and Damien Robert [PR23] after SQIsignHD. This algorithm
has been used in the SQIsign2D-West variant of SQIsign [BDF+25] achieving better performance than
SQIsignHD in terms of verification time, while preserving a competitive signing time and improving
further the security proof. Finally, in Section 2.5 we present an algorithm for practical effective class
group action on oriented elliptic curves using 4-dimensional isogenies (PEGASIS) [DEF+25], also
based on the Clapoti method and with very good performance when applied to CSIDH.

Note that this chapter does not introduce any cryptographic protocol but only algorithms. We
refer to Chapters 3 and 4 for a presentation of SQIsignHD and SQIsign2D-West.

2.1 KLPT based techniques of ideal-to-isogeny translation and
applications

In this section, we motivate the use of the Deuring correspondence in cryptographic protocols. We
then present techniques introduced for the original version of SQIsign [DFKLPW20; DLW22] to make
this Deuring correspondence effective by translating ideals of smooth norm into isogenies.

2.1.1 A constructive use of the Deuring correspondence

Let E1 and E2 be supersingular elliptic curves over Fp2 . Assume that we know their endomorphism
rings End(E1) and End(E2) i.e. that we know a maximal order Oi ⊂ Bp,∞ and an isomorphism

ιi : Oi
∼−→ End(Ei) for i ∈ {1, 2}. We can use this information to compute an isogeny φ : E1 −→ E2

as follows.

65

66 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

First, we find a connecting ideal I between O1 and O2, that is to say a left O1-ideal that is also
a right O2-ideal. For instance, we may take I := d · O1 · O2, with d ∈ N∗ such that I ⊆ O1 ∩ O2. By
the Deuring correspondence, this ideal determines an isogeny φI : E1 −→ E2. However, this ideal has
no reason to be of smooth norm, so to be translatable into an isogeny with standard techniques. For
that reason, we look for an equivalent ideal J ∼ I of smooth norm that can then be translated into
an isogeny φJ : E1 −→ E2 that is efficiently representable with one-dimensional techniques because
it has smooth degree nrd(J). Such an equivalent ideal of smooth norm J ∼ I can be obtained by the
KLPT algorithm [KLPT14] due to Kohel, Lauter, Petit and Tignol. The outputs of KLPT generally

have very big norm (at least Õ(p9/2) in general, reduced to Õ(p15/4) in SQIsign [DFKLPW20, § 8.3]),
which hampers efficiency in practice as we shall see in Section 2.1.4.

Nonetheless, all of the above operations take polynomial time (in log(p)). In addition, they become
very difficult when either one of the endomorphism rings End(E1) or End(E2) is unknown. Finding an
isogeny φ : E1 −→ E2 in this context is essentially an instance of the supersingular isogeny problem
below.

Problem 2.1.1 (Supersingular Isogeny Problem). Given two supersingular elliptic curves E1, E2

defined over Fp2 , find an efficient representation of an isogeny φ : E1 −→ E2.

This problem has been proved to be equivalent to the supersingular endomorphism ring problem below
[Wes22; PW24; MW25]. The best known algorithms to solve the latter problem all have exponential

complexity Õ(
√
p) on a classical computer [DG16; EHLMP20; FIKMN25] and Õ(p1/4) on a quantum

computer with a Grover search [Gro96; BJS14].

Problem 2.1.2 (Supersingular Endomorphism Ring Problem). Given a supersingular elliptic curve
E defined over Fp2 , find a maximal order O ⊂ Bp,∞ and an isomorphism ι : O ∼−→ End(E).

In practice, this equivalence between Problem 2.1.1 and Problem 2.1.2 is used, since the knowledge
of the endomorphism rings End(Ei) is provided by the knowledge of an isogeny φi : E0 −→ Ei starting
from a supersingular curve E0/Fp2 of known endomorphism ring. For instance, when p ≡ 3 mod 4,
the elliptic curve E0 : y2 = x3 + x is an easy instance of the endomorphism ring problem. Indeed,
End(E0) is isomorphic to O0 := ⟨1, i, (i + j)/2, (1 + ij)/2⟩ ⊂ Bp,∞ (where i2 = −1 and j2 = −p) by
Lemma 1.2.25.

Both features of this isogeny path problem with secret endomorphism ring information - being
solvable in polynomial time and hard without the necessary secret information - are convenient for
cryptographic applications. For instance, this problem can be used in identity based protocols like
digital signatures where parties have to prove they know some secret identifying them without revealing
it.

2.1.2 Piecewise ideal-to-isogeny translation

In the following, we explain how to translate a left ideal I ⊆ O1 of norm ℓe (where ℓ is a prime) into
an isogeny φI : E1 −→ E2. We assume that I is primitive in the sense of Definition 2.1.3 below, so
that φI is cyclic.

Definition 2.1.3. Let O ⊆ Bp,∞ be a maximal order. We say that a left O-ideal I ⊆ O is primitive
if I ̸⊆ nO for any integer n > 1. The isogeny associated to such an ideal is cyclic.

The straight forward method (proposed in [GPS20] for instance) would be to compute:

ker(φI) = E[I] = {P ∈ E(Fp2) | ∀α ∈ I, α(P) = 0}

and then to apply Vélu’s formulas [Vé71] to obtain φI . However, E[I] is a cyclic subgroup of order ℓe

of the ℓe-torsion E[ℓe] that may be defined over a field extension of Fp2 of exponentially large degree,

especially if I is an output of KLPT (ℓe = Ω(p15/4)). This would make the use of Vélu’s formulas
impractical.

The solution proposed in SQIsign [DFKLPW20] to circumvent this difficulty was to cut the ideal-
to-isogeny translation into pieces. We write I = I1 · · · · · In, with ideals I1, · · · , In of norm dividing ℓf

so that the ℓf -torsion is defined over a small field extension of Fp2 or even on Fp2 itself (by requiring

2.1. KLPT BASED TECHNIQUES OF IDEAL-TO-ISOGENY TRANSLATION ANDAPPLICATIONS67

that ℓf |p+1). For all i ∈ J1 ; nK, let ψi : E′
i −→ E′

i+1 be the isogeny associated to Ii. Assuming that
the knowledge of O1 ≃ End(E1) is given by an ℓg-isogeny φ1 : E0 −→ E1 (and its associated ideal
J1), as explained in Section 2.1.1, we are able to compute ψ1 from the knowledge of φ1 and ψi+1 from
the knowledge of ψi ◦ · · · ◦ψ1 ◦φ1 for all i ∈ J1 ; n− 1K. This will be explained in the next subsection.

E0

φ1

��

ψ1◦φ1

""

ψn−1◦···◦ψ1◦φ1

**
E′

1 = E1

φI

I

44

ψ1

I1

// E′
2

ψ2

I2

// · · · E′
n−1

ψn

In

// E′
n = E2

2.1.3 How to translate a piece of ideal

As we have seen, the translation of an ideal I of big norm ℓe reduces to the following problem.

Problem 2.1.4. Let φJ : E0 −→ E be an ℓg-isogeny of associated left O0-ideal J . Let O := OR(J) ≃
End(E) and I ′ be a left O-ideal of norm ℓf such that E[ℓf] ⊆ E(Fp2). We want to compute the isogeny
φI′ : E −→ E′.

With the notations from Section 2.1.2, if we want to compute ψi, we solve this problem with
I ′ := Ii, J := J1 · I1 · · · · · Ii−1 and φJ := ψi−1 ◦ · · · ◦ ψ1 ◦ φ1.

The naive method to solve Problem 2.1.4 would be to compute E[I ′] directly, but this would mean
evaluating elements of I ′ ⊆ O on E[ℓf]. Unfortunately, this is not possible with standard techniques.
Indeed, since we know End(E0) and an ℓg-isogeny φJ : E0 −→ E, we can evaluate endomorphisms of
E but only on points of order coprime with ℓ (e.g. with the techniques of [EHLMP18, Algorithm 4]).

The following trick was proposed in [DLW22] to circumvent this difficulty. The idea is to find
an endomorphism θ ∈ End(E) of degree coprime with ℓ decomposed into two isogenies θ := ρ̂2 ◦ ρ1,
with ρi : E0 −→ E for i ∈ {1, 2}. The ρi can be evaluated on ℓf -torsion points, as well as θ. This
endomorphism θ can then be leveraged to compute I ′ by the following lemma.

Lemma 2.1.5. [DLW22, Lemma 8] Let K and I ′ be two left O-ideals of norm ℓf not contained in ℓO
and an let ε be an isomorphism O ∼−→ End(E). Let θ ∈ O \ (Z+K + ℓO) have norm coprime with ℓ.
Assume that E[K] is generated by P ∈ E[ℓf]. Then, for all C,D ∈ Z, the following statements are
equivalent:

(i) E[I ′] = ⟨[C]P + [D]ε(θ)(P)⟩.

(ii) gcd(C,D, ℓ) = 1 and there exists α ∈ I such that I = O · α+Oℓf and α · (C +Dθ) ∈ K.

There exists an algorithm [DLW22, Algorithm 3], that returns θ ∈ O \ (Z + K + ℓO) of norm
dividing T 2 when given a powersmooth integer T = Θ(p5/4) and a left O-ideal K of norm ℓf not
contained in ℓO. Combining this algorithm with the above lemma, [DLW22] obtained Algorithm 2.1
that solves Problem 2.1.4 in polynomial time (in log(p)).

2.1.4 On the practical efficiency of KLPT based techniques

In SQIsign [DFKLPW20; DLW22], to make Algorithm 2.1 efficient, the ℓfT -torsion is required to be
defined over Fp2 (for either the elliptic curve or its quadratic twist). For that reason, the prime p

is selected so that ℓf |p + 1 and ℓfT |p2 − 1. Primes of this form can be found when ℓfT = O(p3/2)
i.e. when ℓf = O(p1/4) but are non-trivial to find. Looking for such primes has motivated intensive
research efforts [Cos20; CMN21; BCRSC+23; Ste23; SEMRH24].

Besides, this efficiency compromise bears a non-negligible cost. Indeed, on the one hand, with
ℓf = O(p1/4) and an ideal I of norm nrd(I) = O(p15/4) to translate, we need to cut I into n = 15
smaller ideals I1, · · · , In and to apply Algorithm 2.1 n = 15 times. On the other hand, with the hard
to satisfy requirement ℓfT |p2−1, the powersmooth number T still has large factors, and consequently,

68 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Algorithm 2.1: Ideal of small norm to isogeny [DLW22, Algorithm 4].

Data: A powersmooth integer T = Θ(p5/4) coprime with ℓ, a left O0-ideal J of norm ℓg (with
g ≥ f), its associated isogeny φJ : E0 −→ E and a left O-ideal I ′ of norm ℓf , where
O := OR(J) ≃ End(E).

Result: The isogeny φI′ : E −→ E′ associated to I ′.
1 K ← J +Oℓf ;
2 Compute θ ∈ O \ (Z+K + ℓO) of norm dividing T 2 using [DLW22, Algorithm 3];

3 Select α ∈ I such that I = Oα+Oℓf ;
4 Compute C,D ∈ Z such that α · (C +Dθ) ∈ K and gcd(C,D, ℓ) = 1;
5 Factor nrd(θ) = N1N2 with N1|T and N2|T ;
6 H1 ← Oθ +ON1 and H2 ← Oθ +ON2;
7 for i ∈ {1, 2} do
8 Compute Li ← [J]∗Hi;
9 Compute ρi of kernel φJ(E0[Li]);

10 end
11 Q← ρ̂2 ◦ ρ1(P);
12 Compute φI′ of kernel ⟨[C]P + [D]Q⟩;
13 return φI′ ;

isogenies ρ1 and ρ2 from Algorithm 2.1 are costly to compute. As p increases, these primes factors
of T naturally get bigger, which also explains that SQIsign does not scale well to higher security
parameters.

Alternatives have been proposed to reduce this ideal-to-isogeny translation cost while preserving
the algorithmic approach based on KLPT and division into smaller ideals. In [CRSEMR24], the
authors work over small field extensions of Fp2 instead of Fp2 to compute the isogenies ρ1 and ρ2 from
Algorithm 2.1. In [ON25], it has been proposed to use 2-dimensional isogenies to replace the use of
the intermediate endomorphism θ of degree coprime to ℓ. This improved the efficiency and scalability
of the KLPT based algorithmic approach. However, we shall see that radical changes of approach
without KLPT and division into smaller ideals lead to better improvements. As the idea proposed
in [ON25], these new approaches rely on higher dimensional isogenies and Kani’s lemma that will be
presented in the next section.

2.2 Kani’s embedding lemma and isogeny interpolation

In this section, we introduce our main tool to improve ideal-to-isogeny translation algorithm. With
Kani’s lemma, we are able to interpolate isogenies between elliptic curves (even when they have non-
smooth degrees) by embedding them into higher dimensional isogenies of smooth degrees. This tool
has first been introduced in key recovery attacks against SIDH [CD23; MMPPW23; Rob23], before
being used constructively for our application and several other cryptographic applications.

2.2.1 Kani’s embedding lemma

In this section, we present Kani’s lemma that has been first used in a proof by Ernst Kani [Kan97,
Theorem 2.3] in dimension 2 and later generalised to any dimension [Rob23, Lemma 3.6]. We first
need to introduce more notions and preliminary results on isogenies between principally polarised
abelian varieties. In the following, we fix a field k.

Polarised degree

Definition 2.2.1. Let (A, λA) and (B, λB) be principally polarised abelian varieties over k and
φ : A −→ B be an isogeny.

(i) We define the polarised dual of φ by φ̃ := λ−1
A ◦ φ̂ ◦ λB : B −→ A.

2.2. KANI’S EMBEDDING LEMMA AND ISOGENY INTERPOLATION 69

(ii) If d ∈ N∗, we say that φ is a d-isogeny is φ̃ ◦φ = [d]A, or equivalently if φ is a polarised isogeny
(A, [d]λA) −→ (B, λB) in the sense of Definition 1.4.58. We also say that φ has polarised
degree d.

The notion of d-isogeny generalises the notion of d-isogeny between elliptic curves. Between el-
liptic curves, polarised dual and dual isogenies can be identified because principal polarisations are
canonically determined (see Example 1.4.57). Between elliptic curves, every isogeny of degree d is a
d-isogeny. However, not all isogenies are d-isogenies for some d ∈ N∗ between abelian varieties.

Lemma 2.2.2. Let (A, λA) and (B, λB) be principally polarised abelian varieties of dimension g over
k and φ : A −→ B be an isogeny. Then:

(i) ˜̃φ = φ.

(ii) If φ is a d-isogeny, then φ ◦ φ̃ = [d]B, so φ̃ is a d-isogeny.

(iii) If φ is a d-isogeny, then deg(φ) = deg(φ̃) = dg.

Proof. (i) We have by definition and by Proposition 1.4.55.(i):

˜̃φ = λ−1
B ◦ ̂̃φ ◦ λA = λ−1

B ◦ λ̂B ◦ ̂̂φ ◦ λ̂−1
A ◦ λA

By Proposition 1.4.54.(ii), polarisation and their dual can be identified λB = λ̂B . Besides, the dual
of the identity being the identity, we obtain by Proposition 1.4.55.(i) that the dual of the inverse is

the inverse of the dual, so that λ̂−1
A = λ̂A

−1
= λ−1

A . Finally, ̂̂φ = φ by Proposition 1.4.55.(ii), so that˜̃φ = φ.
(ii) If φ is a d-isogeny, then φ̃ ◦ φ = [d]A so φ ◦ φ̃ ◦ φ = φ ◦ [d]A = [d]Bφ and φ ◦ φ̃ = [d]B since φ

is surjective (as any isogeny).
(iii) We have deg(φ̃) = deg(λ−1

A) deg(φ̂) deg(λB) = deg(φ̂) = deg(φ) by Proposition 1.4.53. Be-
sides, deg([d]A) = d2g by Proposition 1.4.33.(ii), so if φ is a d-isogeny, the equality φ̃◦φ = [d]A ensures
that deg(φ)2 = d2g so that deg(φ) = dg. This completes the proof.

Product of polarised abelian varieties

Kani’s lemma involves products of polarised abelian varieties. In this paragraph, we give some prop-
erties of these objects.

Lemma 2.2.3. Let A and B be two abelian varieties defined over k. Then:

(i) Â×B ∼= Â × B̂ with the canonical identification ([L], [M]) ∈ Pic0(Ak) × Pic0(Bk) 7−→ [p∗1L ⊗
p∗2M] ∈ Pic0(Ak ×Bk), where p1 : A×B −→ A and p2 : A×B −→ B are the projection maps.

(ii) Let λA and λB be polarisations on A and B respectively. Then λA × λB : A× B −→ Â× B̂ is
a polarisation on A×B called the product polarisation of (A, λA) and (B, λB).

Proof. (i) If L and M are line bundles of Pic0(Ak) and Pic0(Bk) respectively, then [−1]∗L ≃ L−1

and [−1]∗M≃M−1 by Lemma 1.4.65, so we easily verify that [−1]∗(p∗1L⊗ p∗2M) ≃ (p∗1L⊗ p∗2M)−1,
so that p∗1L ⊗ p∗2M∈ Pic0(Ak ×Bk).

Conversely, let N ∈ Pic0(Ak × Bk). Consider L := N|A×{0B}, M := N|{0A}×B and N ′ :=
p∗1M⊗ p∗2M. We prove that N ≃ N ′ with the seesaw principle (Theorem 1.4.14). Indeed, if y ∈ B,
then we may see y as a map T := Spec(κ(y)) −→ B, and 0A and 0B as maps Spec(k) −→ A and
Spec(k) −→ B respectively, so that

N ′
|A×{y} = (idA × y)∗N ′ = (idA × y)∗((p1 × idT)

∗(idA × 0B)
∗N ⊗ (idT × p2)∗(0A × idB)

∗N)

= ((idA × 0B) ◦ (p1 × idT) ◦ (idA × y))∗N ⊗ ((0A × idB) ◦ (idT × p2) ◦ (idA × y))∗N
= (idA × 0B)

∗N ⊗ ([0]A × y)∗N = ((idA × 0B), ([0]A × y))∗(p∗N ⊗ q∗N),

70 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

where [0]A : A −→ A is the zero morphism (to be distinguished from 0A : Spec(k) −→ A) and p, q are
the projections from (A×B)2 to the first and second component respectively. By Lemma 1.4.65, we
know that p∗N ⊗ q∗N ≃ m∗N , where m : (A×B)2 −→ A×B is the addition map. It follows that

N ′
|A×{y} ≃ ((idA × 0B), ([0]A × y))∗m∗N = (idA × y)∗N = N|A×{y}.

Similarly, we easily obtain that N ′
|{0A}×B ≃ N|{0A}×B . Then, the seesaw principle (Theorem 1.4.14)

applies and ensures that N ≃ N ′. This proves (i).

(ii) By (i), we can canonically identify Â×B with Â× B̂ so λA×λB defines an isogeny A×B −→
Â×B. Besides, there exists line bundles L andM over Ak and Bk respectively, such that (λA)k = φL
and (λB)k = φM. We can then consider N := p∗1L ⊗ p∗2M and we have for all (x, y) ∈ A×B,

λA × λB(x, y) = (λA(x), λB(y)) = [p∗1(t
∗
xL ⊗ L−1)⊗ p∗2(t∗yM⊗M−1)]

= [t∗(x,y)(p
∗
1L ⊗ p∗2M)⊗ (p∗1L ⊗ p∗2M)−1] = φN (x, y),

so that (λA × λB)k = φN and λA × λB is a polarisation on A×B. This completes the proof.

Let F : A1 ×A2 −→ B1 ×B2 be a morphism between products of abelian varieties. Then, F can
be written as a matrix

F :=

(
f11 f12
f21 f22

)
,

where fij := πi ◦ F ◦ ιj , πi : B1 × B2 −→ Bi being the projection and ιj : Ai −→ A1 × A2 being the
injection for all i, j ∈ {1, 2}. Naturally, F acts on points of A1 × A2 by matrix multiplication on the
left:

F (x1, x2) = (f11(x1) + f12(x2), f21(x1) + f22(x2)).

Lemma 2.2.4. Let F : A1 ×A2 −→ B1 ×B2 be a morphism between products of abelian varieties as
above. Then

(i) The dual of F is

F̂ =

(
f̂11 f̂21
f̂12 f̂22

)
: B̂1 × B̂2 −→ Â1 × Â2.

(ii) If the (Ai, λAi
) and (Bi, λBi

) are principally polarised for i ∈ {1, 2}, then the polarised dual of
F with respect to the principal polarisations λA1 × λA2 and λB1 × λB2 is

F̃ =

(
f̃11 f̃21
f̃12 f̃22

)

Proof. (i) Let (y1, y2) ∈ B̂1 × B̂2 that we identify with ([M1], [M2]) ∈ Pic0((B1)k)× Pic0((B2)k), so
that

F̂ (y1, y2) = [F ∗(π∗
1M1 ⊗ π∗

2M2)] = [(π1 ◦ F)∗M1 ⊗ (π2 ◦ F)∗M2]

= [(m1 ◦ (f11 × f12))∗M1 ⊗ (m2 ◦ (f21 × f22))∗M2] (where mi is the addition map on Bi)

= [(f11 × f12)∗m∗
1M1 ⊗ (f21 × f22)∗m∗

2M2]

= [(f11 × f12)∗(p∗1M1 ⊗ q∗1M1)⊗ (f21 × f22)∗(p∗2M2 ⊗ q∗2M2)]

(by Lemma 1.4.65 and with pi and qi the projection on the first and second

components of B2
i respectively for all i ∈ {1, 2})

= [π′∗
1f

∗
11M1 ⊗ π′∗

2f
∗
12M1 ⊗ π′∗

1f
∗
21M2 ⊗ π′∗

2f
∗
22M2]

(where π′
i is the projection A1 ×A2 −→ Ai for all i ∈ {1, 2})

= [π′∗
1(f

∗
11M1 ⊗ f∗21M2)⊗ π′∗

2(f
∗
12M1 ⊗ f∗22M2)]

= (f̂11(y1) + f̂21(y2), f̂12(y1) + f̂22(y2)).

This proves (i).

2.2. KANI’S EMBEDDING LEMMA AND ISOGENY INTERPOLATION 71

(ii) By point (i) and Lemma 2.2.3.(ii), we have

F̃ = (λA1 × λA2)
−1 ◦ F̂ ◦ (λB1 × λB2) =

(
λ−1
A1

0

0 λ−1
A2

)
◦

(
f̂11 f̂21
f̂12 f̂22

)
◦
(
λB1

0
0 λB2

)

=

(
λ−1
A1
◦ f̂11 ◦ λB1

λ−1
A1
◦ f̂21 ◦ λB2

λ−1
A2
◦ f̂12 ◦ λB1

λ−1
A2
◦ f̂22 ◦ λB2

)
=

(
f̃11 f̃21
f̃12 f̃22

)
.

This completes the proof.

Kani’s lemma and its converse

We are now ready to introduce Kani’s lemma.

Definition 2.2.5 (Isogeny diamond). Let a, b ∈ N∗. An (a, b)-isogeny diamond is a commutative
diagram of isogenies between principally polarized abelian varieties over k

A′ φ′
// B′

A

ψ

OO

φ
// B

ψ′

OO

where φ and φ′ are a-isogenies and ψ and ψ′ are b-isogenies.

Lemma 2.2.6 (Kani). We consider an (a, b)-isogeny diamond over k, as above, with d := a+b prime
to the characteristic of the base field of abelian varieties. Then, the isogeny F : A × B′ −→ B × A′

given in matrix notation by

F :=

(
φ ψ̃′

−ψ φ̃′

)
is a d-isogeny with d = a+ b, for the product polarisations.

If a and b are coprime and d is not divisible by char(k), the kernel of F is

ker(F) = {(φ̃(x), ψ′(x)) | x ∈ B[d]} = {([a]x, ψ′ ◦ φ(x)) | x ∈ A[d]}.

Proof. By Lemma 2.2.4, we have

F̃ =

(
φ̃ −ψ̃
ψ′ φ′

)
.

Hence

F̃ ◦ F =

(
φ̃ ◦ φ+ ψ̃ ◦ ψ φ̃ ◦ ψ̃′ − ψ̃ ◦ φ̃′

ψ′ ◦ φ− φ′ ◦ ψ ψ′ ◦ ψ̃′ + φ′ ◦ φ̃′

)
(2.1)

with φ̃ ◦ φ + ψ̃ ◦ ψ = [a]A + [b]A = [d]A since φ is an a-isogeny and ψ is a b-isogeny. Similarly, we

get that ψ′ ◦ ψ̃′ + φ′ ◦ φ̃′ = [d]B′ after dualising (the dual being anti-commutative and the dual of an
integer being an integer). Clearly, ψ′ ◦ φ− φ′ ◦ ψ = 0 since φ,φ′, ψ and ψ′ form an isogeny diamond.

Then, we obtain φ̃ ◦ ψ̃′ − ψ̃ ◦ φ̃′ = 0 by applying the polarised dual to the previous equality (the
polarised dual being anti-commutative, as the dual). Hence, F̃ ◦ F = [d]A×B′ so F is a d-isogeny.

If x ∈ B[d], we have

F (φ̃(x), ψ′(x)) = (φ ◦ φ̃(x) + ψ̃′ ◦ ψ′(x),−ψ ◦ φ̃(x) + φ̃′ ◦ ψ′(x))

= ([a]x+ [b]x, 0) = ([d]x, 0) = (0, 0)

where we used the fact that ψ◦φ̃ = φ̃′◦ψ′. Indeed, ψ′◦φ = φ′◦ψ, which implies that [a]ψ◦φ̃ = [a]φ̃′◦ψ′

i.e. ψ◦φ̃◦[a] = φ̃′◦ψ′◦[a] after multiplying on the right by φ̃ and on the left by φ̃′, so that ψ◦φ̃ = φ̃′◦ψ′

since [a] is surjective (as any isogeny).
It follows that ker(F) contains the subgroub:

S := {(φ̃(x), ψ′(x)) | x ∈ B[d]}.

72 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Since φ̃ and ψ′ are have polarised degrees a and b respectively, we have ker(φ̃) ⊆ B[a] and ker(ψ′) ⊆
B[b]. It follows that ker(φ̃)∩ker(ψ′) = {0}, when a and b are coprime, so that x ∈ B 7−→ (φ̃(x), ψ′(x))
is injective and #S = #B[d]. Since d is not divisible by char(k), we have #B[d] = d2g with g :=
dim(B) by Corollary 1.4.34. A being isogenous to B and B′, we also have g = dim(A) = dim(B′) and
deg(F) = ddim(A×B′) = d2g since F is a d-isogeny and by Lemma 2.2.2.(iii), so F is separable and
#ker(F) = deg(F) = d2g. Hence, ker(F) = S when a and b are coprime.

When a and b are coprime, a is coprime with d, so ker(φ)∩A[d] ⊆ A[a]∩A[d] = {0}, so φ induces
an isomorphism from A[d] to B[d]. It follows that

ker(F) = {(φ̃(x), ψ′(x)) | x ∈ B[d]} = {(φ̃ ◦ φ(x), ψ′ ◦ φ(x)) | x ∈ A[d]}
= {([a]x, ψ′ ◦ φ(x)) | x ∈ A[d]}.

This completes the proof.

When a and b are coprime, if we know ψ′ ◦ φ on A[d], then we know ker(F) and we are able to
compute F in polynomial time when d is smooth [LR12; LR15; LR22]. Knowing F , we can evaluate
φ everywhere since F (x, 0) = (φ(x),−ψ(x)). This is why F is an ”embedding” of φ and why F
can be computed to interpolate φ from the image of some points generating A[d] (as long as we also
know an auxiliary b-isogeny ψ′). We say that F is an efficient representation of φ, in the sense of
Definition 1.1.22.

Actually, we can also prove a weak converse of Kani’s lemma.

Lemma 2.2.7 (Converse of Kani’s lemma). Let F : A×B′ −→ B×A′ be a d-isogeny (for the product
principal polarizations), where d is prime to the characteristic of the base field. Write F as a matrix:

F :=

(
φ ψ̃′

−ψ φ̃′

)

and suppose φ is an a-isogeny. Then φ,φ′, ψ, ψ′ form the following (a, b)-isogeny diamond with b :=
d− a:

A′ φ′
// B′

A

ψ

OO

φ
// B

ψ′

OO

Proof. Since F is a d-isogeny, we have F̃ ◦ F = [d], so we get that ψ′ ◦ φ = φ′ ◦ ψ, φ̃ ◦ φ+ ψ̃ ◦ ψ = [d]

and ψ′ ◦ ψ̃′ + φ′ ◦ φ̃′ = [d] by Eq. (2.1). Since, φ is an a-isogeny, we have φ̃ ◦ φ = [a], so ψ̃ ◦ ψ = [b]
and ψ is a b-isogeny.

We also have F ◦ F̃ = [d] by Lemma 2.2.2.(ii), so that φ ◦ φ̃+ ψ′ ◦ ψ̃′ = [d] and we get that ψ′ is

a b-isogeny. Then, the equality ψ′ ◦ ψ̃′ + φ′ ◦ φ̃′ = [d] ensures that φ′ is an a-isogeny. This completes
the proof.

Remark 2.2.8. We obtain the same result if we suppose that any of the isogenies φ′, ψ and ψ′ is an a
or b-isogeny. If we consider isogenies between product of elliptic curves, then φ is always an a-isogeny
so we can always apply the converse of Kani’s lemma.

Lemma 2.2.9. We keep the notations and assumptions from Lemma 2.2.6. Then, the polarised dual
F̃ is given by:

F̃ :=

(
φ̃ −ψ̃
ψ′ φ′

)
: B ×A′ −→ A×B′

and has kernel:

ker(F̃) = {(φ(x),−ψ(x)) | x ∈ A[d]} = {([a]x,−ψ ◦ φ̃(x)) | x ∈ B[d]}.

2.2. KANI’S EMBEDDING LEMMA AND ISOGENY INTERPOLATION 73

Proof. The expression of F̃ follows from Lemma 2.2.4. For the kernel computation, we consider the
following (a, b)-isogeny diamond:

B′ φ̃′
// A′

B

ψ′

OO

φ̃
// A

ψ

OO

We can either prove that the above diagram commutes and is associated to F̃ manually or by apply-
ing Lemma 2.2.7 to F̃ . Applying Lemma 2.2.6 to the above (a, b)-isogeny diamond, we obtain the

expression of ker(F̃).

2.2.2 Isogeny interpolation

The main interest of Kani’s lemma is to interpolate an isogeny φ whose images by some torsion
points is known by embedding it into a higher dimensional isogeny F that can be computed in
polynomial time. This higher dimensional isogeny F is an efficient representation of φ in the sense
of Definition 1.1.22 as it provides a way to evaluate φ on any point in polynomial time. Since F
can be computed in polynomial time from sufficiently many torsion point images via φ, these images
themselves are an efficient representation of φ. In the following, we prove this result due to Damien
Robert [Rob23, Theorem 1.1] with close but slightly different assumptions. Note that this theorem
is purely theoretical and never used in practice for algorithmic applications. Nonetheless, its proof is
instructive to understand the rest of this chapter (and beyond).

Theorem 2.2.10. Let φ : E1 −→ E2 be an elliptic curve isogeny defined over a finite field Fq
and of degree d coprime with q. Let N1, · · · , Nr be pairwise coprime integers, all coprime with d
and q. Assume that r and N1, · · · , Nr are all bounded by a polynomial function in log(d) and that∏r
i=1Ni > d. For all i ∈ J1 ; rK, let (Pi, Qi) be a basis of E1[Ni]. Then the data made of (Pi, Qi)1≤i≤r,

(φ(Pi), φ(Qi))1≤i≤r, E1, E2, d is an efficient representation of φ and its dual φ̂.

Proof. Let N :=
∏r
i=1Ni. Then Lagrange’s four squares theorem [Lag70] ensures the existence of

a1, · · · , a4 ∈ Z such that such that a21 + · · · + a24 + d = N . Pollack and Treviño’s algorithm [PT18,
§ 4] can provably find a1, · · · , a4 ∈ Z in polynomial time in log(N). Since r and N1, · · · , Nr are
polynomial in log(d), log(N) is polynomial in log(d) so finding a1, · · · , a4 ∈ Z takes polynomial time
in log(d).

Now, for i ∈ {1, 2}, consider the following (a21 + · · ·+ a24)-isogeny:

αi :=

a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ End(E4
i),

and let Φ be the diagonal d-isogeny Diag(φ, · · · , φ) : E4
1 −→ E2

2 . Then, Φ and the αi form a
(a21 + · · ·+ a24, d)-isogeny diamond:

E4
2

α2 // E4
2

E4
1

Φ

OO

α1 // E4
1

Φ

OO

Then, by Kani’s lemma Lemma 2.2.6, we can consider the N -isogeny:

F :=

(
α1 Φ̃
−Φ α̃2

)
∈ End(E4

1 × E4
2),

whose kernel is:
ker(F) = {(α̃1(x),Φ(x)) | x ∈ E4

1 [N]}, (2.2)

since d and N are coprime.

74 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

The Ni being pairwise coprime, we shall see in Remark 6.3.2 that F can be decomposed as a chain
of isogenies F = Fr ◦ · · · ◦ F1, where for all i ∈ J1 ; rK, Fi : Ai−1 −→ Ai is an Ni-isogeny of kernel

ker(Fi) = Fi−1 ◦ · · ·F1(ker(F)) = Fi−1 ◦ · · ·F1(ker(F)[Ni]). (2.3)

In particular, ker(F1) = ker(F)[N1] = ker(F)∩(E4
1×E4

2)[N1]. Since φ is Fq-rational, it commutes with
the q-th Frobenius endomorphism as well as scalar multiplication maps. As a consequence, E1[N1]
is stable by the q-th Frobenius endomorphism, and by Eq. (2.2), we see that ker(F)[N1] is stable by
the q-th Frobenius endomorphism. Then Proposition 1.4.42 ensures that F1 and its codomain A1 are
Fq-rational. It follows that ker(F2) = F1(ker(F)[N2]) is stable by the q-th Frobenius endomorphism
and that F2 and its codomain A2 are Fq-rational. By induction, we obtain that the isogeny Fi and
its codomain Ai are Fq-rational for all i ∈ J1 ; rK.

For all i ∈ J1 ; rK, E1[Ni] is defined over a finite field extension Fqki/Fq of degree ki ≤ N2
i (a fact

that we easily obtain by considering the Ni-th division polynomial of E1). So ki is polynomial in
log(d). This ensures in particular that (φ(Pi), φ(Qi))1≤i≤r takes a number of bits polynomial in
log(q) and log(d) to store.

Furthermore, since the Fi are all Fq-rational, ker(Fi) is defined over Fqki for all i ∈ J1 ; rK. Hence,
by [LR22] given a basis of ker(Fi) for i ∈ J1 ; rK, the computation of Fi costs O(N8

i) field operations
over Fqki , so in polynomial time in log(d) and log(q). Such a basis of ker(Fi) can be obtained by
applying Fi−1 ◦ · · · ◦ F1 to the basis:

Bi := ((α̃1(x),Φ(x)))x∈{(Pi,0,0,0),··· ,(0,0,0,Pi),(Qi,0,0,0),··· ,(0,0,0,Qi)}

of ker(F)[Ni] by Eq. (2.3). Since φ(Pi), φ(Qi) is given by assumption, Bi can be computed in
polynomial time in log(d) and log(q). Since F1, · · · , Fi−1 are Fq-rational, evaluating Bi by Fi−1◦· · ·◦F1

costs O(N8
1 + · · ·+N8

i−1) operations over Fqki which takes polynomial time in log(d) and log(q), since
i ≤ r is also polynomial in log(d). As a consequence, the computation of F takes polynomial time in
log(d) and log(q).

Finally, F is an efficient representation of φ and φ̂ as it takes a polynomial number of bits in log(d)
and log(q) to store as a chain of isogenies (by [LR22]) and since we also have:

∀P ∈ E1, F (P, 0, 0, 0, 0, 0, 0) = ([a1]P, [a2]P, [a3]P, [a4]P,−φ(P), 0, 0, 0)
∀Q ∈ E2, F (0, 0, 0, 0, 0, 0, Q) = (0, 0, 0, φ̂(Q), [a4]Q, [a3]Q,−[a2]Q, [a1]Q),

so we can evaluate φ and φ̂ on any point in polynomial time. Since (φ(Pi), φ(Qi))1≤i≤r has polynomial
size in log(q) and log(d) and yields F in polynomial time in log(q) and log(d), it is also an efficient
representation of φ and φ̂.

2.2.3 The SIDH protocol

SIDH (Supersingular Isogeny Diffie Hellman) is an isogeny based key exchange protocol. A key encap-
sulation protocol SIKE, based on SIDH has been proposed to the NIST post-quantum standardisation
competition before being broken in 2022, closely after the beginning of round 4 of the competition.
The main vulnerability of SIDH was the publication of torsion point images that could be leveraged
by an attacker using Kani’s lemma. In this section, we recall how this protocol is built.

In SIDH, Alice and Bob are given as public parameters:

• A prime of the form p = cℓeAA ℓeBB − 1, with c ∈ N∗ small, distinct small primes ℓA and ℓB and
exponents eA, eB ∈ N∗ such that ℓeAA ≃ ℓ

eB
B ≃

√
p;

• A starting supersingular elliptic curve E0 defined over Fp2 ;

• Two basis (PA, QA) and (PB , QB) of E0[ℓ
eA
A] and E0[ℓ

eB
B] respectively.

Alice and Bob sample secret integers sA ∈ Z/ℓeAA Z and sB ∈ Z/ℓeBB Z respectively. Then Alice
computes an ℓeAA -isogeny φA : E0 −→ EA of kernel ker(φA) = ⟨PA + [sA]QA⟩ and Bob computes an
ℓeBB -isogeny φB : E0 −→ EB of kernel ker(φB) = ⟨PB+[sB]QB⟩. Alice sends (EA, φA(PB), φA(QB)) to
Bob and Bob sends (EB , φB(PA), φB(QA)) to Alice. Alice can then compute ψA := [φB]∗φA : EB −→

2.2. KANI’S EMBEDDING LEMMA AND ISOGENY INTERPOLATION 75

E0 EA

EB EAB

φA

φB

ψA

ψB

Alice

sA
$← Z/ℓeAA Z

ker(φA) = ⟨PA + [sA]QA⟩

ker(ψA) = ⟨φB(PA) + [sA]φB(QA)⟩

EBA ≃ EAB

Bob

sB
$← Z/ℓeBB Z

ker(φB) = ⟨PB + [sB]QB⟩

ker(ψB) = ⟨φA(PB) + [sB]φA(QB)⟩

EAB ≃ EBA

(EA, φA(PB), φA(QB))

(EB , φB(PA), φB(QA))

Figure 2.1: Principle of the SIDH key exchange protocol.

EBA of kernel ker(ψA) = ⟨φB(PA) + [sA]φB(QA)⟩ and Bob computes ψB := [φA]∗φB : EA −→ EAB
of kernel ker(ψB) = ⟨φA(PB) + [sB]φA(QB)⟩. Then, they share knowledge of a secret elliptic curve
EAB ≃ EBA.

The exchange of torsion points (φA(PB), φA(QB)) and (φB(PA), φB(QA)), though necessary to
compute ψA and ψB , makes SIDH particularly vulnerable. In the next section, we present attacks
that leverage this torsion point information and use Kani’s lemma to completely recover one of the
isogenies φA or φB , which is sufficient to recover the shared secret key EAB . Indeed, if an attacker
recovers φB , then they know ker(φB) so Bob’s secret sB and can use it to compute ψB whose kernel
is ker(ψB) = ⟨φA(PB) + [sB]φA(QB)⟩ and codomain is EAB .

2.2.4 Attacks against SIDH

The first attacks introduced against SIDH in [CD23; MMPPW23] involved a 2-dimensional isogeny
computation. Though reasonably efficient and practical at that time, these attacks involved several
restrictions (e.g. on the starting curve E0). Then Damien Robert proposed to apply Kani’s lemma
in dimension 4 or 8 to lift these restrictions [Rob23]. Even though no implementation was known at
the time of publication, Robert’s attack in dimension 8 was proved to run in polynomial time without
restriction. Later, my efficient implementation of 4-dimensional 2-isogenies (see Section 6.6) made
Robert’s 4-dimensional attack very competitive for all SIKE parameters with any starting curve E0.

Throughout this section, we keep the notations from Section 2.2.3 and assume that we want to
recover φB from the knowledge of (φB(PA), φB(QA)).

The first attacks in dimension 2

We present here the attack introduced by Maino, Martindale, Panny, Pope and Wesolowski in
[MMPPW23]. We assume that ℓeAA > ℓeBB and that End(E0) is known. Indeed, in SIKE, the starting
curve E0 is either y2 = x3+x or y2 = x3+6x3+x whose endomorphism rings are known. We consider
the (ℓeBB , ℓeAA − ℓ

eB
B)-isogeny diamond

E0
φB // EB

E

ψ

OO

gB // E′
B

ψ′

OO

76 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

that yields by Kani’s lemma (Lemma 2.2.6) a 2-dimensional ℓeAA -isogeny

F :=

(
gB ψ̂′

−ψ φ̂B

)
: E × EB −→ E′

B × E0,

with kernel:

ker(F) = {([ℓeBB]P,φB ◦ ψ(P)) | P ∈ E[ℓeAA]} = {([ℓeBB]ψ̂(P),−[ℓeBB]φB(P)) | P ∈ E0[ℓ
eA
A]}.

Hence, to compute ker(F), it suffices to find an f -isogeny ψ̂ : E0 −→ E with f := ℓeAA − ℓ
eB
B and

evaluate it on E0[ℓ
eA
A]. Once this is done, we can compute F in polynomial time (in log(p)) with

various algorithms from the literature [KR09; LR12; LR15; CR15; LR22; DMPR25].

The main difficulty is to find this auxiliary f -isogeny ψ̂ : E0 −→ E. When End(E0) is knwon,
we can use the Deuring correspondence. We start by finding a left-ideal I ⊆ End(E0) of norm f .
This can be done with [MMPPW23, Algorithm 3]. Since this ideal is of non-smooth norm, we cannot

translate it into an isogeny directly1. But we only need to find the codomain E of ψ̂ := φI : E0 −→ E
and to evaluate it on E0[ℓ

eA
A] so we can proceed as follows. We find an equivalent ideal J ∼ I of

norm ℓeB with e big enough via the KLPT algorithm [KLPT14] (in practice, ℓeB ≃ p3). We can then
translate it into an isogeny φJ : E0 −→ E via the KLPT based techniques introduced in Section 2.1.
By assumption, we know an isomorphism O0

∼−→ End(E0), where O0 ⊂⊆ Bp,∞ is a maximal order.
Since J ∼ I, we may write J = Iθ/nrd(I) with θ ∈ I ⊆ O0 and by Lemma 1.2.24, we have:

φ̂J ◦ φI = ε0(θ) i.e. [ℓeB]φI = φJ ◦ ε0(θ),

so to evaluate P ∈ E0[ℓ
eA
A], we find an inverse λ of ℓeB modulo ℓeAA and compute φJ ◦ θ([λ]P) =

[ℓeBλ]φI(P) = φI(P).

With this method, we can evaluate ψ̂ := φI , hence compute F in polynomial time (in log(p))
under some plausible heuristics. We can then evaluate φ̂B as follows:

F (0, P) = (ψ̂′(P), φ̂B(P)),

and in particular, compute ker(φB) = φ̂B(EB [ℓ
eB
B]) and find the secret sB ∈ Z/ℓeBB Z.

When End(E0) is not known, the 2-dimensional attack proposed in [MMPPW23, § 3] is much more
complex. We essentially have to tweak parameters to simplify the search for the auxiliary isogeny
ψ̂ : E0 −→ E. We consider the following commutative diagram:

E0
φ′

B

//

φB

((
E′

φguess

// EB

E

ψ

OO

gB // E′′

ψ′

OO

where φguess is a guess of the last j steps of the ℓB-isogeny chain φB , so that deg(φguess) = ℓjB ,

deg(φ′
A) = ℓeB−j

B and deg(ψ) := f := eℓeA−i
A − ℓeB−j

B . We look for small parameters e, i, j so that f

is smooth enough to compute ψ̂ efficiently. The look for such parameters and the computation of ψ̂
takes subexponential time (in log(p)). Then, we try several guesses φguess and apply Kani’s lemma
to the (ℓeBB , f)-isogeny diamond on the left part of the diagram above to compute a 2-dimensional

eℓeA−i
A -isogeny embedding φ′

B . If we have chosen the correct guess, we expect the codomain of the
2-dimensional isogeny to split into a product of elliptic curves. Otherwise, we expect it to be a non-
product principally polarised abelian surface (with overwhelming probability). Taking into account
at most ℓjB tries of φguess, the attack still takes subexponential time (in log(p)).

These attacks have been successfully implemented in SageMath. The implementation by Castryck,
Decru, Pope and Oudompheng2 only works with a special starting curve of known endomorphism ring
and broke SIKE with the biggest parameter (p751) in 1 h. The implementation by Maino, Panny,
Pope and Wesolowski3 works with any starting curve but only for small parameters.

1At least with the techniques known at that time, this is now possible as we shall see in Section 2.4.
2https://github.com/GiacomoPope/Castryck-Decru-SageMath
3https://github.com/Breaking-SIDH/direct-attack

https://github.com/GiacomoPope/Castryck-Decru-SageMath
https://github.com/Breaking-SIDH/direct-attack

2.2. KANI’S EMBEDDING LEMMA AND ISOGENY INTERPOLATION 77

An efficient attack in dimension 4

We first look for e ∈ N∗ and a1, a2 ∈ Z such that

a21 + a22 + ℓeBB = ℓeA. (2.4)

If such an equation has a solution, we can find it by trying different values of e ∈ N∗ until ℓeA − ℓ
eB
B is

a prime congruent to 1 mod 4. Then, we can apply Cornacchia’s algorithm [Cor08] to find a1, a2 ∈ Z
in polynomial time (in log(p)).

Once we have solved Eq. (2.4), we consider the following (a21 + a22, ℓ
eB
B)-isogeny diamond:

E2
B

αB // E2
B

E2
0

ΦB

OO

α0 // E2
0

ΦB

OO

where, for i ∈ {0, B}, αi is an (a21 + a22)-isogeny

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i),

and ΦB is a 2-dimensional diagonal ℓeBB -isogeny ΦB := Diag(φB , φB) : E2
0 −→ E2

B . Then, Kani’s
lemma (Lemma 2.2.6) ensures that:

F :=

(
α0 Φ̃B
−ΦB α̃B

)
∈ End(E2

0 × E2
B),

is an ℓeA-isogeny with kernel:

ker(F) = {(α̃0(P,Q),ΦB(P,Q)) | P,Q ∈ E0[ℓ
e
A]}

= {([a1]P − [a2]Q, [a2]P + [a1]Q,φB(P), φB(Q)) | P,Q ∈ E0[ℓ
e
A]}.

Consequently, if e ≤ eA, (φB(PA), φB(QA)) yields a basis of ker(F) that can be used to compute F
in polynomial time with the algorithms from [LR12; LR15; LR22].

In general, we cannot expect to obtain a solution of Eq. (2.4) with e ≤ eA, so we divide the
computation of F in two: F = F2 ◦ F1, where Fi is an ℓeiA -isogeny for i ∈ {1, 2}, e = e1 + e2
and e1 ≃ e2. We expect that e1, e2 ≤ eA, a condition much easier to satisfy. Computing F̃ with
Lemma 2.2.4.(ii), we see by Lemma 2.2.7 that F̃ is obtained from an isogeny diamond. Applying
Kani’s lemma again, we obtain that

ker(F̃) = {(α0(P,Q),−ΦB(P,Q)) | P,Q ∈ E0[ℓ
e
A]}

= {([a1]P + [a2]Q,−[a2]P + [a1]Q,−φB(P),−φB(Q)) | P,Q ∈ E0[ℓ
e
A]}.

By Lemma 6.3.1.(ii), we have ker(F1) = ker(F)[ℓe1A] and ker(F̃2) = ker(F̃)[ℓe2A], so ker(F1) and ker(F̃2)
can be computed from the knowledge of (φB(PA), φB(QA)) since e1, e2 ≤ eA. Hence, we can compute

F1 and F̃2 in polynomial time and then obtain
˜̃
F 2 = F2 and F = F2 ◦ F1. We refer to Section 6.4.2

for more details on this decomposition of F . Since F is an embedding of φB , we can evaluate φB
everywhere as follows

F (P, 0, 0, 0) = ([a1]P,−[a2]P,−φB(P), 0),

so we can recover ker(φB) and sB as previously.
With real NIST submission SIKE parameters, ℓA = 2, ℓB = 3 and c = 1 so that p = 2eA3eB − 1

and (eA, eB) ∈ {(216, 137), (250, 159), (305, 192), (372, 239)} depending on the security level. Using
our 4-dimensional 2e-isogeny computation algorithms with level 2 theta coordinates [Dar24] (that will
be presented in Section 6.6), we implemented a complete key recovery attack of SIDH running in a
few seconds on a laptop for all SIKE parameters from a random starting curve E0 (see Table 2.1).
These very competitive timings are to be compared with the aforementioned ones in dimension 2 and

78 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

SIKE prime eA eB e Attack timing (s)

p434 216 137 225 3.82
p503 250 159 290 5.47
p610 305 192 407 8.61
p751 372 239 589 14.02

Table 2.1: Timings (in s) and parameters of the complete SIDH key recovery attack with a random
starting curve in Python/SageMath for various NIST SIKE primes on a 2,7 GHz Intel Core i5 CPU.

indicate that 4-dimensional isogenies are efficient enough to be used constructively (as we shall see in
Sections 2.3 and 2.5).

Note that Eq. (2.4) does not always admit a solution that can be found easily in polynomial
time. In particular, when ℓA = 2 and ℓB = 3, eB has to be odd. This is not the case for the p610
SIKE parameter ((eA, eB) = (305, 192)). In that case, we simply post-compose φB by a 3-isogeny
ψ : EB −→ E′

B and apply the attack to (ψ ◦ φB(PA), ψ ◦ φB(QA)) in order to change eB into
eB + 1. More generally, the argument that we can solve Eq. (2.4) efficiently in polynomial time (in
log(p)) for any set of parameters is heuristic. There is no formal proof of this assumption. For that
reason, Damien Robert also proposed an 8-dimensional attack which provably runs in polynomial
time (in log(p)).

A theoretical polynomial time attack in dimension 8

We have already seen this idea in the proof of Theorem 2.2.10. If e ∈ N∗ is such that ℓeA > ℓeBB , then
Lagrange’s four squares theorem [Lag70] ensures that we can always find a1, a2, a3, a4 ∈ Z such that:

a21 + a22 + a23 + a24 + ℓeBB = ℓeA. (2.5)

Pollack and Treviño’s algorithm [PT18, § 4] can provably solve this equation in polynomial time
(in log(p)).

We can then apply Kani’s lemma in dimension 8. For i ∈ {0, B}, consider the (a21 + a22 + a23 + a24)-
isogeny:

αi :=

a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ End(E4
i).

Consider also the 4-dimensional diagonal ℓeBB -isogeny ΦB := Diag(φB , φB , φB , φB) : E4
0 −→ E4

B .
Then, we have an (a21 + a22 + a23 + a24, ℓ

eB
B)-isogeny diamond

E4
B

αB // E4
B

E4
0

ΦB

OO

α0 // E4
0

ΦB

OO

By Kani’s lemma, we have an 8-dimensional ℓeA-isogeny:

F :=

(
α0 Φ̃B
−ΦB α̃B

)
∈ End(E4

0 × E4
B),

with kernel:
ker(F) = {(α̃0(P,Q,R, S),ΦB(P,Q,R, S)) | P,Q,R, S ∈ E0[ℓ

e
A]}.

As previously, if e ≤ eA, we can compute a basis of ker(F) from (φB(PA), φB(QA)) and then compute
F in polynomial time (in log(p)) using the algorithms from [LR12; LR15; LR22]. Otherwise, if
e/2 ≤ eA, we can compute decompose the computation of F into F = F2 ◦ F1, as previously. This
approach takes polynomial time by [Rob23, Theorem 1.1] but has not been implemented and is purely
theoretical.

2.3. TRANSLATING IDEALS OF SHORT NORM WITH 4-DIMENSIONAL ISOGENIES 79

2.2.5 Higher dimensional isogeny computation algorithms

In the following, we shall use constructively the isogeny interpolation techniques introduced previously
for the SIDH attacks. These techniques rely on the efficient computation of higher dimensional isoge-
nies. For efficiency, reasons we shall only use 2e-isogenies in higher dimension. With the algorithms we
shall introduce in Chapter 6 using level 2 theta coordinates, we are able to compute such a 2e-isogeny
from torsion points lying above its kernel and forming an isotropic subgroup of the 2e+2-torsion, in
the sense of the following definition. Hence, in the rest of this chapter, we shall use freely the following
theorems that will be proved in Chapter 6.

Definition 2.2.11. If A is an abelian variety defined over a field k, n ∈ N∗ is coprime with char(k),
we say that a subgroup K ⊂ A[n](k) is isotropic in A[n] if the n-th Weil pairing is trivial on K: for
all x, y ∈ K, en(x, y) = 1. We say K is maximal isotropic if it is maximal (as a subgroup of A[n]) for
this property.

Theorem 2.2.12 (Section 6.3). Let k be a field of characteristic char(k) ̸= 2. Then there exists an
algorithm that takes as input:

(i) A principally polarised abelian variety A of dimension g defined over k;

(ii) Points T1, · · · , Tg ∈ A[2e+2] defined over k forming a maximal isotropic subgroup of A[2e+2];

And returns a 2e-isogeny f : A −→ B with kernel ⟨[4]T1, · · · , [4]Tg⟩ represented as a chain of 2-
isogenies with a number of operations over k polynomial in e and 2g.

In dimension 2, the 2e+2-torsion requirement to compute a 2e-isogeny can be relaxed, at the
expense of 5 square root computations.

Theorem 2.2.13 (Section 6.5). Let k be a field of characteristic char(k) ̸= 2. Then there exists an
algorithm that takes as input:

(i) A principally polarised abelian surface A defined over k;

(ii) Points T1, T2 ∈ A[2e] defined over k forming a maximal isotropic subgroup of A[2e];

And returns a 2e-isogeny f : A −→ B with kernel ⟨T1, T2⟩ represented as a chain of 2-isogenies with
a number of operations over k polynomial in e.

2.3 Translating ideals of short norm with 4-dimensional iso-
genies

Recall the algorithmic problem from Section 2.1. We are given:

• A supersingular elliptic curve E0 over Fp2 of known endomorphism ring End(E0) i.e. such that

we know a maximal order O0 ⊆ Bp,∞ and an isomorphism ε0 : O0
∼−→ End(E0). For instance,

E0 may be the curve y2 = x3 + x (with p ≡ 3 mod 4).

• Two isogenies φ1 : E0 −→ E1 and φ2 : E0 −→ E2 of odd degrees d1 and d2 respectively, along
with their respective corresponding ideals I1, I2 ⊆ O0 via the Deuring correspondence.

• An ideal I ⊂ Bp,∞ connecting O1 := OR(I1) ≃ End(E1) and O2 := OR(I2) ≃ End(E2), i.e.
which is a left O1-ideal and a right O2-ideal.

We assume that the characteristic p is such that 2f |p + 1 with 2f = Ω(
√
p), so that the 2f -torsion

of the supersingular elliptic curves E0, E1, E2 is defined over Fp2 . We want to compute the isogeny
φI : E1 −→ E2 corresponding to I via the Deuring correspondence.

E0
φ1

I1

//

φ2 I2

��

E2

E1

φI

I

>>

80 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

The KLPT based algorithms presented in Section 2.1 were costly because nrd(I) was required
to be smooth, so I was expected to be an output of the KLPT algorithm [KLPT14] which returns
ideals of very big norms. In the following, we no longer require I to be smooth but to be close to the
smallest possible value nrd(I) ≃ √p and use Kani’s lemma to embed φI in dimension 4. There are
still restrictions on nrd(I) even if they are less constraining than previously.

2.3.1 Conditions on the ideal norm

We assume that we are given an ideal of norm q := nrd(I) that is (e,B)-good in the following sense.

Definition 2.3.1. Given e,B ∈ N∗, we say that an integer q is (e,B)-good if 2e − q = r · s1 · s23,
where r is a prime ≡ 1 mod 4, s1 is a B-smooth integer with prime factors ≡ 1 mod 4 and s3 is a
B-smooth integer with prime factors ≡ 3 mod 4. In particular, an (e,B)-good integer must be odd.

If q is (e,B)-good with B small enough (B = 102 to 103 in practice), then 2e − q can be easily
decomposed into a sum of two squares, so that:

a21 + a22 + q = 2e, (2.6)

with a1, a2 ∈ Z. Indeed, we can find the factorisation 2e − q = r · s1 · s23 easily by trial and division of
all primes ≤ B and testing that the quotient r is a prime ≡ 1 mod 4. Then, for every prime ℓ|2e − q
congruent to 1 mod 4 we easily decompose ℓ = a2ℓ + b2ℓ via Cornacchia’s algorithm [Cor08] and write∏

ℓ|2e−q
ℓ≡1 mod 4

(aℓ + ibℓ) = u1 + iu2,

with u1, u2 ∈ Z and i =
√
−1 in C. We then return a1 := s3u1 and a2 := s3u2.

In the following, we fix e ∈ N∗ (and B ∈ N∗) such that there always exists a connecting ideal I
between O1 and O2 of (e,B)-good norm. The probability for an integer q to be a prime congruent
to 1 mod 4 is Ω(1/ log(q)) so the probability for an integer to be (e,B)-good is Ω(1/e). Besides, the
following lemma ensures that we can find ideal connecting ideals between O1 and O2 of norms bounded
by O(

√
p). Hence, heuristically, we can expect to find ideals connecting O1 and O2 of (e,B)-good

norm bounded by O(e
√
p), so we may select e such that 2e = Θ(log(p)

√
p).

Lemma 2.3.2. Let O ⊆ Bp,∞ be a maximal order and I be a left O-ideal. Then there exists an
equivalent ideal J ∼ I of norm ≤ 2

√
2p/π.

Proof. Consider the quadratic form qI : α ∈ I 7−→ nrd(α)/ nrd(I) ∈ N. We know that equivalent
ideals J ∼ I are of the form J = Iα/nrd(I) with α ∈ I and have norm nrd(J) = qI(α). Hence, we
have to find an upper bound on the non-zero minimal value of qI . Consider the canonical embedding
ι : Bp,∞ ↪−→ R4 from Eq. (1.2):

1 7−→ (1, 0, 0, 0), i 7−→ (0, 1, 0, 0), j 7−→ (0, 0,
√
p, 0), k 7−→ (0, 0, 0,

√
p). (2.7)

ι is an isometry in the following sense ∥ι(α)∥2 = nrd(α) for all α ∈ Bp,∞, where ∥.∥ is the Euclidean
norm of R4. By Minkowski’s second theorem, the successive minima λi of the lattice ι(I) satisfy

λ1 · · ·λ4 ≤ 24
Covol(ι(I))

Vol(B(0, 1))
=

32

π2
Covol(ι(I)). (2.8)

But we have Covol(ι(O)) = discrd(O)/4. Indeed, if (α1, · · · , α4) is a basis of O, we get that

Covol(ι(O)) = |det(⟨ι(αi), ι(αj)⟩)1≤i,k≤4|
1
2

=

∣∣∣∣∣det
(
1

2
(nrd(αi + αj)− nrd(αi)− nrd(αj))

)
1≤i,k≤4

∣∣∣∣∣
1
2

=

∣∣∣∣∣det
(
1

2
Tr(αiαj)

)
1≤i,k≤4

∣∣∣∣∣
1
2

=
1

4
discrd(O)

2.3. TRANSLATING IDEALS OF SHORT NORM WITH 4-DIMENSIONAL ISOGENIES 81

Besides, by Theorem 1.2.17, discrd(O) = disc(Bp,∞) = p since O is a maximal order in Bp,∞. We
then have

Covol(ι(I)) = [O : I] Covol(ι(O)) = [O : I] discrd(O)/4 = nrd(I)2p/4 (2.9)

It follows by Eq. (2.8) and Eq. (2.9) that the minimal value of qI is

qI(α) =
λ21

nrd(I)
≤ 2
√
2p

π
.

This completes the proof.

Remark 2.3.3. Selecting e such that 2e = Θ(log(p)
√
p) only offers a heuristic guarantee. Proving

formally that we can always find a connecting ideal I of (e,B)-good norm would certainly require
to increase 2e by a lot. As [RT22] indicates, we should expect lower bounds close to 2e = ω(p2),
causing a huge efficiency loss and limiting competitive interest compared to approaches relying on
KLPT [KLPT14].

2.3.2 Application of Kani’s lemma

Assume q := nrd(I) is (e,B)-good and we have solved Eq. (2.6) i.e., we have found a1, a2 ∈ Z such
that a21 + a22 + q = 2e. Then, we proceed as in the 4-dimensional attack against SIDH presented in
Section 2.2.4. We consider the (a21 + a22, q)-isogeny diamond:

E2
2

α2 // E2
2

E2
1

ΦI

OO

α1 // E2
1

ΦI

OO

where, for i ∈ {1, 2}, αi is an (a21 + a22)-isogeny

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i),

and ΦI is the 2-dimensional diagonal q-isogeny ΦI := Diag(φI , φI) : E
2
1 −→ E2

2 . Then, Kani’s lemma
(Lemma 2.2.6) ensures that:

FI :=

(
α1 Φ̃I
−ΦI α̃2

)
∈ End(E2

1 × E2
2), (2.10)

is a 2e-isogeny with kernel:

ker(FI) = {(α̃1(P,Q),ΦI(P,Q)) | P,Q ∈ E1[2
e]}

= {([a1]P − [a2]Q, [a2]P + [a1]Q,φI(P), φI(Q)) | P,Q ∈ E1[2
e]}.

We can then compute ker(FI) provided we can evaluate φI on a basis of E1[2
e]. In order to compute

FI efficiently with level 2 theta coordinates, we need to compute T1, · · · , T4 forming an isotropic
subgroup of ker(FI) and such that ker(FI) = ⟨[4]T1, · · · , [4]T4⟩ (Theorem 2.2.12). These points Ti
can be obtained from the image of φI on a basis of E1[2

e+2], so we need e + 2 ≤ f . Details of this
computation can be found in Section 6.6.

Remark 2.3.4. Our algorithmic approach still succeeds even when e+2 > f . Indeed, in our setting,
2e = Θ(log(p)

√
p) and 2f = Ω(

√
p) so we have f ≥ e/2 + 2, so as explained in Section 2.2.4, we may

decompose FI = F2 ◦ F1, where Fi is 2ei-isogeny for i ∈ {1, 2}, with e = e1 + e2 and e1, e2 ≤ f − 2.

Knowing φI on a basis of E1[2
f], we are able to compute F1 and F̃2, then F2 =

˜̃
F 2 and finally

FI = F2 ◦ F1. We refer to Section 6.6.7 for more details.

82 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

2.3.3 Evaluation of torsion points

It remains to explain how we can evaluate φI on a basis of E1[2
f]. Since I is connecting ideal between

O1 and O2, we have I2 ∼ I1 · I so I2 = I1 · I · θ/nrd(I1 · I) with θ ∈ I1 · I ⊆ O0 and by Lemma 1.2.24,
we have:

φ̂2 ◦ φI ◦ φ1 = ε0(θ) i.e. [d1d2]φI = φ2 ◦ ε0(θ) ◦ φ̂1,

where ε0 is an isomorphism O0
∼−→ End(E0). Since d1d2 is odd, we can find its inverse λ modulo 2f

and for all P ∈ E1[2
f], we can compute

φ2 ◦ ε0(θ) ◦ φ̂1([λ]P) = [d1d2λ]φI(P) = φI(P).

This proves that we can evaluate φI and compute its 4-dimensional embedding FI defined in Eq. (2.10).
Algorithm 2.2 follows.

Algorithm 2.2: ideal-to-isogeny translation in dimension 4.

Data: A supersingular elliptic curve E0/Fp2 , a maximal order O0 ⊆ Bp,∞ and an isomorphism

ε0 : O0
∼−→ End(E0), two isogenies φ1 : E0 −→ E1 and φ2 : E0 −→ E2 of odd degrees

d1 and d2 respectively, along with their respective corresponding ideals I1, I2 ⊆ O0 and
an ideal I ⊂ Bp,∞ connecting O1 := OR(I1) and O2 := OR(I2) of (e,B)-good norm.

Result: A 4-dimensional 2e-isogeny FI ∈ End(E2
1 × E2

2) embedding φI .
1 q ← nrd(I);
2 Find a1, a2 ∈ Z such that a21 + a22 + q = 2e with Cornacchia’s algorithm [Cor08] (see

Section 2.3.1);

3 Find θ ∈ O0 such that I1 · I · I2 = O0θ;

4 Compute λ ∈ Z such that λd1d2 ≡ 1 mod 2f ;

5 Generate a basis (P,Q) of E1[2
f];

6 φI(P)← φ2 ◦ ε0(θ) ◦ φ̂1([λ]P);
7 φI(Q)← φ2 ◦ ε0(θ) ◦ φ̂1([λ]Q);
8 Use P,Q, φI(P), φI(Q), a1, a2 and the algorithms from Section 6.6 to compute the

4-dimensional 2e-isogeny FI ∈ End(E2
1 × E2

2) embedding φI defined in Eq. (2.10);
9 return FI ;

2.4 Translating any ideal from a special curve with isogenies
in dimension 2

In this section, we explain how to translate any left-ideal I of O0 ≃ End(E0), into an isogeny φI :
E0 −→ EI , where E0 is the special supersingular elliptic curve of equation y2 = x3 + x using 2-
dimensional isogenies only. The method we apply here is deeply inspired from an algorithmic approach
called Clapoti (class group action in polynomial time) introduced by Aurel Page and Damien Robert
[PR23] to compute ideal class group actions on oriented supersingular elliptic curves. It has been used
in the SQIsign2D-West [BDF+25] variant of SQIsign, which inspired the round 2 NIST submission
of SQIsign due to its performance and security properties. In Chapter 3, we also use it to improve
SQIsignHD. In the following, we consider a prime of the form p = c · 2e − 1 with c ∈ N∗ small and
odd and e ∈ N of several hundreds. We shall work with supersingular elliptic curves defined over Fp2 ,
which all have their 2e-torsion defined over Fp2 .

2.4.1 Computing an isogeny of arbitrary odd degree from a special curve

Let E0 be the elliptic curve given by y2 = x3 + x, defined over Fp. Given an odd integer u < 2e, we
explain how to compute a u-isogeny φu : E0 −→ Eu that will serve in the ideal-to-isogeny translation
algorithm. The following algorithm is due to Nakagawa and Onuki [NO24, Algorithm 2].

By Lemma 1.2.25, End(E0) is isomorphic to O0 := ⟨1, i, (i + j)/2, (1 + ij)/2⟩ ⊂ Bp,∞ so we may

consider an isomorphism ε0 : O0
∼−→ End(E0). In particular, it contains the suborder ⟨1, i, j, ij⟩,

where norm equations are easy to solve. If N = Ω(p log(p)), then we can solve the equation:

N = nrd(x+ iy + jz + tij) = x2 + y2 + p(z2 + t2), (2.11)

2.4. TRANSLATING ANY IDEAL FROMA SPECIAL CURVEWITH ISOGENIES IN DIMENSION 283

with x, y, z, t ∈ Z as follows. We sample small values z, t ∈ Z until N−p(z2+t2) is a prime ≡ 1 mod 4.
Then, we apply Cornacchia’s algorithm [Cor08] to find x, y ∈ Z such that N − p(z2 + t2) = x2 + y2.
We refer to [Ler22, Algorithm 2] for more details. In our use case, we may apply this algorithm to
N = u(2f −u) with f ≤ e as small as possible so that u(2f −u) = Ω(p log(p)). We then obtain θ ∈ O0

of norm nrd(θ) = u(2f − u).
The endomorphism θ can be written as ε0(θ) = ψu ◦ φu = φ′

u ◦ ψ′
u, where φu, φ

′
u have degree u

and ψu, ψ
′
u have degree 2f − u. Now, consider the (u, 2f − u)-isogeny diamond:

E′
u

φ′
u // E0

E0

ψ′
u

OO

φu //

ε0(θ)

>>

Eu

ψu

OO

Applying Kani’s Lemma (Lemma 2.2.6), we obtain a 2f -isogeny:

Φu =

(
φu ψ̂u
−ψ′

u φ̂′
u

)
: E0 × E0 −→ Eu × E′

u.

with kernel:
ker(Φu) = {([u]P, ε0(θ)(P)) | P ∈ E0[2

f]}.

Then, by Theorems 2.2.12 and 2.2.13 there exists very efficient algorithms to compute Φu that will
be presented in Section 6.5.

If f ≤ e − 2, we can evaluate ε0(θ) on a basis of E0[2
f+2] and then obtain 2f+2-torsion points

T1, T2 ∈ E2
0 [2

f+2] such that ker(Φu) = ⟨[4]T1, [4]T2⟩ and forming an isotropic 2f+2-torsion subgroup
i.e. such that e2f+2(T1, T2) = 1. With the algorithms from Section 6.5 taking T1 and T2 as input, we
can compute Φu as a chain of 2-isogenies of length f in level 2 theta coordinates. These algorithms
also convert image points by Φu from theta coordinates to Montgomery (X : Z)-coordinates on the
codomain Eu × E′

u (see Section 6.5.4). In particular, we know that the component on Eu appears
first in the image points by Φu and we can evaluate φu on any point P ∈ E0 as follows Φu(P, 0) =
(φu(P),−ψ′

u(P)).
If e− 1 ≤ f ≤ e, we can evaluate ε0(θ) on a basis of E0[2

f] and then obtain generators of ker(Φu)
that can also be used to compute Φu as a chain of 2-isogenies of length f in level 2 theta coordinates
by Theorem 2.2.13. However, this costs 5 additional square root computations compared to using
the 2f+2-torsion as previously. Moreover, when converting codomain theta coordinates into product
Montgomery (X : Z)-coordinates, the elliptic curves Eu and E′

u may be swapped. Image points can
either be expressed in Eu × E′

u or E′
u × Eu. To distinguish Eu from E′

u (and φu from ψ′
u), we may

use Weil pairings as follows.
Let (P0, Q0) be a basis of E0[2

e], (P, P ′) := Φu(P0, 0) and (Q,Q′) := Φu(Q0, 0). If image points
lie in Eu × E′

u, then e2e(P,Q) = e2e(φu(P0), φu(Q0)) = e2e(P0, Q0)
u. Otherwise, image points

lie in E′
u × Eu and e2e(P,Q) = e2e(−ψ′

u(P0),−ψ′
u(Q0)) = e2e(P0, Q0)

2f−u ̸= e2e(P0, Q0)
u. Since

image points are expressed in product Montgomery (X : Z)-coordinates, we only know their value on
Kummer lines (±P,±P ′) and (±Q,±Q′). To lift this sign ambiguity and be able to compute the Weil
pairing, we may compute Φu(P0 −Q0, 0) = (±(P −Q),±(P ′ −Q′)).

Finally, we can also easily obtain the left O0-ideal associated to φu via the Deuring correspondence
which can be useful in some contexts (e.g. SQIsignHD).

Lemma 2.4.1. The ideal associated to φu is Iu := O0θ + uO0.

Proof. We have E0[O0θ + uO0] = ker(θ) ∩ E0[u]. First, observe that ker(φu) ⊆ ker(ε0(θ)) ∩ E0[u]
since ε0(θ) factors through φu, which has degree u.

Conversely, if P ∈ ker(ε0(θ)) ∩ E0[u], then ψu ◦ φu(P) = 0. As a result, φu(P) ∈ Eu[u] ∩ ker(ψu)
and Eu[u] ∩ ker(ψu) ⊆ Eu[u] ∩Eu[2f − u] = {0}, since u and 2f − u are coprime. Thus, P ∈ ker(φu),
proving that E0[O0θ + uO0] = ker(φu).

The claim Iu = O0θ + uO0 follows from the Deuring correspondence.

84 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

We summarise the procedure described above in Algorithm 2.3 that evaluates φu on (P0, Q0)
(which will be enough for our use case in Section 2.4.2) and returns the associated ideal Iu as a bonus.

Algorithm 2.3: Evaluation of an isogeny of fixed odd degree.

Data: An odd positive integer u < 2e such that u(2e − u) = Ω(p log(p)) and a basis (P0, Q0)
of E0[2

e].
Result: (Eu, φu(P0), φu(Q0), Iu), where φu : E0 −→ Eu is a u-isogeny and Iu ⊂ O0 is its

associated ideal.
1 Find f ≤ e as small as possible so that u(2f − u) = Ω(p log(p));

2 Find θ ∈ O0 of norm u(2f − u) ; // [Ler22, Algorithm 2]
3 Iu ← O0θ + uO0;
4 if f ≤ e− 2 then
5 P ← [2e−f−2]P0, Q← [2e−f−2]Q0;

6 T1 ← ([u]P, ε0(θ)(P)), T2 ← ([u− 2f]Q, ε0(θ)(Q));
7 Use T1 and T2 to compute Φu : E2

0 −→ Eu ×E′
u of kernel ⟨[4]T1, [4]T2⟩ ; // see Section 6.5

8 (±φu(S), ∗)← Φu(S, 0) for S ∈ {P0, Q0, P0 −Q0};
9 Lift (φu(P0), φu(Q0)) from ±φu(P0),±φu(Q0),±φu(P0 −Q0);

10 return (Eu, φu(P0), φu(Q0), Iu);

11 else
12 P ← [2e−f]P0, Q← [2e−f]Q0;
13 T1 ← ([u]P, ε0(θ)(P)), T2 ← ([u]Q, ε0(θ)(Q));
14 Compute Φu : E2

0 −→ E × E′ of kernel ⟨T1, T2⟩ ; // see Section 6.5
15 (±I(S),±I ′(S))← Φu(S, 0) for S ∈ {P0, Q0, P0 −Q0};
16 Lift (I(P0), I(Q0)) from ±I(P0),±I(Q0),±I(P0 −Q0);
17 Lift (I ′(P0), I

′(Q0)) from ±I ′(P0),±I ′(Q0),±I ′(P0 −Q0);
18 if e2e(I(P0), I(Q0)) = e2e(P0, Q0)

u then
19 Eu ← E, (φu(P0), φu(Q0))← (I(P0), I(Q0));
20 else
21 Eu ← E′, (φu(P0), φu(Q0))← (I ′(P0), I

′(Q0));
22 end
23 return (Eu, φu(P0), φu(Q0), Iu);

24 end

2.4.2 The ideal-to-isogeny translation algorithm

Let I be a left O0-ideal. We want to efficiently represent the associated isogeny φI : E0 −→ EI . In
this section, we give an algorithm that computes EI and evaluates φI on a basis (P0, Q0) of E0[2

e].
The general outline is as follows:

1. Find I1, I2 ∼ I of coprime norms d1, d2 ≈
√
p, and u, v ∈ N∗ such that

d1u+ d2v = 2f (2.12)

with f ≤ e and gcd(ud1, vd2) = 1.

2. Evaluate isogenies φu, φv : E0 −→ Eu, Ev of degrees u and v on (P0, Q0) using Algorithm 2.3.

3. Apply Kani’s Lemma to φu ◦ φ̂1 : EI −→ Eu and φv ◦ φ̂2 : EI −→ Ev, where φ1, φ2 : E0 −→ EI
are the isogenies corresponding to I1 and I2 respectively, to compute Φ : Eu × Ev −→ EI × E′

that embeds the isogenies φ1 ◦ φ̂u and φ2 ◦ φ̂v.

4. Evaluate Φ on well chosen points to obtain (φI(P0), φI(Q0)).

In the following, we give more details on each step and we summarise these steps in Algorithm 2.5.

2.4. TRANSLATING ANY IDEAL FROMA SPECIAL CURVEWITH ISOGENIES IN DIMENSION 285

Step 1: norm equation

We sample ideals I1, I2 ∼ I of odd coprime norms d1 and d2 until we find positive integers u, v
such that d1u + d2v = 2e. It has been proved that this coin problem admits a solution whenever
2e ≥ (d1 − 1)(d2 − 1) [Syl82]. Hence, the norms d1 and d2 should be as small as possible. To find
equivalent ideals of such norms, we sample βi ∈ I with sufficiently small reduced norm and choose
Ii := Iβi/nrd(I), so that nrd(Ii) = nrd(βi)/ nrd(I). Lemma 2.3.2 ensures that the shortest vector in I
has norm O(nrd(I)

√
p) so we should expect to find d1, d2 = O(

√
p) so that (d1−1)(d2−1) ≈ p ≈ 2e in

general. This is not enough to rigorously ensure the existence of a solution (u, v) to the coin problem
and we have to rely on heuristic arguments. In the following, we provide such heuristic arguments to
justify that we can find a solution I1, I2, u, v of Eq. (2.12) for an overwhelming majority of ideals I.

Consider an integer N < p (in our application N = 2e) and coprime positive integers d1, d2 ≤ N/2
also coprime with N . Then, for any solution (u, v) ∈ (N∗)2 to the coin problem ud1 + vd2 = N , v is
fixed by the value of u as v := (N − ud1)/d2. In particular, d2|N − ud1. Heuristically, when u is a
random integer between 1 and N/d1−1, the probability that d2|N −ud1 conditionally to d1 and d2 is
≈ 1/d2, so the probability that such an integer u exists is ≈ N/d1 · 1/d2 = N/(d1d2). Hence, we can
make the following heuristic assumption: for any 1 ≤ d ≤ N/2, the probability that a couple (d1, d2)
selected uniformly at random among couples of coprime integers such that d1, d2 ≤ d has a solution
(u, v) ∈ (N∗)2 to the associated coin problem ud1 + vd2 = N is larger than N/d2.

This heuristic assumption is still not sufficient because the quadratic form qI(β) := nrd(β)/ nrd(I)
has not the same distribution as a uniformly random integer when we sample β ∈ I such that
qI(β) ≤ d. We now give more detail on how we sample β ∈ I. First, we find a Minkowski reduced basis
B := (α1, · · · , α4) of I, so that qI(α1) ≤ · · · ≤ qI(α4) are the successive minima of qI in the lattice I by
Theorem 1.2.28. Then we sample xj ∈ J−Bj ; BjK uniformly at random with Bj := ⌊1/4

√
d/qI(αj)⌋

for all j ∈ J1 ; 4K and we set β :=
∑4
j=1 xjαi. By the triangular inequality (which is valid since qI is

a positive definite quadratic form), we have,

qI(β) ≤

 4∑
j=1

|xj |
√
qI(αj)

2

≤ d.

Hence, we want that qI(β1) and qI(β2) satisfy the aforementioned integer heuristic assumption when
β1 and β2 are sampled uniformly at random in the set:

Pd(I,B) :=

4∑
j=1

xjαj

∣∣∣∣∣∣ ∀j ∈ J1 ; 4K , xj ∈ J−Bj ; BjK

 . (2.13)

i.e. that a solution (u, v) ∈ (N∗)2 to the coin problem uqI(β1) + vqI(β2) = N exits with probability
Ω(N/d2).

We notice that if J ∼ I is an equivalent left O0-ideal, then qI and qJ are equivalent quadratic forms.
In particular, they take the same values. Indeed, by Lemma 1.2.19.(i), we may write J = Iβ/nrd(I)
with β ∈ I so that every α ∈ J can be written as α = γβ/nrd(I) with γ ∈ I and:

qJ(α) =
nrd(α)

nrd(J)
=

nrd(γ) nrd(β)

nrd(I)2qI(β)
=

nrd(γ) nrd(β)

nrd(I) nrd(β)
=

nrd(γ)

nrd(I)
= qI(γ).

Hence, the heuristic assumption is satisfied uniformly in a given equivalence class of left O0-ideals. By
the Deuring correspondence, there is a finite number h(O0) of such equivalence classes, bounded by
the number of supersingular j-invariants. Actually, the Eichler mass formula [Voi21, Theorem 25.1.1]
ensures that h(O0) = p/24 + O(1). We make the following heuristic assumption ensuring that the
desired heuristic holds for an overwhelming majority of left O0-ideal equivalence classes.

Heuristic 2.4.2. For any integer N ∈ N∗, left O0-ideal I, Minkowski reduced basis B of I and
1 ≤ d ≤ N/2, let us denote:

Sd,N (I,B) := {(β1, β2) ∈ Pd(B)2 | gcd(qI(β1), qI(β2)) = gcd(qI(β1), N) = gcd(qI(β2), N) = 1

and ∃u, v ∈ N∗, uqI(β1) + vqI(β2) = N}.

86 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Then, for all ε > 0 and 0 < ρ < 1, there exists a constant Cε,ρ > 0 such that for all prime p ≡ 3
mod 4 and integer ρ · p ≤ N ≤ p− 1:

(i) There exists a set Sε(N, p) of equivalence classes of left ideals in O0 ⊆ Bp,∞ of cardinality
#Sε(N, p) ≥ (1− ε)h(O0);

(ii) For all left O0-ideal I whose equivalence class lies in Sε(N, p), for all Minkowski reduced basis
B of I and for all 1 ≤ d ≤ N/2, we have:

#Sd,N (I,B) ≥ Cε,ρ ·
#Pd(I,B)2N

d2
− 1. (2.14)

Remark 2.4.3. Let us make a few comments on this heuristic assumption. The constant ρ is the
minimal admissible value of N/p and should be close to 1 in our application (N = 2e). The constant
ε > 0 sets the proportion #Sε(N, p)/h(O0) ≥ 1 − ε of left O0-ideal equivalence classes satisfying
Eq. (2.14). The constant Cε,ρ > 0 used to bound #Sd,N (I,B) depends on ρ and ε as follows. The
lower ρ, the harder it is to find a solution to the coin equation uqI(β1) + vqI(β2) = N (since ρ is
the minimal value of N/p), and the lower Cε,ρ. Similarly, the lower ε, the more ideals we require to
satisfy Eq. (2.14) and the lower Cε,ρ. When the probability of finding a coin solution N/d2 or the box
Pd(I,B) are small, the set Sd,N (I,B) may be empty. This explains the −1 in Eq. (2.14).

In practice, to solve the norm equation d1u+d2v =M with M |N , u, v > 0 and gcd(ud1, vd2) = 1,
we proceed as follows. We sample β1, β2 ∈ Pd(I,B) until d1 := qI(β1) and d2 := qI(β2) are coprime
and coprime with N . Then, we apply extended Euclide’s algorithm to find u0, v0 ∈ Z such that
u0d1 + v0d2 = 1. Then, all solutions to the Diophantine equation ud1 + vd2 = N are of the form
(u, v) = (Nu0 + kd2, Nv0 − kd1) for k ∈ Z. To find u, v > 0 we select an integer −Nu0/d2 ≤ k ≤
Nv0/d1. If there is no integer in the interval [−Nu0/d2, Nv0/d1], then we sample β1 and β2 again.
Finally, to ensure gcd(d1u, d2v) = 1, we divide u and v and N by gcd(u, v). Indeed, every common
factor of ud1 and vd2 is a common factor of u and v, which is also a factor of N . Algorithm 2.4
follows.

Algorithm 2.4: Step 1: Finding suitable ideals I1, I2 ∼ I and a coin problem solution (u, v).

Data: An ideal I ⊆ O0 ≃ End(E0), an integer N = Θ(p) and a bound d ≤ N/2.
Result: β1, β2 ∈ I, M |N and u, v ∈ N∗ such that gcd(uqI(β1), vqI(β2)) = 1 and

uqI(β1) + vqI(β2) =M .
1 Compute a Minkowski reduced basis (α1, · · · , α4) of I ; // [NS09, Fig. 3-4]

2 Bj ← ⌊1/4
√
d/qI(αj)⌋ for j ∈ J1 ; 4K;

3 while True do

4 Sample xj , yj ∈ J−Bj ; BjK4 for j ∈ J1 ; 4K independently and uniformly at random;

5 β1 ←
∑4
j=1 xjαj , β2 ←

∑4
j=1 yjαj ;

6 d1 ← qI(β1), d2 ← qI(β2);
7 if gcd(d1, d2) = gcd(d1, N) = gcd(d2, N) = 1 then
8 Apply extended Euclide’s algorithm to find u0, v0 ∈ Z such that u0d1 + v0d2 = 1;
9 if [−Nu0/d2, Nv0/d1] ∩ Z ̸= ∅ then

10 Take k ← ⌈−Nu0/d2⌉;
11 u← Nu0 + kd2, v ← Nv0 − kd1;
12 d← gcd(u, v);
13 u← u/d, v ← v/d, M ← N/d;
14 return β1, β2,M, u, v;

15 end

16 end

17 end

Lemma 2.4.4. Assume Heuristic 2.4.2. Then for all ε > 0 and 0 < ρ < 1, there exists constants
Tε,ρ, nε,ρ > 0 such that for all max(ρ·p, nε,ρ) ≤ N ≤ p−1, Algorithm 2.4 taking N as input terminates
after less than Tε,ρ iterations on average on a proportion ≥ 1 − ε of left O0-ideal classes for a well
chosen bound d = Θε,ρ(

√
p).

2.4. TRANSLATING ANY IDEAL FROMA SPECIAL CURVEWITH ISOGENIES IN DIMENSION 287

Proof. Note that Algorithm 2.4 terminates if Sd,N (I,B) ̸= ∅. Let 1 ≤ d ≤ N/2. Then we have:

#Pd(I,B) =

4∏
j=1

(2Bj + 1) ≥
4∏
j=1

1

4

√
d

qI(αj)
=

d2

256
√∏4

j=1 qI(αj)
. (2.15)

Besides, B = (α1, · · · , α4) being Minkowski reduced, qI(α1), · · · , qI(α4) are the successive minima of
the lattice I by Theorem 1.2.28 and we obtain by Minkowski’s second theorem (see Eq. (2.8)) that∏4
j=1 qI(αj) ≤ 64p2/π4, so that:

#Pd(I,B) ≥ Dd2

p
,

with D := π2/2048. By Heuristic 2.4.2, there exists Cε,ρ > 0 such that on a proportion ≥ 1− ε of left
O0-ideal classes [I], the ideal I satisfies:

#Sd,N (I,B) ≥ Cε,ρ ·
#Pd(I,B)2N

d2
− 1

Hence, when β1, β2 ∈ Pd(I,B) are sampled independently and uniformly at random as in Algorithm
2.4, we have:

P((β1, β2) ∈ Sd,N (I,B)) =
#Sd,N (I,B)

#Pd(I,B)2
≥ Cε,ρ ·

N

d2
− 1

#Pd(I,B)2

≥ Cε,ρ ·
N

d2
− p2

D2d4

The lower bound on the right is maximised by the value d = d∗ := p/D
√

2/(Cε,ρN) = Θε,ρ(
√
p).

Since d ≤ N/2, it follows that
N3/2

p
≥ 2

√
2

D
√
Cε,ρ

and this equality is always satisfied whenever N ≥ nε,ρ := 8/(D2ρ2Cε,ρ). Besides, for the optimal
value d = d∗, we obtain:

P((β1, β2) ∈ Sd,N (I,B)) ≥
C2
ε,ρD

2N2

4p2
≥
C2
ε,ρD

2ρ2

4

Hence, Algorithm 2.4 terminates after less than Tε,ρ := 4/(C2
ε,ρD

2ρ2) iterations on average for all
max(ρ · p, nε,ρ) ≤ N ≤ p− 1 on a proportion ≥ 1− ε of left O0-ideal classes.

Remark 2.4.5. Lemma 2.4.4 tells us that N should be big enough for Algorithm 2.4 to terminate and
that the termination may not happen for all ideal classes. The more success probability we require
(measured by 1− ε) the more values β1, β2 we need to try and the more time we have to wait for the
algorithm to terminate (as the bound d increases).

In most cases, the successive minima qI(αj) are close to each other and close to
√
p so the Bj are

very close and small. For that reason, in the implemented version of Algorithm 2.4 we fix a bound
B ∈ N∗ and sample all of the xj and yj in J−B ; BK. Besides, we enumerate xj and yj in J−B ; BK
instead of sampling them at random to avoid trying the same couples (β1, β2) twice. Also note that the
reduced basis (α1, · · · , α4) may be computed with different algorithms than the Minkowski reduction
algorithm. In dimension 4, a reduced basis obtained with LLL [LLL82] or BKZ [Sch87] is generally
very close to a Minkowski reduced one.

With the SQIsign2D-West [BDF+25] implementation, we encountered (very rare) failure cases,
that may have been explained for two reasons:

• The successive minima qI(αj) were not balanced and the uniform box approach J−B ; BK was
unsuccessful.

• The ideal class [I] was outside of the set of size ≥ (1− ε)h(O0) where Algorithm 2.4 terminates.

To avoid these (very rare) failure cases, a new method has been proposed for the round 2 NIST
submission of SQIsign [AAA+25] where other starting curves than E0 of known endomorphism rings
were considered. This will be explained in Section 2.4.3.

88 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Step 2: finding isogenies of degrees u and v

We can use Algorithm 2.3 to evaluate isogenies φu : E0 −→ Eu and φv : E0 −→ Ev of degrees u and
v on E0[2

e]. Note that since u, v = O(
√
p), Algorithm 2.3 will compute a 2f -isogeny in dimension

2 with f ≃ e/2 to evaluate each isogeny φu and φv. This saves half of the cost of a full 2e-isogeny
computation.

Nonetheless, the cost of this step could be further improved if, for instance, u was a sum of
two squares u = x2 + y2. Indeed, in that case, we may consider φu := [x] + [y]ι ∈ End(E0), with
ι : (x, y) ∈ E0 7→ (−x,

√
−1y) ∈ E0, which is immediate to evaluate. However, requiring that u

or v from Eq. (2.12) is a sum of squares dramatically increases the cost and reduces the success
probability of Step 1. For these reasons, this trick was deemed not optimal and not implemented in
SQIsign2D-West [BDF+25].

Step 3: Applying Kani’s lemma

Assume we have computed a solution to Eq. (2.12) in Step 1 and consider the following (d1u, d2v)-
isogeny diamond:

E′ φ̂′
v // Ev

E0

φv

OO

Eu

φ′
u

OO

φ̂u // E0
φ1 // EI

φ̂2

OO

(2.16)

where φ′
u := [φu ◦ φ̂1]∗(φv ◦ φ̂2) and φ′

v := [φv ◦ φ̂2]∗(φu ◦ φ̂1) (pushforward isogenies). By Kani’s
Lemma (Lemma 2.2.6), we have a 2f -isogeny:

Φ :=

(
φ1 ◦ φ̂u φ2 ◦ φ̂v
−φ′

u φ′
v

)
: Eu × Ev −→ EI × E′,

with kernel:

ker(Φ) = {([d1]φu(P), φv ◦ φ̂2 ◦ φ1(P)) | P ∈ E0[2
f]}.

By Lemma 1.2.24, if we write I1 := Iβ1/ nrd(I) and I2 := Iβ2/nrd(I) with β1, β2 ∈ I, and θ :=
β2β1/nrd(I), so that I2 = I1θ/nrd(I1), we have φ̂2 ◦ φ1 = ε0(θ) so that φ̂2 ◦ φ1 can be evaluated
easily.

Let (P0, Q0) be a basis of E0[2
e] and assume that the images of P0 and Q0 by φu and φv have been

computed in Step 2. To evaluate φv ◦ φ̂2 ◦ φ1(P0, Q0) we evaluate ε0(θ)(P0, Q0) and find a, b, c, d ∈
Z/2eZ such that ε0(θ)(P0) = [a]P0 + [b]Q0 and ε0(θ)(Q0) = [c]P0 + [d]Q0 with discrete logarithm
computations, so that:

φv ◦ φ̂2 ◦ φ1(P0) = [a]φv(P0) + [b]φv(Q0) and φv ◦ φ̂2 ◦ φ1(Q0) = [c]φv(P0) + [d]φv(Q0).

We can then compute T1 := ([d1]φu(P0), φv◦φ̂2◦φ1(P0)) and T2 := ([d1−2fµ]φu(Q0), φv◦φ̂2◦φ1(Q0))
with µ ≡ 1/u mod 2e. If f ≤ e − 2, then ([2e−f−2]T1, [2

e−f−2]T2) form an isotropic subgroup of
(Eu × Ev)[2f+2] above ker(Φ) that can directly be used to compute Φ : Eu × Ev −→ EI × E′ with
the algorithms from Section 6.5 (Theorem 2.2.12).

However, we expect solutions to Eq. (2.12) to be tight so e − 1 ≤ f ≤ e. Then (T1, T2) or
([2]T1, [2]T2) is a basis of ker(Φ) that can be used to compute Φ with 5 square roots and a possible
swap of EI and E′ in the codomain as we have seen in Section 2.4.1. To distinguish EI from E′ in
the codomain of Φ (and φ1 ◦ φ̂u from φ2 ◦ φ̂v), we may evaluate Φ and compute Weil pairings, as
explained in Section 2.4.1. In Algorithm 2.5, we always apply the latter method to ([2e−f]T1, [2

e−f]T2)
since the case e − 1 ≤ f ≤ e is the most frequent and to facilitate a potential future constant time
implementation.

2.4. TRANSLATING ANY IDEAL FROMA SPECIAL CURVEWITH ISOGENIES IN DIMENSION 289

Step 4: point evaluation

Finally, we explain how to evaluate (φI(P0), φI(Q0)) for a basis (P0, Q0) of E0[2
e]. We first notice

that we can evaluate φ1 ◦ φ̂u from the two-dimensional isogeny Φ. This implies we can evaluate φ1

on E0[2
e] as follows: Φ(φu(P0), 0) = ([u]φ1(P0), ∗) and Φ(φu(Q0), 0) = ([u]φ1(Q0), ∗) and we can

multiply by µ ≡ 1/u mod 2e to get (φ1(P0), φ1(Q0)).
Since I1 := Iβ1/nrd(I), by Lemma 1.2.24 we have φ̂1 ◦ φI = ε0(β1), so that [d1]φI = φ1 ◦ ε0(β1).

We may compute discrete logarithms a, b, c, d ∈ Z/2eZ such that ε0(β1)(P0) = [a]P0 + [b]Q0 and
ε0(β1)(Q0) = [c]P0 + [d]Q0, so that:

φI(P0) = [aδ1]φ1(P0) + [bδ1]φ1(Q0) and φI(Q0) = [cδ1]φ1(P0) + [dδ1]φ1(Q0),

with δ1 ≡ 1/d1 mod 2e. We summarise Steps 1-4 in Algorithm 2.5.

Algorithm 2.5: ideal-to-isogeny from E0.

Data: A left O0-ideal I and a basis (P0, Q0) of E0[2
e]

Result: The image (EI , φI(P0), φI(Q0)) of the isogeny φI : E0 → EI associated to I.
1 Call Algorithm 2.4 with input I, 2e to obtain β1, β2 ∈ I and u, v ∈ N∗ and f ≤ e such that

gcd(uqI(β1), vqI(β2)) = 1 and uqI(β1) + vqI(β2) = 2f , with d1 := nrd(β1)/ nrd(I) and
d2 := nrd(β2)/ nrd(I);

2 Call Algorithm 2.3 with input u to compute the image (Eu, φu(P0), φu(Q0)) of a u-isogeny
φu : E0 −→ Eu;

3 Call Algorithm 2.3 with input v to compute the image (Ev, φv(P0), φv(Q0)) of a v-isogeny
φv : E0 −→ Ev;

4 θ ← β2β1/ nrd(I);
5 Find a, b, c, d ∈ Z/2eZ such that ε0(θ)(P0) = [a]P0 + [b]Q0 and ε0(θ)(Q0) = [c]P0 + [d]Q0;

6 T1 ← ([2e−fd1]φu(P0), [2
e−fa]φv(P0) + [2e−fb]φv(Q0));

7 T2 ← ([2e−fd1]φu(Q0), [2
e−fc]φv(P0) + [2e−fd]φv(Q0));

8 Compute Φ : Eu × Ev −→ E1 × E2 of kernel ⟨T1, T2⟩ ; // see Section 6.5
9 (±I(S),±I ′(S))← Φ(φu(S), 0) for S ∈ {P0, Q0, P0 −Q0};

10 Lift (I(P0), I(Q0)) from ±I(P0),±I(Q0),±I(P0 −Q0);
11 Lift (I ′(P0), I

′(Q0)) from ±I ′(P0),±I ′(Q0),±I ′(P0 −Q0);
12 µ ≡ 1/u mod 2e, δ1 ← 1/d1 mod 2e;

13 if e2e(I(P0), I(Q0)) = e2e(P0, Q0)
u2d1 then

14 EI ← E1, φ1(P0)← [µ]I(P0), φ1(Q0)← [µ]I(Q0);
15 else
16 EI ← E2, φ1(P0)← [µ]I ′(P0), φ1(Q0)← [µ]I ′(Q0);
17 end
18 Find a, b, c, d ∈ Z/2eZ such that ε0(β1)(P0) = [a]P0 + [b]Q0 and ε0(β1)(Q0) = [c]P0 + [d]Q0;
19 φI(P0)← [aδ1]φ1(P0) + [bδ1]φ1(Q0), φI(Q0)← [cδ1]φ1(P0) + [dδ1]φ1(Q0);
20 return (EI , φI(P0), φI(Q0));

2.4.3 Improving the norm equation step success probability

We have seen that Algorithm 2.5 may fail because of difficulties to solve Eq. (2.12) in some very rare
cases. In the following, we explain a method proposed in [AAA+25] to overcome this issue.

Starting from other curves than E0

In Algorithm 2.3, we construct isogenies φu : E0 −→ Eu of given odd degree u by exploiting the
structure of O0 ≃ End(E0). More precisely, we exploit the fact that O0 contains a suborder of the
form Z[i]⊕ jZ[i] to solve norm equations more easily with [Ler22, Algorithm 2]. As Antonin Leroux
remarked in his PhD thesis, [Ler22, Algorithm 2] applies to all special extremal orders containing an
order of small discriminant.

Definition 2.4.6. Let δ ∈ N∗. We say that a maximal order O ⊂ Bp,∞ is a δ-special extremal order if
it contains a suborder of the form O+jO, where O is a quadratic imaginary order of discriminant −δ.

90 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

If E/Fp2 is a supersingular elliptic curve of known endomorphism ring isomorphic to a δ-special
extremal order O, then for any odd integer u such that u(2e − u) = Ω(p log(p)h(−δ)), a u-isogeny
φu : E −→ Eu can be constructed with the techniques from Algorithm 2.3.

More freedom in Step 1

Let n ∈ N∗. Assume that we have precomputed for t ∈ J1 ; nK:

• A δt-special extremal order Ot ⊂ Bp,∞ for a small discriminant δt;

• A supersingular elliptic curve Et/Fp2 whose endomorphism ring is isomorphic to Ot;

• An isogeny φt : E0 −→ Et of odd degree nt and its associated ideal Jt connecting O0 and Ot.

As in Section 2.4.2, we want to translate a left O0-ideal I into an isogeny φI : E0 −→ EI and we follow
similar steps. However, we use the additional freedom offered by our precomputations to enhance the
success probability of Step 1. Namely, we still look for integral ideals I1, I2 of respective norms d1, d2,
f ≤ e and u, v ∈ N∗ such that gcd(ud1, vd2) = 1 and

ud1 + vd1 = 2f .

However, we no longer require I1 and I2 to be left O0-ideals equivalent to I. We allow I1 to be a left
Os-ideal equivalent to Js · I and I2 to be a left Ot-ideal equivalent to J t · I for some s, t ∈ J0 ; nK
(with the convention J0 = O0). In practice in SQIsign NIST round 2 implementation, with n = 6 or 7
additional precomputed special extremal orders, the failure probability in Step 1 becomes completely
negligible. The new method is summarised in Algorithm 2.6.

A variant of Algorithm 2.5

Once Step 1 is complete, we may evaluate a u-isogeny φu : Es −→ Eu on (φs(P0), φs(Q0)) and a
v-isogeny φv : Et −→ Ev on (φt(P0), φt(Q0)), where (P0, Q0) is a basis of E0[2

e]. We may then
consider the following (ud1, vd1)-isogeny diamond inspired from Eq. (2.16):

E′ φ̂′
v // Ev

Et

φv

OO

Eu

φ′
u

OO

φ̂u // Es
φ1 // EI

φ̂2

OO

where φ1 : Es −→ EI and φ2 : Et −→ EI are the isogeny respectively associated to I1 and I2. Then,
Kani’s lemma (Lemma 2.2.6) yields a 2f -isogeny:

Φ :=

(
φ1 ◦ φ̂u φ2 ◦ φ̂v
−φ′

u φ′
v

)
: Eu × Ev −→ EI × E′,

with kernel:
ker(Φ) = {([d1]φu(P), φv ◦ φ̂2 ◦ φ1(P)) | P ∈ Es[2f]}.

To find I1 ∼ Js · I and I2 ∼ I in Step 1, we have found β1 ∈ Js · I and β2 ∈ J t · I such that
Js·I1 = Iβ1/ nrd(I) and Jt·I2 = Iβ2/ nrd(I). Then, by Lemma 1.2.24, we have φ̂s◦φ̂1◦φI = ε0(β1) and
φ̂t◦φ̂2◦φI = ε0(β2). It follows that [nrd(I)ns]φ1 = φI ◦ε0(β1)◦φ̂s and [nrd(I)nt]φ̂2 = φt◦ε0(β2)◦φ̂I ,
so that:

[nsnt]φ̂2 ◦ φ1 = φt ◦ ε0(θ) ◦ φ̂s,

with θ := β2β1/ nrd(I). Since ns = deg(φs) and nt = deg(φt) are odd, we then obtain that ker(Φ) is
generated by T1 and T2 given by:

2.4. TRANSLATING ANY IDEAL FROMA SPECIAL CURVEWITH ISOGENIES IN DIMENSION 291

Algorithm 2.6: Step 1 modified: Finding suitable ideals I1, I2 and a coin problem solution
(u, v).

Data: An ideal I ⊆ O0 ≃ End(E0), an integer N = Θ(p), a bound B = Θ(log(p)) and
precomputed data (Ot, Jt, nt)0≤t≤n.

Result: s, t ∈ J0 ; nK, β1 ∈ Js · I, β2 ∈ J t · I such that d1 := nrd(β1)/(ns nrd(I)) and
d2 := nrd(β2)/(nt nrd(I)) are coprime and coprime with N , along with u, v ∈ N∗ and
M |N such that gcd(ud1, vd2) = 1 and ud1 + vd2 =M .

1 for t = 0 to n do
2 Compute a Minkowski reduced basis (αt,1, · · · , αt,4) of J t · I ; // [NS09, Fig. 3-4]
3 end
4 for s = 0 to n do

5 for (x1, · · · , x4) ∈ J−B ; BK4 do

6 β1 ←
∑4
j=1 xjαs,j ;

7 d1 ← nrd(β1)/(ns nrd(I));
8 if gcd(d1, N) = 1 then
9 for t = 0 to n do

10 for (y1, · · · , y4) ∈ J−B ; BK4 do

11 β2 ←
∑4
j=1 yjαt,j ;

12 d2 ← nrd(β2)/(nt nrd(I));
13 if gcd(d1, d2) = gcd(d2, N) = 1 then
14 Apply extended Euclide’s algorithm to find u0, v0 ∈ Z such that

u0d1 + v0d2 = 1;
15 if [−Nu0/d2, Nv0/d1] ∩ Z ̸= ∅ then
16 Take k ← ⌈−Nu0/d2⌉;
17 u← Nu0 + kd2, v ← Nv0 − kd1;
18 d← gcd(u, v,N);
19 u← u/d, v ← v/d, M ← N/d;
20 return s, t, β1, β2,M, u, v;

21 end

22 end

23 end

24 end

25 end

26 end

27 end

T1 := ([2e−fd1]φu ◦ φs(P0), [2
e−fηt]φv ◦ φt ◦ ε0(θ)(P0)),

and T2 := ([2e−fd1]φu ◦ φs(Q0), [2
e−fηt]φv ◦ φt ◦ ε0(θ)(Q0)),

with ηt ≡ 1/nt mod 2e.
By Theorem 2.2.13, we can then apply the algorithms from Section 6.5 to compute Φ : Eu×Ev −→

EI×E′, and identify a potential swap between EI and E
′ with Weil pairing computations, as explained

previously. Finally, to evaluate (φI(P0), φI(Q0)), we evaluate ([u]φ1 ◦ φs(P0), ∗) = Φ(φu ◦ φs(P0), 0)
and ([u]φ1 ◦ φs(Q0), ∗) = Φ(φu ◦ φs(Q0), 0) and use the fact that [nsd1]φI = φ1 ◦ φs ◦ ε0(β1) that
follows from Lemma 1.2.24. Algorithm 2.7 follows.

How to precompute starting curves with special extremal endomorphism rings

Now, we explain how the data (Et,Ot, Jt, nt, φt(P0), φt(Q0))0≤t≤n is precomputed. We proceed as
in [EPSV24; AAA+25]. We chose a sequence of small primes q1 < · · · < qn congruent to 3 mod 8
and such that (−p/qt) = 1 for t ∈ J1 ; nK. As in [Ibu82], we define for all t ∈ J1 ; nK the 4qt-special
extremal order:

Ot :=
〈
1, i′,

1 + j

2
,
(r + j)i′

2qt

〉
⊆ Bp,∞,

92 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Algorithm 2.7: ideal-to-isogeny from E0 with more freedom in Step 1.

Data: A left O0-ideal I and a basis (P0, Q0) of E0[2
e] and the precomputed data

(Et,Ot, Jt, nt, φt(P0), φt(Q0))0≤t≤n.
Result: The image (EI , φI(P0), φI(Q0)) of the isogeny φI : E0 → EI associated to I.

1 Call Algorithm 2.6 to find s, t ∈ J0 ; nK, β1 ∈ Js · I, β2 ∈ J t · I, u, v ∈ N∗ and f ≤ e such that

gcd(ud1, vd2) = 1 and ud1 + vd2 = 2f , with d1 := nrd(β1)/(ns nrd(I)) and
d2 := nrd(β2)/(nt nrd(I));

2 Compute the image (Eu, φu ◦ φs(P0), φu ◦ φs(Q0)) of a u-isogeny φu : Es −→ Eu;
3 Compute the image (Ev, φv ◦ φt(P0), φv ◦ φt(Q0)) of a v-isogeny φv : Et −→ Ev;

4 θ ← β2β1/nrd(I);
5 Find a, b, c, d ∈ Z/2eZ such that ε0(θ)(P0) = [a]P0 + [b]Q0 and ε0(θ)(Q0) = [c]P0 + [d]Q0;
6 ηs ← 1/ns mod 2e, ηt ← 1/nt mod 2e, µ ≡ 1/u mod 2e, δ1 ← 1/d1 mod 2e;

7 T1 ← ([2e−fd1]φu ◦ φs(P0), [2
e−faηt]φv ◦ φt(P0) + [2e−fbηt]φv ◦ φt(Q0));

8 T2 ← ([2e−fd1]φu ◦ φs(Q0), [2
e−fcηt]φv ◦ φt(P0) + [2e−fdηt]φv ◦ φt(Q0));

9 Compute Φ : Eu × Ev −→ E1 × E2 of kernel ⟨T1, T2⟩ ; // see Section 6.5
10 (±I(S),±I ′(S))← Φ(φu ◦ φs(S), 0) for S ∈ {P0, Q0, P0 −Q0};
11 Lift (I(P0), I(Q0)) from ±I(P0),±I(Q0),±I(P0 −Q0);
12 Lift (I ′(P0), I

′(Q0)) from ±I ′(P0),±I ′(Q0),±I ′(P0 −Q0);

13 if e2e(I(P0), I(Q0)) = e2e(P0, Q0)
u2d1ns then

14 EI ← E1, φ1 ◦ φs(P0)← [µ]I(P0), φ1 ◦ φs(Q0)← [µ]I(Q0);
15 else
16 EI ← E2, φ1 ◦ φs(P0)← [µ]I ′(P0), φ1 ◦ φs(Q0)← [µ]I ′(Q0);
17 end
18 Find a, b, c, d ∈ Z/2eZ such that ε0(β1)(P0) = [a]P0 + [b]Q0 and ε0(β1)(Q0) = [c]P0 + [d]Q0;
19 φI(P0)← [aδ1ηs]φ1 ◦ φs(P0) + [bδ1ηs]φ1 ◦ φs(Q0);
20 φI(Q0)← [cδ1ηs]φ1 ◦ φs(P0) + [dδ1ηs]φ1 ◦ φs(Q0);
21 return (EI , φI(P0), φI(Q0));

where r2 ≡ −p mod 4qt and i
′2 = −qt. The quaternion i′ is defined as i′ := i(x+ yj) with x, y ∈ Q

such that x2 + py2 = qt [EPSV24, Lemma 10]. To find such x, y ∈ Q, we solve the Legendre

equation x′
2
+ py′

2 − qtz′2 = 0 with variables x′, y′, z′ ∈ Z∗ and set x := x′/z′ and y := y′/z′. Since
(−p/qt) = 1, Legendre’s theorem below ensures this equation admits a solution. This solution can be
found polynomial time in log(p) with Simon’s algorithm [Sim05, Algorithm 3.4].

Theorem 2.4.7 (Legendre, 1785). Let a, b, c ∈ Z∗. Assume that −bc mod a, −ac mod b and −ab
mod c are quadratic residue, then ax2 + by2 + cz2 = 0 admits a non-zero solution (x, y, z) ∈ Z3.

Proof. See [DH48].

Then, for all t ∈ J1 ; nK, we compute a connecting ideal Jt between O0 and Ot as Jt := N ·
O0 · Ot, where N is a common denominator. We can then apply Algorithm 2.5 to Jt to compute
(Et, φt(P0), φt(Q0)).

Example 2.4.8. In SQIsign round 2 NIST submission, at NIST-I security level, p = 5 · 2248 − 1 and
six 4qt-special extremal orders with qt ∈ {5, 17, 37, 41, 53, 97} have been used [AAA+25, Appendix B].

2.5 Class group action with 4-dimensional isogenies

In this section, we present the PEGASIS algorithm (practical effective group action using 4-dimensional
isogenies) introduced in [DEF+25]. The goal of this algorithm inspired by Clapoti [PR23] is to com-
pute the class group action on oriented elliptic curves by any ideal. Indeed, with previous techniques,
it was only possible to compute efficiently the action by products of ideals of small norms. For that
reason, the class group action on oriented elliptic curves was called a restricted effective (or crypto-
graphic) group action (REGA), unlike an effective (or cryptographic) group action (EGA) where the
action by any group element is efficient.

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 93

For some cryptographic applications, an EGA is more suited than a REGA because the action by
group elements with uniform distribution is required. A REGA can still be used in that case, at the
expense of a precomputation of the group structure and the lattice of relations of group generators
whose action can be computed efficiently. It is the case for instance, in the digital signature scheme
CSI-FiSh [BKV19] relying on the action by Cl(Z[

√
−p]). The structure computation of Cl(Z[

√
−p])

may become impractical as p grows, and as a consequence, CSI-FiSh is not scalable to higher security
levels. These problems do not appear with EGAs.

PEGASIS provides an EGA for any kind of orientation of supersingular elliptic curves but has only
been implemented in the CSIDH/CSURF context. In the following, for the sake of clarity, we only
consider the CSURF ideal class group action [CD20] but the algorithmic approach is general (we refer
to [DEF+25] for the general case). As in Section 2.4, let p be a prime of the form p = c · 2e − 1 with
c ∈ N∗ a small and odd integer and e ∈ N of several hundreds. The CSURF group action is given by
the maximal order O := Z[(1 +

√
−p)/2] of Q(

√
−p). If E is a (primitively) O-oriented supersingular

elliptic curve, then E admits a Montgomery model over Fp and EndFp
(E) ≃ O, where

√
−p identifies

with the p-th Frobenius endomorphism. We shall see that the Montgomery (X : Z)-coordinates of
the 2e−1-torsion of E are Fp-rational so most of our arithmetic operations will take place over Fp in
this context.

Let a ⊆ O be an ideal and E/Fp be an O-oriented curve. We explain how the compute the action
Ea := a ·E of a on E, which is the codomain of the isogeny φa : E −→ Ea of kernel E[a]. As suggested
in [PR23] and similarly to Section 2.4, we proceed as follows:

1. We solve the following problem.

Problem 2.5.1. Given an ideal a ⊆ O and an integer fmax. Find ideals b, c ⊆ O and integers
N1, N2, u, v, f such that:

(i) The ideals b, c are equivalent to a and of the form b := be · bk and c := ce · ck, where be and ce
are product of small prime ideals and N1 := N(bk) and N2 := N(ck) are odd and coprime.

(ii) The integers u, v ∈ N∗ are such that gcd(uN1, vN2) = 1 and

uN1 + vN2 = 2f . (2.17)

(iii) We have f ≤ fmax − f1 − f2, where f1 := v2(N(b′e)), f2 := v2(N(c′e)), v2 being the 2-adic
valuation, be = f0 · b′e, ce = f0 · c′e and f0 is the greatest common factor of be and ce.

2. We compute and evaluate the isogenies φbe
: E −→ E1 := Ebe

and φce : E −→ E2 := Ece

associated to be and ce with standard techniques from Elkies [Elk98].

3. We compute and evaluate the 2-dimensional isogenies Φu : E2
1 −→ Au and Φv : E2

2 −→ Av of
respective polarised degrees u and v.

4. Using the data from previous steps, we compute a 4-dimensional 2f -isogeny F : Au × Av −→
E2

a ×A obtained from Kani’s lemma and extract Ea from the codomain E2
a ×A.

We now give more details on each one of the above steps.

2.5.1 Step 1: the norm equation

To simplify the computation of 2-dimensional isogenies of polarised degrees u and v in Step 3 (see
Section 2.5.2), we require u and v to be sums of squares up to a small factor. In the following, we fix
a set B of small Elkies primes i.e. of primes that split completely in O = Z[(1+

√
−p)/2] including 2.

Instead of solving Problem 2.5.1, we solve the following problem.

Problem 2.5.2. Given an ideal a ⊆ O and an integer fmax. Find ideals b, c ⊆ O and integers
N1, N2, u, v, f, xu, yu, xv, yv, gu, gv such that:

(i) The ideals b, c are equivalent to a and of the form b := be · bk and c := ce · ck, where be and
ce are product of prime ideals lying above primes of B and N1 := N(bk) and N2 := N(ck) are
coprime and have no factor in B.

94 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

(ii) The integers u, v ∈ N∗ and f ≤ fmax are such that gcd(uN1, vN2) = 1 and

uN1 + vN2 = 2f , (2.18)

with u := gu(x
2
u+y

2
u), v := gv(x

2
v+y

2
v), xu, yu, xv, yv ∈ Z and gu, gv ∈ N∗ are products of primes

in B. We say that such integers u and v are B-good.

(iii) We have f ≤ fmax − f1 − f2, where f1 := v2(N(b′e)), f2 := v2(N(c′e)), be = f0 · b′e, ce = f0 · c′e
and f0 is the greatest common factor of be and ce.

Remark 2.5.3. Since we need the 2f+2-torsion to compute the 4-dimensional 2f -isogeny in Step 4
(Theorem 2.2.12) and we want to work with Fp-arithmetic as much as possible, we need f +2 ≤ e− 1
so we solve Problem 2.5.2 with fmax := e− 3.

The method to solve Problem 2.5.2 is quite similar to Step 1 in Section 2.4.2. We find suitable ideals
b, c ∼ a by sampling β, γ ∈ a of small norms and setting b := aβ/N(a) and c := aγ/N(a). To sample
β, γ of small norms, we find a Lagrange reduced basis (α1, α2) of a, sample at random x1, x2, y1, y2 in
a small interval J−m ; mK and set β := x1α1 + x2α2 and γ := y1α1 + y2α2. By the following lemma
(Lemma 2.5.4), we expect the norms of α1, α2 to be close to

√
pN(a) in most cases so we expect

N(b), N(c) = Θ(
√
p). Since 2e = O(p), this would make the coin equation uN(b) + vN(c) = 2f with

f ≤ e− 3 tight to solve, and even more with the additional requirement that u and v are B-good.

Lemma 2.5.4. If a is an integral O-ideal and (α1, α2) is a Lagrange reduced basis of a, then

pN(a)2

π2
≤ N(α1)N(α2) ≤

4pN(a)2

π2
.

Proof. We proceed as in the proof of Lemma 2.3.2. Consider the canonical isomorphism ι : x+ iy ∈
C 7−→ (x, y) ∈ R2. When restricted to Q(

√
−p), ι is an isometry in the following sense ∥ι(α)∥2 = N(α)

for all α ∈ Q(
√
−p), where ∥.∥ is the Euclidean norm of R2. By Minkowski’s second theorem, the

successive minima λ1 ≤ λ2 of the lattice ι(a) satisfy

22

2!

Covol(ι(a))

Vol(B(0, 1))
=

2

π
Covol(ι(a)) ≤ λ1λ2 ≤ 22

Covol(ι(a))

Vol(B(0, 1))
=

4

π
Covol(ι(a)). (2.19)

But we have

Covol(ι(O)) =

∣∣∣∣∣∣ ⟨ι(1), ι(1)⟩
〈
ι(1), ι

(
1+i

√
p

2

)〉〈
ι
(

1+i
√
p

2

)
, ι(1)

〉 〈
ι
(

1+i
√
p

2

)
, ι
(

1+i
√
p

2

)〉 ∣∣∣∣∣∣
1
2

=

∣∣∣∣ 1 1
2

1
2

1+p
4

∣∣∣∣ 12 =

∣∣∣∣1 + p

4
− 1

4

∣∣∣∣ 12 =

√
p

2

We then have

Covol(ι(a)) = [O : a] Covol(ι(O)) =
N(a)

√
p

2

It follows by Eq. (2.19) that √
pN(a)

π
≤ λ1λ2 ≤

2
√
pN(a)

π

Taking the square of this inequality, we obtain the desired result.

To make the coin equation easier to solve, we factor out b and c by products of ideals lying above
primes of B, that we denote be and ce respectively, so that b = be · bk and c = ce · ck. We then set
N1 := N(bk), N2 := N(ck) and solve the coin equation uN1 + vN2 = 2f (Eq. (2.18)) which is less
tight. The method to solve Eq. (2.18) is very similar to Algorithms 2.4 and 2.6, except that we have
to check that u and v are B-good and find their decompositions u := gu(x

2
u + y2u), v := gv(x

2
v + y2v).

This is done by a trial and division method and Cornacchia’s algorithm (as in Section 2.3.1). We
summarise Step 1 in Algorithm 2.8.

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 95

Algorithm 2.8: Step 1: Finding a solution to Problem 2.5.2.

Data: An ideal a ⊆ O, two bounds m, q = Θ(log(p)) and a set of small primes B splitting in
O (including 2).

Result: A solution b, c, N1, N2, u, v, f, xu, yu, xv, yv, gu, gv to Problem 2.5.2 with respect to a
and fmax := e− 3.

1 Find a Lagrange reduced basis (α1, α2) of a;

2 for (x1, x2) ∈ J−m ; mK2 do

3 β1 ← x1α1 + x2α2, b← aβ1/N(a);
4 Factor N(b) := N(β1)/N(a) into N(b) =M1 ·N1, where all prime factors of M1 lie in B

and none of the prime factors of N1 lie in B;

5 for (y1, y2) ∈ J−m ; mK2 do

6 β2 ← y1α1 + y2α2, c← aβ2/N(a);
7 Factor N(c) := N(β2)/N(a) into N(c) =M2 ·N2, where all prime factors of M2 lie in

B and none of the prime factors of N2 lie in B;
8 if gcd(N1, N2) = 1 then
9 Apply extended Euclide’s algorithm to find u0, v0 ∈ Z such that u0N1 + v0N2 = 1;

10 de ← bece, d← 0;
11 while 2O is a factor of de do
12 d← d+ 1;
13 de ← de/2;

14 end
15 f1 ← v2(M1)− d, f2 ← v2(M2)− d;
16 fm ← e− 3− f1 − f2;
17 for k ∈ [−2fmu0/N2, 2

fmv0/N1] ∩ Z do
18 u← 2fmu0 + kN2, v ← 2fmv0 − kN1;
19 w ← min(v2(u), v2(v));
20 u← u/2w, v ← v/2w, f ← fm − w;
21 Factor u := gus

2
uquru and v := gvs

2
vqvrv, where all their prime factors of gu, gv

lie in B, all prime factors of su, sv are ≤ q and all prime factors of qu, qv are
≡ 1 mod 4 and ≤ q;

22 if ru and rv are primes ≡ 1 mod 4 then
23 Apply Cornacchia’s algorithm to ru and all prime factors of qu to find

x′u, y
′
u ∈ Z such that quru = x′

2
u + y′

2
u;

24 Apply Cornacchia’s algorithm to rv and all prime factors of qv to find

x′v, y
′
v ∈ Z such that qvrv = x′

2
v + y′

2
v;

25 xu ← sux
′
u, yu ← suy

′
u, xv ← svx

′
v, yv ← svy

′
v;

26 return b, c, N1, N2, u, v, f, xu, yu, xv, yv, gu, gv;

27 end

28 end

29 end

30 end

31 end
32 return ⊥;

Rerandomisation

For some ideals a, Problem 2.5.2 may not have a solution. Increasing the bound B is always a possible
solution, though this quickly becomes expensive and may be ineffective when a is unbalanced i.e. when
N(α1)≪

√
pN(a) and N(α2)≫

√
pN(a).

Another solution to this is to simply rerandomise the starting ideal a. Namely, If none of the
sampled, equivalent ideals gives us a solution for Problem 2.5.2, we can multiply a by a non-principal
ideal l for which the action is easy to evaluate (e.g. an ideal above ℓ = 2, ℓ = 2 being the smallest
prime in B). We obtain a new ideal a′ = al and try to solve Problem 2.5.2 for this ideal instead. For
instance, if a was unbalanced, we expect a′ to be balanced. If we manage to do so, we can simply

96 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

run Algorithm 2.8 on a′, using this solution, starting from the curve El = l · E instead of E, which
is easy to compute with standard techniques by choice of l. Otherwise, we can rerandomise again by
computing a′′ = la′ and running Algorithm 2.8 on a′′, and so on. As soon as Problem 2.5.2 has a
reasonable probability of being solved, this method takes care of failures in Algorithm 2.8 (⊥ returns)
quite efficiently, making Step 1 faster at the cost of a few group action computations by l.

2.5.2 Step 3: evaluating 2-dimensional isogenies of given polarised degree

In this section, we assume that we have computed E1 := Ebe
and E2 := Ece and we explain how to

compute 2-dimensional isogenies Φu : E2
1 −→ Au and Φv : E2

1 −→ Av of respective polarised degrees
u and v.

With u and v B-good

We assume that we have obtained a solution from Problem 2.5.2 in Step 1, so that u and v are B-good
and can be written u = gu(x

2
u + y2u) and v = gv(x

2
v + y2v) with xu, yu, xv, yv ∈ Z and gu, gv ∈ N∗ with

prime factors in B. In that case, we may consider a gu-isogeny φu : E1 −→ Eu given by the action of
an ideal gu ⊆ O of norm gu, and the 2-dimensional u-isogeny Φu := Mu ◦Diag(φu, φu) : E

2
1 −→ E2

u,
where Mu is the endomorphism:

Mu :=

(
xu −yu
yu xu

)
∈ End(E2

u). (2.20)

We may define Φv :=Mv ◦Diag(φv, φv) : E
2
2 −→ E2

v similarly. Note that the abelian surfaces Au and
Av are actually the elliptic products E2

u and E2
v respectively. In addition, the computation cost of Φu

and Φv is restricted to 1-dimensional isogeny computations and elliptic curve arithmetic. This is not
the case when u and v are not B-good.

With u or v not B-good

In practice, we always manage to solve Problem 2.5.2 in Step 1 so that u and v areB-good, by allowing
more primes in B as the parameter p grows. However, when p gets very big, solutions may be more
difficult to find and Problem 2.5.2 may take more time to solve. Solutions of Problem 2.5.1 with either
u or v (or both) not B-good may be worth considering to save time in Step 1 at the expense of Step 3.
We now explain how to deal with this case, namely how to compute a u-isogeny Φu : E2

1 −→ Au when
when u is an odd integer < 2e−3 such that u(2e−3−u) = Ω(p log(p)). The algorithmic approach is close
to [NO24, Algorithm 2] (presented in Section 2.4.1) and involves the computation of a 4-dimensional
isogeny, which is indeed more costly than theB-good approach presented above. Besides, the resulting
codomain principally polarised abelian surface Au is not an elliptic product in general.

The main idea follows from the following lemma.

Lemma 2.5.5. Let E/Fp be an O-oriented curve, a, b, c, d ∈ Z and N := a2+c2+p(b2+d2). Assume
that N > 0 and consider the endomorphism

α :=

(
[a] + [b]πp −[c] + [d]πp
[c] + [d]πp [a]− [b]πp

)
∈ End(E2),

where πp : (x, y) ∈ E 7−→ (xp, yp) ∈ E is the p-th Frobenius endomorphism. Then α is an N -isogeny.

Proof. By Lemma 2.2.4.(ii), the polarised dual of α (with respect to the naturally induced principal
product polarisation on E2) is

α̃ =

(
[a] + [b]π̂p [c] + [d]π̂p
−[c] + [d]π̂p [a]− [b]π̂p

)
.

Since E is supersingular and defined over Fp, Hasse-Weil’s bound implies that Tr(πp) = 0 so that
π2
p = −[p] = −πp ◦ π̂p and π̂p = −πp. It follows that

α̃ =

(
[a]− [b]πp [c]− [d]πp
−[c]− [d]πp [a] + [b]πp

)

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 97

and

α̃ ◦ α =

(
[a]− [b]πp [c]− [d]πp
−[c]− [d]πp [a] + [b]πp

)
◦
(
[a] + [b]πp −[c] + [d]πp
[c] + [d]πp [a]− [b]πp

)
=

(
[a2]− [b2]π2

p + [c2]− [d2]π2
p 0

0 [c2]− [d2]π2
p + [a2]− [b2]π2

p

)
=

(
[a2 + c2 + p(b2 + d2)] 0

0 [a2 + c2 + p(b2 + d2)]

)
= [N]E2 .

This completes the proof.

We fix an odd integer u < 2e−3 and find f ≤ e − 3 as small as possible such that u(2f − u) =
Ω(p log(p)) (in practice f ≃ e/2). Then, we apply [Ler22, Algorithm 2] to find a, b, c, d ∈ Z such that

a2 + c2 + p(b2 + d2) = nrd(a+ ci+ bj + dij) = u(2f − u),

and consider the endomorphism α ∈ End(E2) from Lemma 2.5.5 with N := u(2f − u). Then, the
following lemma ensures that α can be decomposed as α = Ψu ◦ Φu = Φ′

u ◦ Ψ′
u, where Φu,Φ

′
u are

u-isogenies and Ψu,Ψ
′
u are (2f − u)-isogenies, so that we have a (u, 2f − u)-isogeny diamond

A′
u

Φ′
u // E2

E2

Ψ′
u

OO

Φu //

α

>>

Au

Ψu

OO

Lemma 2.5.6. Let k be an algebraically closed field d1, d2 ∈ N∗ coprime and not divisible by char(k)
and d := d1d2, (A, λA) and (B, λB) be principally polarised abelian varieties and f : A −→ B be a
d-isogeny. Then:

(i) There exists a principally polarised abelian variety (C, λC), a d1-isogeny f1 : A −→ C and a
d2-isogeny f2 : C −→ B such that f = f2 ◦ f1.

(ii) f1 and f2 are unique up to post or pre composition by an isomorphism and we have ker(f1) =
ker(f)[d1] = [d2] ker(f) and ker(f2) = f1(ker(f)).

Proof. This will be proved later. We refer to Lemma 6.3.1 and Remark 6.3.2.

Applying Kani’s lemma (Lemma 2.2.6) to the isogeny diamond above yields a 4-dimensional 2f -
isogeny:

Fu =

(
Φu Ψ̃u
−Ψ′

u Φ̃′
u

)
: E4 −→ Au ×A′

u,

with kernel:

ker(Fu) = {([u]P, [u]Q,α(P,Q)) | P,Q ∈ E[2f]}.

From Lemma 6.4.3, we obtain 2f+2-torsion points T1, · · · , T4 forming an isotropic subgroup of E4[2f+2]
and such that ker(Fu) = ⟨[4]T1, · · · , [4]T4⟩. Using these points and the algorithmic approach from
Sections 6.3 and 6.6, we can compute Fu as a chain of 2-isogenies in level 2 theta coordinates. With
the techniques from Section 6.4.1, we can also extract Au and A′

u from the codomain of Fu and

express images Fu(x, y) = (Φu(x) + Ψ̃u(y),−Ψ′
u(x) + Φ̃′

u(y)) in the product Au ×A′
u. In particular,

as desired, we can evaluate the u-isogeny Φu : E2 −→ Au since Fu(x, 0) = (Φu(x),−Ψ′
u(x)), so Fu is

an efficient representation of Φu.
Since f + 2 ≤ e − 1, note that most of the arithmetic operations performed to compute Fu take

place over Fp instead of Fp2 . Indeed, we have the following lemma which ensures that we can find a
basis (P,Q) of E[2f+2] with Fp-rational Montgomery (X : Z)-coordinates.

98 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Lemma 2.5.7. Let E/Fp be a supersingular Montgomery curve (primitively) O-oriented (with O =
Z[(1 +

√
−p)/2]). Then there exists a basis (P,Q) of E[2e−1] such that πp(P) = P and πp(Q) = −Q,

where πp is the p-th Frobenius endomorphism. In particular, the Montgomery (X : Z)-coordinates of
P and Q are Fp-rational.

Proof. Since E is supersingular and defined over Fp, then #E(Fp) = p + 1 = c2e. It follows that
#E(Fp)[2e] = 2e. Since torsion subgroups of E have rank at most 2, we have E(Fp) ≃ (Z/2aZ) ×
(Z/2bZ) with a ≤ b and a + b = e. Then, E[2a] ⊆ E(Fp) = ker(πp − 1) so πp − 1 factors through
[2a]. The elliptic curve E being primitively O-oriented and O being generated by (

√
−p− 1)/2 which

corresponds to (πp − 1)/2, we must have a = 1 and b = e− 1, so that

E(Fp)[2e] = E(Fp)[2e−1] ≃ (Z/2Z)× (Z/2e−1Z). (2.21)

This ensures the existence of P ∈ E(Fp) i.e. such that πp(P) = P of order 2e−1. Let A ∈ Fp be
the Montgomery coefficient of E, so that E is given by y2 = x3 + Ax2 + x and Et be the quadratic
twist over Fp given by −y2 = x3 +Ax2 + x isomorphic to E via τ : (x, y) ∈ Et 7−→ (x, ζ4y) ∈ E, with
ζ24 = −1. Applying Eq. (2.21) to Et, we obtain the existence of P ′ ∈ Et(Fp) of order 2e−1. Then,
Q := τ(P ′) ∈ E(Fp2) \ E(Fp) has order 2e−1. Besides, since p ≡ 3 mod 4 and P ′ ∈ Et(Fp), we have:

πp(Q) = πp ◦ τ(P ′) = (x(P ′)p, ζp4y(P
′)p) = (x(P ′),−ζ4y(P ′)) = −τ(P ′) = −Q.

To conclude, it suffices to prove that P and Q are linearly independent, i.e. that [2e−2]P ̸=
[2e−2]Q. But we have πp([2

e−3]P) = [2e−3]P so [2e−3]P ∈ E(Fp) and πp([2
e−3]Q) = −[2e−3]Q so

[2e−3]Q ∈ E(Fp2) \E(Fp). By Eq. (2.21), all 4-torsion points lying above [2e−2]P are defined over Fp,
so [2e−3]Q does not lie above [2e−2]P and we have [2e−2]P ̸= [2e−2]Q. This completes the proof.

We refer to [DEF+25, Appendix D.1] for an efficient algorithm to sample such a basis of E[2e−1]
formed of eigenvectors for πp.

Since conversion formulas from Montgomery (X : Z)-coordinates to level 2 theta coordinates on
Montgomery elliptic curves are Fp-rational (see Proposition 5.3.47 and Lemma 6.5.7), if we use a basis
(P,Q) of E[2f+2] with Fp-rational Montgomery (X : Z)-coordinates to express T1, · · · , T4 we expect
the product theta coordinates of these points to be Fp-rational. Then, the computation of the first
2-isogenies of the chain Fu may involve operations over Fp2 (to apply changes of theta coordinates
with Theorem 6.2.10 in particular) but the following 2-isogenies are computed over Fp. Though, this
convenient result is experimental and has not been proved over the course of this PhD. Further study
is needed to obtain a formal proof.

2.5.3 Step 4: computing the 4-dimensional isogeny

Consider the following (uN1, vN2)-isogeny diamond

E′2 Φ:=Φ′
1◦Φ̃

′
u // E2

v

E2
2

Φv

OO

E2Ψ2oo

E2
u

Ψ:=Φ′
v◦Φ̃

′
2

OO

Φ̃u // E2
1

Φ1 // E2
a

Φ̃2

OO

E2

Ψ1

OO

(2.22)

In the diagram above, we have:

• Ψ1 = Diag(φbe
, φbe

), where φbe
is the isogeny corresponding to the action of be; analogously,

Ψ2 = Diag(φce , φce);

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 99

• Φ1 = Diag(φbk
, φbk

) and Φ2 = Diag(φck , φck);

• Φu and Φv are isogenies of polarised degree u and v respectively; as explained in Section 2.5.2,
we can write Φu = Mu ◦ Diag(φu, φu), with deg(φu) = gu, Φv = Mv ◦ Diag(φv, φv) with
deg(φv) = gv, Mu and Mv being given by Eq. (2.20);

Furthermore, the isogenies Φ and Ψ are the isogenies of polarised degree uN1 and vN2 completing
the square, whose existence is guaranteed by Lemma 2.5.6. In this setting we can also describe them
explicitly, as the following lemma shows.

Lemma 2.5.8. Φ is of the form Φ′
1 ◦ Φ̃′

u, where:

• Φ′
1 := Diag(φ′

bk
, φ′

bk
) : E′

1
2 −→ E2

v with E′
1 := [bk] · Ev and φ′

bk
, the isogeny associated to the

action of bk on E′
1;

• Φ′
u :=MuDiag(φ′

u, φ
′
u) : E

′
1
2 −→ E′2, Mu being given by Eq. (2.20) and φ′

u being the isogeny of
degree gu given by the action of the same ideal gu as φu (a product of prime ideals lying above
primes in B).

Ψ is of the form Φ′
v ◦ Φ̃′

2, where:

• Φ′
2 := Diag(φ′

ck
, φ′

ck
) : E′

2
2 −→ E2

u with E′
2 := [ck] · Eu and φ′

ck
, the isogeny associated to the

action of ck on E′
2;

• Φ′
v :=Mv Diag(φ′

v, φ
′
v) : E

′
2
2 −→ E′2, Mv being given by Eq. (2.20) and φ′

v being the isogeny of
degree gv given by the action of the same ideal gv as φv (a product of prime ideals lying above
primes in B).

In particular, the common codomain of Φ̃ and Ψ is a product of elliptic curves E′2.

Proof. We have to verify that Φ′
1◦Φ̃′

u and Φ′
v◦Φ̃′

2 defined above are N1u and N2v-isogenies respectively
making the diagram commute, i.e. such that:

Φ′
1 ◦ Φ̃′

u ◦ Φ′
v ◦ Φ̃′

2 = Φv ◦ Φ̃2 ◦ Φ1 ◦ Φ̃u. (2.23)

First, we verify that the composition on the left makes sense i.e. that Φ′
u and Φ′

v have the same
codomain. By definition, the codomain of Φ′

u is

E′ = [gu]E
′
1 = [gubk]Ev = [gubkgv]E2 = [gugvbkce]E

and the codomain of Φ′
v is

E′′ = [gv]E
′
2 = [gvck]Eu = [gvckgu]E1 = [gugvckbe]E.

But b = bebk and c = ceck are both equivalent to a. It follows that bkce and ckbe are equivalent, so
that E′ ≃ E′′.

By construction, Φ′
1 ◦ Φ̃′

u and Φ′
v ◦ Φ̃′

2 are N1u and N2v-isogenies respectively, so we only have to
prove Eq. (2.23). On the one hand, we have:

Φ′
1 ◦ Φ̃′

u ◦ Φ′
v ◦ Φ̃′

2 = M̃u ◦Mv ◦Diag(φ′
bk
◦ φ̂′

u ◦ φ′
v ◦ φ̂′

ck
, φ′

bk
◦ φ̂′

u ◦ φ′
v ◦ φ̂′

ck
),

since M̃u and Mv commute with diagonal isogenies. On the other hand:

Φv ◦ Φ̃2 ◦ Φ1 ◦ Φ̃u =Mv ◦ M̃u ◦Diag(φv ◦ φ̂ck ◦ φbk
◦ φ̂u, φv ◦ φ̂ck ◦ φbk

◦ φ̂u).

Both φ′
bk
◦ φ̂′

u ◦ φ′
v ◦ φ̂′

ck
and φv ◦ φ̂ck ◦ φbk

◦ φ̂u correspond to the action of the ideal gugvckbk on

Eu so these isogenies must be equal. Besides, a simple matrix computation ensures that M̃u and Mv

commute. This proves Eq. (2.23) and the lemma.

100 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Eq. (2.22) and Kani’s lemma (Lemma 2.2.6) yield a 2f -isogeny:

F =

(
Φ1 ◦ Φ̃u Φ2 ◦ Φ̃v
−Φ′

v ◦ Φ̃′
2 Φ′

u ◦ Φ̃′
1

)
: E2

u × E2
v −→ E2

a × E′2.

with kernel:

ker(F) = {([uN1]P, [uN1]Q,Φv ◦ Φ̃2 ◦ Φ1 ◦ Φ̃u(P,Q)) | P,Q ∈ Eu[2f]}

= {([N1]Φu(P,Q),Φv ◦ Φ̃2 ◦ Φ1(φu(P), φu(Q))) | P,Q ∈ E1[2
f]}

= {([N1]Mu(φu(P), φu(Q)),Mv(φv ◦ φ̂ck ◦ φbk
(P), φv ◦ φ̂ck ◦ φbk

(Q))) | P,Q ∈ E1[2
f]}.

Let (P,Q) be a basis of E1[2
f+2], with Fp-rational (X : Z)-coordinates (which does exist by Lemma 2.5.7

since f ≤ e − 3), η1, α be inverses of N1, uN1 modulo 2f+2 respectively, (Pu, Qu) := φu(P,Q) and
(Pv, Qv) := φv ◦ φ̂ck ◦ φbk

(P,Q). Then, applying Lemma 6.4.1.(i), we obtain 2f+2-torsion points:

T1 := ([N1xu]Pu, [N1yu]Pu, [xv]Pv, [yv]Pv)

T2 := ([−N1yu]Pu, [N1xu]Pu, [−yv]Pv, [xv]Pv)

T3 := ([(1− 2eα)xu]Qu, [(1− 2eα)yu]Qu, [η1xv]Qv, [η1yv]Qv)

T4 := ([−(1− 2eα)yu]Qu, [(1− 2eα)xu]Qu, [−η1yv]Qv, [η1xv]Qv)

forming an isotropic subgroup K ′ ⊂ (E2
u × E2

v)[2
f+2] such that [4]K ′ = ker(F) and we can compute

F from these points by Theorem 2.2.12. More precisely, to compute F with the techniques from
Sections 6.3 and 6.6, we need:

• The integers N1, N2, gu, xu, yu, gv, xv, yv, e obtained from a solution to Problem 2.5.2 obtained
in Step 1.

• The points Pu, Qu, Pv, Qv that needs to be computed in Step 2 (see Section 2.5.4).

Even though the approach to compute F is similar to Section 6.6, we refer to [DEF+25, Appendix B]
for relevant specific details.

Remark 2.5.9. Since the (X : Z)-coordinates of P and Q are Fp-rational and the isoge-
nies φu, φv, φbk

, φck associated to ideals of O are also Fp-rational (see Section 2.5.4), the points
Pu, Qu, Pv, Qv have Fp-rational (X : Z)-coordinates. As a consequence, we expect that most arith-
metic operations involved in the computation of F take place over Fp, for reasons explained in the
end in Section 2.5.2.

2.5.4 Step 2: evaluating Elkies’ isogenies

The goal of this section is to explain how to compute the isogenies associated to the ideals be, ce, gu, gv
introduced previously and how to compute the points (Pu, Qu) := φu(P,Q) and (Pv, Qv) := φv ◦ φ̂ck ◦
φbk

(P,Q) introduced in the end of Section 2.5.3.

Computing Fp-rational isogenies with Elkies’ algorithm

Let l ⊆ O be a prime ideal and φl : (E, ι) −→ (El, ιl) be an associated O-oriented isogeny. By the
definition of an O-oriented isogeny, we have φl ◦ ι(α) = ιl(α) ◦ φl for all α ∈ O. In particular (with
α =
√
−p), we obtain that φl◦πEp = φl◦πEl

p , where πEp and πEl
p are the p-th Frobenius endomorphisms

of E and El respectively. It follows that φl is Fp-rational.
However, its kernel E[l] may not be defined over Fp or even Fp2 , except if ℓ := N(l) divides p+ 1,

which is not the case for all primes in B in general. For that reason, we cannot compute φl with
Vélu’s formulas [Vé71] without using field extensions of Fp. To circumvent this difficulty, we use
Elkie’s algorithm introduced in [Elk98] instead to stay over Fp.

Assume that ℓ = N(l) is odd. Then, there are 2 horizontal ℓ-isogenies starting from E associated
to l and l. The j-invariants j(El) and j(El) defined over Fp may be found with the ℓ-th modular

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 101

polynomial. We compute Φℓ(x, j(E)) ∈ Fp[x] and find roots of this polynomial defined over Fp. These
roots are j(El) and j(El). We have no way of distinguishing between the two in general.

If φ : E −→ E′ is an Fp-rational ℓ-isogeny, then its kernel polynomial h(x) is a factor of degree
(ℓ−1)/2 of the division polynomial of E which is defined over Fp. To find it knowing j(E) and j(E′),
we may use [BSS99, Algorithm VII.3]. Since we cannot distinguish between j(El) and j(El), to check
if the resulting kernel polynomial h(x) corresponds to φl, we proceed as follows. The ideal l is of the
form l = ℓZ+(

√
−p−λ)/2Z, where λ ∈ Z is a square root of −p mod ℓ. It follows that the points of

E[l] = ker(φl) are eigenvectors of πp for the eigenvalue λ. Since we do not work with ℓ-torsion points,
we test the following equality symbolically

(xp, yp) ≡ [λ](x, y) mod (h(x), y2 − f(x)),

where y2 − f(x) = 0 is the equation of E. If the above equality is not satisfied, it means that we
picked the wrong j-invariant j(E′) = j(El) and we may apply [BSS99, Algorithm VII.3] again to
the other j-invariant j(El) obtained as a root of Φ(X, j(E)) to compute the kernel polynomial of φl.
Once, we have found this kernel polynomial, we can express φl with the formulas from [BMSS08,
Proposition 4.1].

If ℓ = 2, the computation of φl is way simpler. Indeed, l is of the form 2Z+(
√
−p±1)/2Z. Assume

we know a basis (P,Q) of E[4] such that πp(P) = P and πp(Q) = −Q, so that the (X : Z)-coordinates
of P and Q are defined over Fp (its existence is ensured by Lemma 2.5.7). Then, E[l] = ⟨[2]P ⟩ if
l = 2Z + (

√
−p − 1)/2Z and E[l] = ⟨[2]Q⟩ if l = 2Z + (

√
−p + 1)/2Z. So we can easily compute φl

with Vélu’s formulas.
Note that the isogeny formulas we use are adapted to Weierstrass models while our O-oriented

supersingular elliptic curves are more naturally described by Montgomery models, so we apply conver-
sion formulas between these two models. With the techniques presented above, we can rerandomise
the starting curve E by computing an action [l

g
] ·E as explained in the end of Section 2.5.1; and com-

pute the isogenies φbe
: E −→ E1, φce : E −→ E2, φu : E1 −→ Eu and φv : E2 −→ Ev respectively

associated to be, ce, gu and gv which are products of prime ideals lying above primes of B.

Computing Pu, Qu, Pv and Qv

Now, let (P,Q) be a basis of E1[2
f+2] such that πp(P) = P and πp(Q) = −Q (Lemma 2.5.7).

The computation of (Pu, Qu) := φu(P,Q) is straight forward once we have computed φu with the
techniques presented above. We can even work with x-only or (X : Z)-only arithmetic to obtain
(±φu(P),±φu(Q)) on the Kummer line Eu/± and lift the result to (φu(P), φu(Q)) with a Weil pairing
computation or by computing the additional Kummer line point ±φu(P −Q). We now explain how
to compute (Pv, Qv) := φv ◦ φ̂ck ◦ φbk

(P,Q).
Let ι : O

∼−→ EndFp(E) be the the O-orientation of E (mapping
√
−p to πp). Then, by con-

struction, the ideals a and b obtained in Step 1 are given by b = aβ1/N(a) and c = aβ2/N(a), with
β1, β2 ∈ a, so that cb is principal: cb = Oθ with θ := β1β2/N(a) ∈ O. It follows that φ̂c ◦ φb = ι(θ),
so that:

[N(be)N(ce)]φ̂ck ◦ φbk
= φce ◦ ι(θ) ◦ φ̂be

Hence, when N(be) and N(ce) are odd, we only have to evaluate φce ◦ ι(θ) ◦ φ̂be on (P,Q) and
multiply the result by an inverse of N(be)N(ce) mod 2f+2. The evaluation of φ̂be may be done by
computing the action of be on E1 or by the classical discrete logarithm computation presented in
Algorithm 2.94. To evaluate ι(θ), we decompose θ = (a + b

√
−p)/2 with a, b ∈ Z, so that ι(θ) =

([a] + [b]πp)/2. A straightforward way to evaluate ι(θ) on 2f+2-torsion points is to use 2f+3-torsion
points that may not be defined over Fp. An alternative involving Weil and Tate pairing computations
has been introduced in [DEF+25, Algorithm 1].

Now, we assume that N(be) or N(ce) is even. We write be = b′e · b2 and be = c′e · c2, where b2 and
c2 are ideals of norms a power of 2. Since the action by common factors of be, ce can be computed at
the beginning (as for the rerandomisation of a in Step 1), we can assume that b2 and c2 are coprime

i.e. that b2 = lf1 and b2 = l
f2
, where l is a prime ideal lying above 2. Writing f12 = f1 + f2, we get

that
[N(be′)N(ce′)2

f12]φ̂ck ◦ φbk
= φce ◦ ι(σ) ◦ φ̂be

.

4That will be reused later.

102 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

The only added difficulity that needs to be accounted for is that we cannot find an inverse to 2f12

modulo 2e+2. We fix this by taking a basis (P,Q) of a larger torsion group E[2f+2+f12] instead of
E[2f+2] in the beginning. We remark that by construction, we have f +2+ f12 ≤ e− 1 since we have
solved Problem 2.5.2 with fmax = e− 3 in Step 1.

Algorithm 2.9: Classical method to evaluate the dual of an isogeny.

Data: Coprime integers N, d ∈ N∗, a basis (P1, Q1) of E1[N], its image (φ(P1), φ(Q1)) by a
d-isogeny φ : E1 −→ E2 and a basis (P2, Q2) of E2[N].

Result: (φ̂(P2), φ̂(Q2)).
1 Find α, β, γ, δ ∈ Z/NZ such that φ1(P1) = [α]P2 + [β]Q2 and φ1(Q1) = [γ]P2 + [δ]Q2;
2 ∆−1 ← (αδ − βγ)−1 mod N ;
3 φ̂1(P2)← [d∆−1δ]P1 − [d∆−1β]Q1;
4 φ̂1(Q2)← −[d∆−1γ]P1 + [d∆−1α]Q1;
5 return (φ̂(P2), φ̂(Q2));

2.5.5 Performance

The PEGASIS algorithm that we described for CSIDH/CSURF was implemented in SageMath5 for
primes of the form p = c2e − 1 of different sizes. Our implementation covers primes from 500 bits to
4000 bits, the latter ensuring at least NIST-I level of security against the Kuperberg subexponential
attack [Kup05; BS20; Pei20; CSCDJRH21]. For bigger primes p, we increased the size of the allowed
Elkies’ primes set B to make Step 1 faster. The parameters may be found in Table 2.2.

Parameter set e c B

500 503 33 3, 7, 11, 13
1000 1004 15 3, 5, 7, 11
1500 1551 9 3, 5, 11
2000 2026 51 3, 7, 11, 17
4000 4084 63 3, 7, 11, 17, 19

Table 2.2: Parameter sets used in our implementation. The prime p is of the form p = c2e − 1 and B
is the set of small split primes used.

The results of our SageMath 10.5 implementation can be found in Table 2.3; timings for each steps
are in seconds, and are obtained by averaging 100 runs on an Intel Core i5-1235U.

Parameter set Step 1 (s) Step 2 (s) Step 3 (s) Tot. Time (s)

500 0.097 0.477 0.960 1.534

1000 0.212 1.159 2.838 4.210

1500 1.186 2.853 6.491 10.530

2000 1.675 8.337 11.327 21.339

4000 15.606 52.808 53.463 121.876

Table 2.3: SageMath 10.5 timings in sec on Intel Core i5-1235U. Step 1 is the time to solve the norm
equation, Step 2 the time to do the Elkies steps, and Step 3 the time to compute the dimension 4
isogeny

5The public repository can be found at https://github.com/pegasis4d/pegasis.

https://github.com/pegasis4d/pegasis

2.5. CLASS GROUP ACTION WITH 4-DIMENSIONAL ISOGENIES 103

We conclude with a more detailed comparison with the other available isogeny based effective
group actions (EGA) in the literature. The comparison is summarised in Table 2.4. The timings
for SCALLOP [FFK+23] were reportedly measured on an Intel i5-6440HQ processor running at 3.5
GHz, while the timings for SCALLOP-HD [CLP24] were reportedly measured on an Intel Alder Lake
CPU core clocked at 2.1 GHz. The timings for PEARL-SCALLOP [ABE+24] and the two versions
of KLaPoTi [PPS24] were all re-measured on the same hardware setup as the timings presented in
Table 2.3.

Paper Impl. 500 1000 1500 2000 4000

SCALLOP [FFK+23]* C++ 35s 12m30s – – –

SCALLOP-HD [CLP24]* Sage 88s 19m – – –

PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m – –

KLaPoTi [PPS24]
Sage 200s – – – –

Rust 1.95s – – – –

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table 2.4: Comparison between PEGASIS and other effective group actions in the literature. The
last 5 columns gives the timings corresponding to the different security levels, where s/m gives the
number of seconds/minutes in wall-clock time. SCALLOP and SCALLOP-HD are starred because
they were measured on a different hardware setup.

PEGASIS is the first instantiation of an EGA at the 2000 bits and 4000 bits security level. In
fact, it is even the first time that the full CSIDH group action can be computed at the 1000 bits
level. However, as Table 2.4 shows, PEGASIS also significantly outperforms all earlier works at their
security levels. The closest comparison comes with the Rust implementation of KLaPoTi. However,
the fact that KLaPoTi was able to achieve a speedup by two orders of magnitude simply by switching
from a high-level SageMath implementation to a low-level Rust implementation is also very promising
for PEGASIS. Under the assumption that a comparable speedup would be possible for PEGASIS, we
see that PEGASIS gives a highly-practical EGA, even at the highest security levels.

The main reason of this efficiency is that unlike all the other EGA instantiations, we are able to
use the orientation given by Frobenius. This has three key benefits:

• Evaluating the orientation is very efficient.

• We do not need to represent, nor push forward the orientation.

• We can work over Fp.

The price to pay is the need to go up to dimension 4 to compute the action, but as Table 2.3 shows
that it is still reasonably efficient. We stress that our implementation is only a proof of concept,
to explore whether level 4000 was feasible in practice. In particular, we are missing many standard
implementation tricks; as a simple example, we work with affine coordinates instead of projective
coordinates. Despite this, our timings are very encouraging, and we hope a low level optimised
implementation could even be made comparable in efficiency to a state-of-the-art implementation of
a restricted effective group action (REGA), like [CHMR25].

104 CHAPTER 2. IMPROVING IDEAL-TO-ISOGENY TRANSLATION ALGORITHMS

Chapter 3

SQIsignHD: faster and safer
signatures with higher dimensional
isogenies

With the algorithmic tools introduced in Chapter 2 to translate quaternion ideals into supersingular
isogenies, we are ready to introduce the digital signature scheme SQIsignHD based on SQIsign, which
was the first isogeny based scheme to use them. The presentation that follows is mainly based on
an original contribution from this PhD [DLRW24] and on improvements from the SQIsign2D-West
paper, also part of this PhD [BDF+25]. These improvements simplify the description and accelerate
the fast version of SQIsignHD.

Recall that the bottleneck of SQIsign was the ideal-to-isogeny translation in the signing phase
that relied on KLPT based techniques presented in Section 2.1. In SQisignHD, this costly ideal-
to-isogeny translation is replaced by the evaluation of some points via an isogeny (which is fast in
practice). To verify that these image points represent the expected isogeny, a higher dimensional
isogeny computation (in dimension 4 in practice) takes place during the verification phase (using
the techniques from Sections 2.2.4 and 2.3). This method enhances greatly the signing performance,
allows for even more compact signatures than SQIsign and cleaner security proofs at the expense of
the verification efficiency. SQIsign2D-West [BDF+25] that will be introduced in Chapter 4 certainly
offers the best compromise on all fronts (even the verification), but SQIsignHD is still interesting as a
trade-off between verification and signing time as it beats the record for fast isogeny based signatures,
and even more with the most recent improvements.

Note that two variants of SQIsignHD will be introduced in the following: F-SQisignHD, with
4-dimensional verification, implemented and optimised for efficiency, and R-SQIsignHD, with 8-
dimensional verification, then purely theoretical and optimised for clean security proofs. The de-
scription of the first variant is simple while the description of the latter is a bit more technical. We
shall first give a high level description of SQIsignHD, present some algorithmic building blocks that
were not already previously introduced (and that will also be useful in Chapter 4), then present each
phase of both variants of SQIsignHD, before a presentation of their security analysis and a concluding
section on the performance of F-SQIsignHD.

3.1 An overview of the SQIsign framework

3.1.1 An identification protocol

SQIsign is a digital signature scheme obtained via the Fiat-Shamir transform [FS87] (see Section 3.1.3)
of an identification protocol where a party (called the prover) proves the knowledge of some secret
information to another party (called the verifier) without revealing it. This protocol is built on the
Deuring correspondence between quaternion ideals and isogenies. SQIsign and SQIsignHD mainly
differ in the way of making the Deuring correspondence effective. While SQIsign only works with
smooth degree isogenies between supersingular elliptic curves, SQIsignHD uses 4-dimensional isogenies

105

106 CHAPTER 3. SQISIGNHD

E0 φsk
Epk

φcom

Ecom

φrsp
Echl

φchl
Public
Secret

Figure 3.1: The SQIsign/SQIsignHD identification protocol. This diagram is non-commutative.
Dashed red lines represent secrets.

in the verification process. In the following, we present the main building blocks of SQIsign (and
SQIsignHD) identification protocol.

Public set-up. We choose a prime p and a supersingular elliptic curve E0/Fp2 of known endo-
morphism ring O0

∼= End(E0) such that E0 has smooth torsion defined over a small extension of Fp2
(of degree 1 or 2). In practice, one may use the curve E0 : y2 = x3 + x (and p ≡ 3 mod 4).

Key generation. The prover generates a random secret isogeny φsk : E0 −→ Epk and publishes
Epk as its public key.

Commitment. The prover generates a random secret isogeny φcom : E0 −→ Ecom and sends
Ecom to the verifier as its commitment. For the identification protocol to be zero-knowledge (and
the derived signature scheme to be secure), Ecom has to be computationally indistinguishable from a
uniformly random elliptic curve in the supersingular isogeny graph.

Challenge. The verifier generates and sends to the prover a random isogeny φchl : Epk −→ Echl

of smooth degree sufficiently large for φchl to have high entropy. The challenge space should have size
Ω(2λ) to ensure λ bits of (soundness) security.

Response. The prover generates and transmits to the verifier an efficient representation (as
defined in Definition 1.1.22) of an isogeny φrsp : Ecom −→ Echl which does not backtrack through φchl

(i.e. φ̂rsp ◦ φchl is cyclic).

Verification. The verifier checks that the response returned by the prover correctly represents
an isogeny φrsp : Ecom −→ Echl and checks that this isogeny does not backtrack through φchl. The
diagram in Fig. 3.1 illustrates the relationship between the various isogenies computed by the protocol.

To compute such an efficient representation of φrsp (that will be called φrsp by abuse of notations),
the prover uses the Deuring correspondence. Returning φrsp = φchl ◦ φsk ◦ φ̂com : Ecom −→ Echl

would make the scheme insecure. However, the prover can translate φchl ◦ φsk ◦ φ̂com into an ideal I
connecting the maximal quaternion orders isomorphic to End(Ecom) and End(Echl), find a random
equivalent ideal Irsp ∼ I and translate Irsp into φrsp.

3.1.2 From SQIsign to SQIsignHD

The ideal Irsp ∼ I is sampled to be relatively easy to translate into an isogeny and with a distribution
that ensures one can simulate the response without secret knowledge (zero knowledge property). These
two objectives are in tension and lead to a trade-off between efficiency and rigorous security proofs.
As we have seen in Section 2.1, in SQIsign, nrd(Irsp) had to be smooth to make the ideal-to-isogeny
translation possible. The KLPT algorithm [KLPT14] was used to find Irsp, resulting in big norms
nrd(Irsp) ≈ p15/4, slow ideal-to-isogeny translation and a very heuristic security proof.

In SQIsignHD [DLRW24], the smoothness condition on Irsp is relaxed, allowing for smaller norms,
a stronger security proof and a faster response at the expense of the verification time. To represent
φrsp, we use the algorithmic approach from Section 2.3 directly inspired from SIDH attack tech-
niques [CD23; MMPPW23; Rob23] presented in Section 2.2.4. Following the ideas of Section 2.3.3,
the prover uses the secret knowledge of φchl ◦ φsk ◦ φ̂com to evaluate φrsp on some torsion points. This
torsion evaluation (along with deg(φrsp)) is an efficient representation of φrsp that can be sent to the
verifier. This makes SQIsignHD response considerably faster than SQIsign response. To verify the
validity of this representation, the verifier computes a 4-dimensional (or 8-dimensional) isogeny that
”embeds” φrsp by Kani’s Lemma (Lemma 2.2.6). A low level implementation of 4-dimensional isoge-
nies would be needed to make accurate comparisons, but SQIsignHD verification is expected to be
slower than SQIsign verification, especially after the latest improvements of AprèsSQI [CRSEMR24].

3.1. AN OVERVIEW OF THE SQISIGN FRAMEWORK 107

This drawback has been solved by the 2-dimensional variants of SQIsign [BDF+25; NOC+25; DF25],
including SQIsign2D-West that was proposed to the NIST and will be presented in Chapter 4.

Another advantage of SQIsignHD is the scalability of the prime parameter p to higher security
levels. As we have seen in Section 2.1.4, to make the ideal-to-isogeny translation efficient in SQIsign,
p was required to satisfy 2f |p+1 and 2fT |p2 − 1 with 2f = Θ(p1/4) and T = Θ(p5/4) a powersmooth
integer. The efficient search for such primes is still an active research question and scales badly
as p grows, meaning that the search becomes harder and the smoothness bound we can impose on
T grows as p grows, making the ideal-to-isogeny translation more costly. Among other alternative
improvements [CRSEMR24; ON25], SQIsignHD completely solves this scalability problem by using
primes of the form p = c2e − 1 with c ∈ N∗ small and e ∈ N∗ growing linearly with the security
level. Note that primes of the form p = c2e3e

′−1 were initially used in SQIsignHD [DLRW24] but the
power of 3 is no longer necessary with the new techniques presented in Section 2.4 that were introduced
for SQIsign2D-West. Even though these were not the original techniques used in SQIsignHD, they
greatly simplify the presentation while improving efficiency. We refer to [DLRW24] for a presentation
of SQIsignHD with the former techniques.

As in [DLRW24], we introduce two versions of SQIsign:

• F-SQIsignHD, standing for Fast version of SQIsignHD, optimised for efficiency and requiring a
4-dimensional isogeny computation in the verification.

• R-SQIsignHD, standing for Rigorous version of SQIsignHD, optimised to make the security
proof (of the zero-knowledge property) easier at the expense of efficiency and requiring an 8-
dimensional isogeny computation in the verification.

Unlike F-SQIsignHD, R-SQIsignHD is purely theoretical and not implemented but demonstrates the
potential of higher dimensional isogenies to obtain highly trustworthy security proofs.

3.1.3 The Fiat-Shamir transform

In this section, we explain how to transform our SQIsignHD identification protocol into a signature
scheme using the Fiat-Shamir transform [FS87]. The method is analogous to the original SQIsign
protocol.

In F-SQIsignHD, the challenge isogeny will be a 2e-isogeny. In order to make the scheme non-
interactive, we replace the call to the verifier by a hash function that generates it. The CGL hash
function [CLG09] can be used to generate a cyclic 2e-isogeny φ := CGL(E, s) : E −→ E′ given a
supersingular elliptic curve E/Fp2 and an integer s ∈ J1 ; 2eK. This isogeny is generated as a chain of
2-isogenies starting from E, where bits of s determine non-backtracking outgoing isogenies at every
step. We also use another secure hash function H : {0, 1}∗ −→ J1 ; 2eK to generate inputs s of CGL
from messages and j-invariants. In R-SQIsignHD, the challenge isogeny will be of odd degree but a
similar hashing method will apply, e.g. using the hash function from [DFSGF+21, § 3.1] generalising
CGL.

Signature. To sign a message m with a secret key φsk : E0 −→ Epk, generate a random commit-
ment φcom : E0 −→ Ecom, let s := H(j(Epk), j(Ecom),m) and φchl := CGL(Epk, s) : Epk −→ Echl. From
the knowledge of φsk, φchl and φcom, construct an efficient representation rsp = (φrsp(Pcom), φrsp(Qcom), q)
given by the image of torsion points by a response isogeny φrsp : Ecom −→ Echl and return (Ecom, rsp)
as a signature.

Verification. A verifier receiving a signature (Ecom, rsp) associated to the message m and public
key Epk computes s = H(j(Epk), j(Ecom),m) and then φchl = CGL(Epk, s) : Epk −→ Echl. The verifier
finally checks that rsp represents correctly an isogeny φrsp : Ecom −→ Echl by computing a higher
dimensional isogeny embedding, as explained previously.

Once it is established that the SQIsignHD identification protocol is complete, sound, and hon-
est verifier zero-knowledge, and assuming the hardness of the endomorphism ring problem (Prob-
lem 2.1.2), we obtain a universally unforgeable signature against chosen message attacks in the random
oracle model [VV15, Theorem 7].

108 CHAPTER 3. SQISIGNHD

3.2 Algorithmic building blocks

In this section, we describe or recall the algorithms that will be used in the SQIsignHD protocol.

3.2.1 Ideal-to-isogeny translations and isogeny of fixed degree

Let us fix a prime of the form p = c2e − 1, with c ∈ N∗ odd and small and consider the starting
supersingular curve E0/Fp2 of equation y2 = x3 +x whose endomorphism ring is isomorphic to a well
known maximal order O0 ⊂ Bp,∞ (Lemma 1.2.25). We also fix a basis (P0, Q0) of E0[2

e]. In this
setting, we shall use the following algorithms:

• Algorithm 2.3 taking as input an odd integer u < 2e such that u(2e − u) = Ω(p log(p)) and
returning (Eu, φu(P0), φu(Q0), Iu), where φu : E0 −→ Eu is a u-isogeny and Iu ⊂ O0 is its
associated ideal.

• Algorithm 2.7 taking as input a left O0-ideal I (and some precomputed data) and returning the
image (EI , φI(P0), φI(Q0)) of the isogeny φI : E0 −→ EI associated to I.

• The 4-dimensional techniques of Algorithm 2.2 to translate a connecting ideal I of (e,B)-good
norm in the sense of Definition 2.3.1 between two maximal orders O1 and O2 into an isogeny
φI : E1 −→ E2 when two isogenies φ1 : E0 −→ E1 and φ2 : E0 −→ E2 of odd degrees
and their associated ideals I1, I2 ⊆ O0 (such that OR(I1) = O1 and OR(I2) = O2) are given.
We shall adapt Algorithm 2.2 to our context: the evaluation of φI on 2e-torsion (explained
in Section 2.3.3) will take place during the response phase and the 4-dimensional embedding
FI ∈ End(E2

1 × E2
2) of φI (as defined in Eq. (2.10)) will be computed during the verification

phase.

• An algorithm due to Antonin Leroux [Ler22, Algorithm 19], Galbraith, Petit and Silva [GPS20,
Algorithm 2] (described in Algorithm 3.1) taking as input a supersingular elliptic curve E/Fp2
of known endomorphism ring O ≃ End(E) and a primitive O-ideal I (in the sense of Defini-
tion 2.1.3) of smooth norm D and returning a kernel generator P ∈ E[I]. This direct ideal to
kernel translation algorithm is efficient only when D is smooth and E[D] is defined over a small
extension of Fp2 .

Algorithm 3.1: Ideal to kernel [Ler22, Algorithm 19].

Data: A supersingular elliptic curve E/Fp2 , a basis (β1, · · · , β4) of a maximal order O ⊂ Bp,∞
isomorphic to End(E), a left O-ideal I ⊆ O, a basis (P,Q) of E[D] (where D is smooth),
the images (ε(βi)(P), ε(βi)(Q))1≤i≤4, where ε is an isomorphism O ∼−→ End(E).

Result: A point R ∈ E[D] of order D such that E[I] = ⟨P ⟩.
1 Compute α ∈ I such that I = Oα+OD;

2 Write α :=
∑4
i=1 biβi, with b1, · · · , b4 ∈ Z;

3 ε(α)(P)←
∑4
i=1[bi]ε(βi)(P), ε(α)(Q)←

∑4
i=1[bi]ε(βi)(Q);

4 if order(P) < D then
5 Find d ∈ Z such that ε(α)(P) = [d]ε(α)(Q);
6 R← P − [d]Q;

7 else
8 Find d ∈ Z such that ε(α)(Q) = [d]ε(α)(P);
9 R← Q− [d]P ;

10 end
11 return R;

3.2.2 Isogeny to ideal

In addition to ideal-to-isogeny translation algorithms, we also need a converse algorithm translating
an isogeny into an ideal (that will be applied to the challenge isogeny). Let φ : E1 −→ E2 be a cyclic

3.2. ALGORITHMIC BUILDING BLOCKS 109

D-isogeny (with D smooth) between two supersingular elliptic curves over Fp2 . We represent φ by a
generator of its kernel P and suppose it is defined over a small extension of Fp2 . We give an algorithm
(Algorithm 3.2) also due to Antonin Leroux [Ler22, Algorithm 20], Galbraith, Petit and Silva [GPS20,
Algorithm 3] to compute the ideal Iφ associated to φ when End(E1) is known.

Algorithm 3.2: Kernel to ideal [Ler22, Algorithm 20].

Data: A point P ∈ E1 of smooth order D, a basis (β1, · · · , β4) of a maximal or-
der O1 ⊂ Bp,∞ isomorphic to End(E1), a basis (R,S) of E1[D] and the images

(ε(βi)(R), ε(βi)(S))1≤i≤4, where ε is an isomorphism O1
∼−→ End(E1).

Result: The left O1-ideal IP associated to the isogeny of kernel ⟨P ⟩.
1 Find a, b ∈ Z/DZ such that P = [a]R+ [b]S (discrete logarithm);
2 for i = 1 to 4 do
3 Qi ← [a]ε(βi)(R) + [b]ε(βi)(S) = ε(βi)(P);
4 end
5 Find i, j such that (Qi, Qj) is a basis of E1[D];
6 For k ̸= i, j, find a, b ∈ Z/DZ such that Qk = aQi + bQj (discrete logarithm);
7 Let γ := βk − aβi − bβj ;
8 return O1γ +O1D;

In order to apply Algorithm 3.2, one has to know the domain endomorphism ring End(E1). In
our application, we shall know the endomorphism ring of the public starting curve E0 (of equation
y2 = x3 + x) and an N -isogeny ψ : E0 −→ E1 along with its kernel ideal Iψ. If N is coprime with D,
we can then use ψ and Iψ to compute a basis of End(E1) and to evaluate it on E1[D] to obtain the
required inputs of Algorithm 3.2 (see [DLRW24, Algorithm 8] or [EHLMP18, Algorithm 4]).

Instead, we use a simpler method also proposed in [AAA+25, § 4.4.3] that relies on pushforwards
and pull-backs. The idea to compute the kernel ideal Iφ of φ : E1 −→ E2 given a kernel generator
P ∈ ker(φ) is to use the equality Iφ = [Iψ]∗[Iψ]

∗Iφ, valid when N = deg(ψ) and D = deg(φ) are

coprime. Since [Iψ]
∗Iφ is the kernel ideal of ψ∗φ whose kernel is ker(ψ∗φ) = ⟨ψ̂(P)⟩, we can simply

apply Algorithm 3.2 to ψ̂(P) (leveraging the knowledge of End(E0)) to obtain [Iψ]
∗Iφ and then

Iφ = [Iψ]∗[Iψ]
∗Iφ. When N and D are coprime, ψ̂(P) can easily be computed by evaluating a basis

of E1[D] via ψ and computing a discrete logarithm as in Algorithm 2.9. We summarise this simpler
method in Algorithm 3.3.

Algorithm 3.3: Kernel to ideal with a trapdoor isogeny.

Data: A point P ∈ E1 of smooth order D, a basis (β1, · · · , β4) of a maximal order
O0 ⊂ Bp,∞ isomorphic to End(E0), a basis (R0, S0) of E0[D] and the images

(ε0(βi)(R0), ε0(βi)(S0))1≤i≤4, where ε0 is an isomorphism O0
∼−→ End(E0), and the

image (ψ(R0), ψ(S0)) of an N -isogeny ψ : E0 −→ E1 with gcd(N,D) = 1.
Result: The left O1-ideal IP associated to the isogeny of kernel ⟨P ⟩.

1 Find a, b ∈ Z/DZ such that P = [a]ψ(R0) + [b]ψ(S0) (discrete logarithm);

2 ψ̂(P)← [Na]R0 + [Nb]S0;

3 Call Algorithm 3.2 on ψ̂(P), D, (β1, · · · , β4) and (ε0(βi)(R0), ε0(βi)(S0))1≤i≤4 to obtain
[Iψ]

∗IP ;
4 IP ← [Iψ]∗[Iψ]

∗IP ;
5 return IP ;

3.2.3 Sampling a uniformly random ideal of fixed norm

In the protocol, we shall need to uniformly sample at random cyclic isogenies φ : E −→ E′ of fixed
degree N several times. When a maximal order O ⊂ Bp,∞ isomorphic to End(E) is known, by the
Deuring correspondence this reduces to sampling a primitive left O-ideal I of norm N uniformly at
random. I is then translated into an isogeny φ (e.g. using Algorithm 2.7 if O = O0). For φ to be

110 CHAPTER 3. SQISIGNHD

cyclic, I has to be primitive in the sense of Definition 2.1.3, that is to say that I ̸⊆ nO for any integer
n > 1.

Given a maximal quaternion order O ⊆ Bp,∞ and an integer N coprime with p, we explain how to
sample primitive left ideals I ⊆ O of norm N . The following analysis would be simpler if we assumed
N prime but it still holds when N is composite and we found this of independent interest. We start
by proving that primitive ideals of norm N are in bijection with

P1(Z/NZ) = {(x : y) ∈ (Z/NZ)2 | gcd(x, y,N) = 1}.

Lemma 3.2.1. [KV10, Lemma 7.2]

(i) For all prime ℓ ̸= p, O ⊗Z Zℓ ≃M2(Zℓ).

(ii) O/NO ≃M2(Z/NZ).

(iii) Let φN : O/NO ∼−→M2(Z/NZ) be an isomorphism and let us denote

∀(x : y) ∈ P1(Z/NZ), Mx,y :=

(
x y
0 0

)
.

Then, the map:

P1(Z/NZ) −→ {primitive left ideals I ⊆ O of norm N}
(x : y) 7−→ I(x:y) := Oφ−1

N ({Mx,y}) +ON

is a bijection.

Proof. (i) Let ℓ be a prime ̸= p. Then, Bp,∞ splits at ℓ so Bp,∞ ⊗ Qℓ ≃ M2(Qℓ). Hence, we have
an embedding ι : O ⊗Z Zℓ ↪−→ M2(Qℓ) mapping to an order O = ι(O ⊗Z Zℓ) ⊂ M2(Qℓ). By
Theorem 1.2.17, discrd(O) = disc(Bp,∞) = p and 1/p ∈ Zℓ so we easily obtain that O contains a
suborder of reduced discriminant 1 so that discrd(O) = 1 and O is maximal in M2(Qℓ) by [Voi21,
Theorem 15.5.3]. It follows by [Voi21, Corollary 10.5.5] that O is conjugate to M2(Zℓ), so that
O ⊗Z Zℓ ≃M2(Zℓ), as desired.

(ii) By point (i), we have for all prime ℓ ̸= p and e ∈ N∗,

O/ℓeO ≃ O ⊗Z Zℓ/(ℓeO ⊗Z Zℓ) ≃M2(Zℓ/ℓeZℓ) =M2(Z/ℓeZ).

Then, if we decompose N =
∏r
i=1 ℓ

ei
i as product of distinct prime factors, then the Chinese remainder

theorem ensures that:

O/NO ≃
r∏
i=1

O/ℓeii O ≃
r∏
i=1

M2(Z/ℓeii Z) ≃M2(Z/NZ).

(iii) We first prove that the map is well defined. Let (x : y) ∈ P1(Z/NZ). Then I(x:y) :=

Oφ−1
N ({Mx,y})+ON is a left O-ideal. If I(x:y) ⊆ nO for some n ∈ N∗, then n|Mx,y and n|N so n = 1

since gcd(x, y,N) = 1 so I(x:y) is indeed primitive.
Now, we prove that nrd(I(x:y)) = N . By [Voi21, Lemma 3.4.2], we first observe that for all prime

ℓ ̸= p, an isomorphism Bp,∞ ⊗ Qℓ
∼−→ M2(Qℓ) identifies the conjugation of Bp,∞ with the standard

involution of M2(Qℓ) given by the transpose of the comatrix

A =

(
a c
b d

)
∈M2(Qℓ) 7−→ A† :=

(
d −c
−b a

)
∈M2(Qℓ)

By the Chinese remainder theorem, it follows that for all α ∈ O, φN (α) = φN (α)†, so that I(x:y) =

Oφ−1
N ({M†

x,y}) +ON . Since Mx,y ·M†
x,y = 0, we then have I(x:y) · I(x:y) = Oφ−1

N ({0}) = ON , so that

nrd(I(x:y)
2 = nrd(I(x:y) · I(x:y)) = N2 and nrd(I(x:y) = N . This proves that the map (x : y) 7−→ I(x:y)

is well-defined.

3.2. ALGORITHMIC BUILDING BLOCKS 111

Now, this map is clearly injective. Indeed, if (x : y), (x′ : y′) ∈ P1(Z/NZ) are such that I(x:y) =
I(x′:y′), then we have M2(Z/NZ)Mx,y = φN (I(x:y)) = φN (I(x′:y′)) =M2(Z/NZ)Mx′,y′ , so there exists
M ∈M2(Z/NZ) such that Mx′,y′ =M ·Mx,y, so that (x′, y′) = (M1,1x,M1,1y) and (x : y) = (x′ : y′)
in P1(Z/NZ).

Finally, we prove that (x : y) 7−→ I(x:y) is surjective, which is the most delicate point. Let I be a
left O-ideal of norm N . Then I is locally principal by Theorem 1.2.10 so we may write for all prime
ℓ|N , I ⊗ Zℓ = (O ⊗ Zℓ) · αℓ with αℓ ∈ O ⊗ Zℓ. Let ℓ|N , e := vℓ(N) and φℓ : O ⊗ Zℓ

∼−→ M2(Zℓ) be
an isomorphism. Consider the Z/ℓeZ-module:

V := {v ∈ (Z/ℓeZ)2 | φℓ(αℓ) · v ≡ 0 mod ℓe}.

We prove that V has rank 1. Since I is primitive, ℓ does not divide αℓ so φℓ(αℓ) ̸≡ 0 mod ℓ and
V/ℓV does not fill the whole of (Z/ℓZ)2. Besides,

nrd(I ⊗ Zℓ) = ⟨nrd(α) | α ∈ I ⊗ Zℓ⟩ = NZℓ = ℓeZℓ,

so that nrd(αℓ) = ℓe by Lemma 1.2.6 i.e. αℓαℓ = ℓe. It follows that φℓ(αℓ) · φℓ(αℓ)† ≡ 0 mod ℓe

so φℓ(αℓ) is not invertible modulo ℓ so that V/ℓV ̸= 0 and dimZ/ℓZ(V/ℓV) = 1. Besides, φℓ(αℓ) ̸≡ 0

mod ℓ so φℓ(αℓ)
† ̸≡ 0 mod ℓ and one of the columns of φℓ(αℓ)

† yields a non-trivial element v0 ∈ V
that generates V/ℓV .

Now, if v ∈ V , we prove by induction on i ∈ J1 ; eK that v ∈ Z/ℓiZv0, which will prove that V has
rank 1, as desired. First, since V/ℓV has dimension 1 as a Z/ℓZ-vector space, there exists λ1 ∈ Z such
that v ≡ λ1v0 mod ℓ. Now, if i ∈ J1 ; e− 1K and v ≡ λiv0 mod ℓi for some λi ∈ Z, we can write
v−λiv0 = ℓiwi with wi ∈ (Z/ℓeZ)2 and we have ℓiφℓ(αℓ) ·wi ≡ φℓ(αℓ) ·(v−λiv0) ≡ 0 mod ℓe, so that
φℓ(αℓ) ·wi ≡ 0 mod ℓe−i ≡ 0 mod ℓ and wi ≡ λ′v0 mod ℓ for some λ′ ∈ Z. Hence, v ≡ (λi+ ℓ

iλ′)v0
mod ℓi+1 and the induction follows.

Let us denote v0 := (−y, x) ∈ (Z/ℓeZ)2 the generator of V . We notice that for all M ∈ G2(Zℓ),
φ−1
ℓ (M)αℓ also generates I ⊗ Zℓ so we can make operations on the lines of φℓ(αℓ). Since φℓ(αℓ) has

rank 1 modulo ℓ, by operations on the lines of φℓ(αℓ), we may assume that

φℓ(αℓ) =

(
a b
0 0

)
,

with a, b ∈ Zℓ, so that −ay + bx ≡ 0 mod ℓe. Since v0 ̸≡ 0 mod ℓ, we have gcd(x, y, ℓ) = 1 so there
exists u, v ∈ Z such that ux+ vy ≡ 1 mod ℓe. Combining this equation with −ay + bx ≡ 0 mod ℓe

multiplied by u and v, we obtain that b = (ua + vb)y and a = (ua + vb)x so that (a : b) = (x : y) ∈
P1(Z/ℓeZ). Since this is valid for all ℓ|N , we obtain by the Chinese remainder theorem the existence
of (x : y) ∈ P1(Z/NZ) such that Mx,y ∈ φN (I) and I(x:y) = Oφ−1

N ({Mx,y}) + ON ⊆ I. Since both
I(x:y) and I have norm N , we conclude that I(x:y) = I, which completes the proof.

As a direct consequence of Lemma 3.2.1 above, we obtain:

Lemma 3.2.2. The set of elements α ∈ O invertible modulo N acts transitively (by multiplication on
the right) on the set of primitive left O-ideals of norm N . Those elements α ∈ O invertible modulo
N are those of norm coprime with N .

Proof. Let I be a primitive left O-ideal of norm N . Then, the ideal I corresponds to (x : y) ∈
P1(Z/NZ) via the bijection of Lemma 3.2.1 and is isomorphic toM2(Z/NZ)·Mx,y via the composition
of the reduction modulo N and φN . For any representative (x, y) ∈ Z2 of (x : y) ∈ P1(Z/NZ), we
have gcd(x, y,N) = 1 so we may find u, v ∈ Z such that xu+ yv ≡ 1 mod N , so that:

Mx,y

(
u −y
v x

)
≡M1,0 mod N and det

(
u −y
v x

)
≡ 1 mod N

Hence, the ideal M2(Z/NZ) · Mx,y is in the orbit of M2(Z/NZ) · M1,0 under the right action of
GL2(Z/NZ), and as a consequence, I/NO is in the orbit of the ideal I0/NO := Oφ−1

N ({M1,0})/NO
under the right action of (O/NO)∗.

112 CHAPTER 3. SQISIGNHD

To conclude, it suffices to prove that the invertible elements of O modulo N are those of norm
coprime with N . If α ∈ O is invertible modulo N , there exists β, γ ∈ O such that αβ = 1 +Nγ, so
that

nrd(α) nrd(β) = nrd(1 +Nγ) = 1 +N Tr(γ) +N2 nrd(γ) ≡ 1 mod N,

so nrd(α) is invertible modulo N . Conversely, if nrd(α) is coprime with N , there exists λ ∈ Z such
that nrd(α)λ ≡ 1 mod N . Then, it follows that ααλ ≡ 1 mod N , so α is invertible modulo N . This
completes the proof.

Lemma 3.2.2 ensures that (O/NO)∗ acts transitively on primitive left ideals of norm N by multi-
plication on the right. Hence, given a primitive left O-ideal I0 of norm N , if we sample [α] ∈ (O/NO)∗
uniformly at random, then I0α+NO is uniformly random among primitive left O-ideals of norm N .

To obtain such an ideal I0, we compute γ ∈ O of norm NM with gcd(N,M) = 1 and without
integral factor. This can be done with the algorithms of [Ler22, Section 3.3]. We then consider
I0 := Oγ +ON and sample [α] ∈ O/NO uniformly at random until it is invertible modulo N (which
can be checked by computing nrd(α)). These operations are summarised in Algorithm 3.4.

Lemma 3.2.3. Algorithm 3.4 terminates after O(log log(N)) iterations on average.

Proof. Via the isomorphism φN : O/NO ∼−→M2(Z/NZ) from Lemma 3.2.1, we see that the invertible
elements of O/NO are in bijection with matrices of GL2(Z/NZ). By the Chinese remainder theorem,
if N =

∏r
i=1 ℓ

ei
i is the prime decomposition of N , we have:

GL2(Z/NZ) ≃
r∏
i=1

GL2(Z/ℓeii Z).

If ℓ is a prime, then we have

|GL2(Z/ℓZ)| = (ℓ2 − 1)(ℓ2 − ℓ).

To find this formula, we enumerate all the possible values for the first column (ℓ2 − 1 non-zero
columns) and the second (ℓ2−ℓ columns linearly independent from the first one). Now, for e ∈ N∗, we
consider the surjective group homomorphism GL2(Z/ℓe+1Z) −↠ GL2(Z/ℓeZ) given by the reduction
mod ℓe. We immediately see that any kernel element is of the form I2 + ℓeM with M ∈ M2(Z/ℓZ)
so that det(I2 + ℓeM) ≡ det(I2) ≡ 1 mod ℓe and I2 + ℓeM is invertible. Hence, the kernel is exactly
I2 + ℓeM2(Z/ℓZ), which has cardinality |M2(Z/ℓZ) = ℓ4, so that

|GL2(Z/ℓe+1Z)| = ℓ4|GL2(Z/ℓeZ)|

and by an easy induction:

∀e ∈ N∗, |GL2(Z/ℓeZ)| = ℓ4(e−1)(ℓ2 − 1)(ℓ2 − ℓ).

We conclude that the probability that an element of O/NO is invertible is:

|GL2(Z/NZ)|
|M2(Z/NZ)|

=
1

N4

r∏
i=1

|GL2(Z/ℓeii Z)| =
1

N4

r∏
i=1

ℓ
4(ei−1)
i (ℓ2i − 1)(ℓ2i − ℓi)

=
∏
ℓ|N

(
1− 1

ℓ2

)(
1− 1

ℓ

)

Since the series
∑
ℓ 1/ℓ

2 converges, the series
∑
ℓ log(1− 1/ℓ2) also converges and there is a universal

lower bound for the product
∏
ℓ|N (1− 1/ℓ2). By [HW75, Theorem 328], we also know that

∏
ℓ|N (1−

1/ℓ) = Ω(1/ log log(N)). This completes the proof.

3.2. ALGORITHMIC BUILDING BLOCKS 113

Algorithm 3.4: Random ideal of fixed norm.

Data: A maximal order O ⊆ Bp,∞ and an integer N such that p ∤ N .
Result: A primitive left O-ideal I of norm N sampled uniformly at random.

1 Find γ ∈ O primitive of norm NM with gcd(N,M) = 1 ; // Using [Ler22, Algorithm 2]
2 repeat
3 Sample u1, · · · , u4 ∈ J0 ; N − 1K uniformly at random;

4 α←
∑4
i=1 uiαi, where (α1, · · · , α4) is a basis of O;

5 until gcd(nrd(α), N) = 1;
6 I ← Oγα+NO;
7 return I;

3.2.4 Sampling a uniformly random ideal of bounded small norm

During the response phase, the prover has to generate an ideal Irsp of small norm equivalent to another
ideal I. For security reasons, we require that Irsp is uniformly random among ideals equivalent to I
of norms bounded by some number N = Θ(

√
p). By Lemma 1.2.19.(i), we can sample Irsp ∼ I by

sampling an element of I uniformly at random among elements of norm ≤ N nrd(I). In this section,
to solve that problem, we propose an algorithm to sample an element uniformly at random in the
intersection of a ball with a euclidean lattice. The approach follows from [DLRW24, Lemma 11],
generalizing [Wes22, Lemma 3.3]. Another approach easier to implement has been proposed and
implemented for the NIST submission [AAA+25, Algorithm 3.7] but the proofs are heuristic. The
method we propose here is slower in practice but proven.

Sampling uniformly in the intersection of a ball and a lattice

Let Λ ⊂ Rd be a full-rank lattice and (b1, · · · , bd) be a reduced basis of Λ (e.g. Minkowski, LLL, or
BKZ-reduced). Consider the canonical Euclidean norm ∥.∥ and let ρ > 0 big enough. Our goal is to
sample uniformly at random in the set:

B(0, ρ) ∩ Λ \ {0} = {x ∈ Λ \ {0} | ∥x∥ ≤ ρ}.

This can be done with Algorithm 3.5.

Algorithm 3.5: Sampling an element in the intersection of a ball with a lattice.

Data: A ”reduced” basis (b1, · · · , bd) of a full-rank lattice Λ ⊂ Rd and a bound ρ ≥
max(∥bd∥, d(2

∏d
i=1 ∥bi∥)1/d).

Result: An element x ∈ B(0, ρ) ∩ Λ \ {0} sampled uniformly at random.
1 ν ←

√
d∥bd∥/2;

2 while True do
3 Sample u ∈ B(0, ρ+ ν) uniformly at random;
4 Find a solution λ(v) ∈ Λ of the closest vector problem (CVP) for v;
5 if λ(v) ∈ B(0, ρ) \ {0} then
6 return λ(v);
7 end

8 end

Finding a solution to CVP takes exponential time in the dimension d but we apply Algorithm 3.5
to lattices of dimension d = 4 in practice. Hence, the limiting factor is the success probability of each
iteration that we estimate in the following.

Lemma 3.2.4. Let B := (b1, · · · , bd) be a basis of a full-rank lattice Λ ⊂ Rd and a bound ρ ≥
max(∥bd∥, d(2

∏d
i=1 ∥bi∥)1/d). Then with these inputs, Algorithm 3.5 returns elements of B(0, ρ)∩Λ \

114 CHAPTER 3. SQISIGNHD

{0} with uniform distribution and terminates after an average number of iterations bounded by:

2ddπ
d
2

(
1 +

√
d
2

)d
Γ
(
d
2 + 1

) ∏d
i=1 ∥bi∥

Covol(Λ)
,

where Γ is Euler’s gamma function.

Proof. First, we prove that Algorithm 3.5 returns elements with uniform distribution. Let V := {v ∈
Rd | ∥v∥ = minλ∈Λ ∥v + λ∥} be the Voronoi cell at the origin. Then, the closest vector λ(v) satisfies
v ∈ V + λ(v) and λ(v) is unique when v is not at the border of a Voronoi cell, so it is unique with
probability 1. Hence, for all u ∈ B(0, ρ) ∩ Λ,

P(λ(v) = u) =
Vol((V + u) ∩B(0, ρ+ ν))

Vol(B(0, ρ+ ν))
.

Let µ := inf{r > 0 | ∀v ∈ Rd, ∃λ ∈ Λ, ∥x − λ∥ ≤ r} be the covering radius of Λ. Then V ⊆ B(0, µ)
and a classical result [MG02, Theorem 7.9] ensures that µ ≤

√
dλd/2 where λd is the last minimum

of Λ, so that µ ≤
√
d∥bd∥/2 = ν. It follows that V + u ⊆ B(0, ρ+ ν) for all u ∈ B(0, ρ) ∩ Λ. Hence

P(λ(v) = u) =
Vol(V + u)

Vol(B(0, ρ+ ν))
=

Vol(V)
Vol(B(0, ρ+ ν))

=
Covol(Λ)

Vol(B(0, ρ+ ν))
,

where the last equality holds because V is a fundamental domain. This quantity does not depend on
u so the returned value λ(v) has uniform distribution. In addition, the probability that each iteration
of Algorithm 3.5 terminates is:

P(λ(v) ∈ B(0, ρ) \ {0}) = #(B(0, ρ) ∩ Λ \ {0}) Covol(Λ)

Vol(B(0, ρ+ ν))

= #(B(0, ρ) ∩ Λ \ {0})
Covol(Λ)Γ

(
d
2 + 1

)
π

d
2 (ρ+ ν)d

≥ #(B(0, ρ) ∩ Λ \ {0})
Covol(Λ)Γ

(
d
2 + 1

)
π

d
2

(
1 +

√
d
2

)d
ρd

, (3.1)

where we used the fact that ν =
√
d∥bd∥/2 ≤

√
dρ/2.

As in Eq. (2.13), we consider

Pd(B) :=

{
d∑
i=1

xibi

∣∣∣∣∣ ∀i ∈ J1 ; dK , xi ∈ J−Bi ; BiK

}
,

where for all i ∈ J1 ; dK, Bi := ⌊ρ/(d∥bi∥)⌋. Then, by Cauchy-Schwartz inequality Pd(B) ⊆ B(0, ρ)∩Λ,
so that:

#(B(0, ρ) ∩ Λ \ {0}) ≥ #Pd(B)− 1 =

d∏
i=1

(2Bi + 1)− 1 =

d∏
i=1

(
2

⌊
ρ

d∥bi∥

⌋
+ 1

)
− 1

≥
d∏
i=1

ρ

d∥bi∥
− 1 =

ρd

dd
∏d
i=1 ∥bi∥

− 1 ≥ ρd

2dd
∏d
i=1 ∥bi∥

,

where the last equality follows from ρ ≥ d(2
∏d
i=1 ∥bi∥)1/d.

Finally, combining the above equality with Eq. (3.1), it follows that:

P(λ(v) ∈ B(0, ρ) \ {0}) ≥
Γ
(
d
2 + 1

)
2ddπ

d
2

(
1 +

√
d
2

)d Covol(Λ)∏d
i=1 ∥bi∥

,

and the average number of iterations of Algorithm 3.5 is 1/P(λ(v) ∈ B(0, ρ) \ {0}). This completes
the proof.

The complexity bound in Lemma 3.2.4 depends on the quality of the reduced basis we give as
input. The closer

∏d
i=1 ∥bi∥ approaches Covol(Λ), the better.

3.2. ALGORITHMIC BUILDING BLOCKS 115

The four dimensional case

For our application, we work with lattices of rank d = 4 and we can efficiently compute a Minkowski
reduced basis B := (b1, · · · , b4) of a full rank lattice Λ ⊂ R4 (Theorem 1.2.29). In general, the
lattice can be unbalanced and have a very big last minimum so the condition ρ ≥ ∥b4∥ of Algorithm
3.5 can be hard to satisfy. If ∥b3∥ ≤ ρ < ∥b4∥ we know that any element in B(0, ρ) ∩ Λ will be a
linear combination of b1, · · · , b3 only since B is Minkowski reduced so we can restrict the sampling to
Λ3 := ⟨b1, b2, b3⟩. If ∥b2∥ ≤ ρ < ∥b3∥, we restrict the sampling to Λ2 := ⟨b1, b2⟩ and if ∥b1∥ ≤ ρ < ∥b2∥,
we restrict to Λ1 := ⟨b1⟩. The question is whether the condition ρ ≥ d(2

∏d
i=1 ∥bi∥)1/d is satisfied for

d ∈ J1 ; 4K.

Lemma 3.2.5. Let Λ ⊂ R4 be a full rank lattice and B := (b1, · · · , b4) be a Minkowski reduced lattice.
Then, we have for all d ∈ J1 ; 4K,

d

(
2

d∏
i=1

∥bi∥

) 1
d

≤ 12 · 3 1
12

√
π

Covol(Λ)
1
4 .

Proof. Since the ∥bi∥ are the successive minima of Λ by Theorem 1.2.28, we have by Minkowski’s
second theorem:

24

4!

Covol(Λ)

Vol(B(0, 1))
=

1

3π2
Covol(Λ) ≤

4∏
i=1

∥bi∥ ≤ 24
Covol(Λ)

Vol(B(0, 1))
=

32

π2
Covol(Λ) (3.2)

It follows that (d = 4):

4

(
2

4∏
i=1

∥bi∥

) 1
4

≤ 8
√
2√
π

Covol(Λ)
1
4 .

Besides the upper bound of Eq. (3.2) ensures that:

3∏
i=1

∥bi∥ ≤
32Covol(Λ)

π2∥b4∥
,

and the lower bound ensures that:

∥b4∥ ≥
(

1

3π2
Covol(Λ)

) 1
4

,

so that:
3∏
i=1

∥bi∥ ≤
32 · 3 1

4 Covol(Λ)
3
4

π
3
2

,

and (d = 3):

3

(
2

3∏
i=1

∥bi∥

) 1
3

≤ 12 · 3 1
12

√
π

Covol(Λ)
1
4 .

The upper bound of Eq. (3.2) also ensures that:

∥b1∥∥b2∥ ≤
32Covol(Λ)

π2∥b3∥∥b4∥
,

and the lower bound ensures that:

∥b4∥∥b3∥ ≥
(

1

3π2
Covol(Λ)

) 1
2

,

so that:

∥b1∥∥b2∥ ≤
32
√
3Covol(Λ)

1
2

π
,

116 CHAPTER 3. SQISIGNHD

and (d = 2):

2(2∥b1∥∥b2∥)
1
2 ≤ 8 · 3 1

4

√
π

Covol(Λ)
1
4 .

Finally, the upper bound of Eq. (3.2) ensures that (d = 1):

2∥b1∥ ≤
2

9
4

√
π
Covol(Λ)

1
4 .

Since max(8
√
2, 12 · 31/12, 8 · 31/4, 29/4) = 12 · 31/12, the result follows.

Hence, we can adapt Algorithm 3.5 to the rank 4 case and lower bound ρ as follows.

Algorithm 3.6: Sampling an element in the intersection of a ball with a lattice of rank four.

Data: A Minkowski reduced basis (b1, · · · , bd) of a full-rank lattice Λ ⊂ R4 and a bound
ρ ≥ 12 · 31/12/

√
πCovol(Λ)1/4.

Result: An element x ∈ B(0, ρ) ∩ Λ \ {0} sampled uniformly at random.
1 d← 4;
2 if ρ < ∥b4∥ then
3 Find the biggest d ∈ J1 ; 3K such that ρ ≥ ∥bd∥;
4 end
5 Call Algorithm 3.5 with (b1, · · · , bd) and ρ;

Lemma 3.2.6. Algorithm 3.6 is correct and terminates with an average number of iterations bounded
by 131072.

Proof. The correctness of Algorithm 3.6 follows from Lemma 3.2.5, the correctness of Algorithm 3.5
proved in Lemma 3.2.4, and the fact that the basis given on entry is Minkowski reduced.

Now, if d ≤ 4 and Λ ⊂ R4, we can without loss of generality work in Span(Λ) ≃ Rd and assume
that Λ is a full rank lattice of Rd. Let (b1, · · · , bd) be a Minkowski reduced basis of Λ. Then by
Lemma 3.2.4, Algorithm 3.5 terminates after at most

2ddπ
d
2

(
1 +

√
d
2

)d
Γ
(
d
2 + 1

) ∏d
i=1 ∥bi∥

Covol(Λ)

iterations on average, and by Theorem 1.2.28 and by Minkowski’s second theorem, we have

d∏
i=1

∥bi∥ ≤
2d

Vol(B(0, 1))
Covol(Λ) =

2dΓ
(
d
2 + 1

)
π

d
2

Covol(Λ),

so the average number of iterations is bounded by

2d+1dd

(
1 +

√
d

2

)d
≤ 24+144

(
1 +

√
4

2

)4

= 131072.

This completes the proof.

In our application, we consider a maximal order O ⊂ Bp,∞ and a left O-ideal I. As explained
earlier, to find an equivalent ideal I ′ ∼ I sampled uniformly of bounded norm, we sample an element
in I uniformly at random with bounded norm. Consider the isometry ι : Bp,∞ ↪−→ R4 from Eq. (1.2)
and the lattice ι(I) ⊂ R4. By Eq. (2.9), we have Covol(ι(I)) = nrd(I)2p/4, so we can find a Minkowski
reduced basis of I and apply Algorithm 3.6 to ι(I) with:

ρ2 ≥ 313/6
√
p nrd(I)/π (3.3)

to sample α ∈ I \{0} such that nrd(α) ≤ ρ2 uniformly at random. In particular, we can sample ideals
I ′ ∼ I of norm O(

√
p) uniformly at random, as desired.

3.3. MAIN PHASES OF THE SQISIGNHD IDENTIFICATION PROTOCOL 117

3.3 Main phases of the SQIsignHD identification protocol

In this section we describe each phase of both versions of SQIsignHD: F-SQIsignHD optimised for
efficiency, and R-SQIsignHD, theoretical and optimised for the security proof. We are given the
following public parameters:

• A prime of the form p = c2e − 1 with c ∈ N∗ odd and small, and e ≃ 2λ to grant a classical
security level of λ bits.

• The supersingular elliptic curve E0 of equation y2 = x3 + x defined over Fp2 with an explicit

isomorphism ε0 : O0
∼−→ End(E0) between a maximal order of Bp,∞ and the endomorphism

ring End(E0) (given by Lemma 1.2.25).

• A basis (P0, Q0) of E0[2
e].

• A basis (β1, · · · , β4) of O0 (e.g. (1, i, (i + j)/2, (1 + ij)/2)) and (ε0(βi)(P0), ε0(βi)(Q0))1≤i≤4,
the image of (P0, Q0).

• Some precomputed data to apply Algorithm 2.7 (as described in the last paragraph of Sec-
tion 2.4.3).

We denote by pp these public parameters along with others that will be introduced in the following.

3.3.1 Key generation

In both F-SQIsignHD and R-SQIsignHD, to generate an asymmetric key pair, we fix a big enough
prime Nsk. The prover samples a left O0-ideal Isk of norm Nsk uniformly at random using Algo-
rithm 3.4. Then, they apply Algorithm 2.7 to compute the image (Epk, φsk(P0), φsk(Q0)) of the
isogeny φsk : E0 −→ Epk associated to Isk. The curve Epk is published as the prover’s public key and
sk := (Isk, φsk(P0), φsk(Q0)) is safely stored as their secret key. Algorithm 3.7 summarises the this key
generation procedure in F-SQIsignHD.

Algorithm 3.7: Key Generation in F-SQIsignHD.

Result: A public key pk = Epk and the associated secret key sk = (Isk, φsk(P0), φsk(Q0)).
1 Extract Nsk from the public parameters pp;
2 Call Algorithm 3.4 to sample an ideal Isk of norm Nsk uniformly at random;
3 Call Algorithm 2.7 on Isk and the public parameters pp to obtain the image
(Epk, φsk(P0), φsk(Q0)) of the isogeny φsk : E0 −→ Epk associated to Isk;
4 pk← Epk, sk← (Isk, φsk(P0), φsk(Q0));
5 return pk, sk;

Let us discuss the choice of Nsk. Heuristically, with Nsk = Θ(2λ) = Θ(
√
p), the key space would

be large enough. However, it would be safer to choose Nsk large enough to ensure that Epk has a
uniformly random distribution among supersingular elliptic curves defined over Fp2 . Indeed, in that
case a key recovery attack would require to break an average instance of the isogeny problem and the
best known algorithms to solve this problem cost Õ(

√
p) = Õ(2λ), ensuring λ bits of security. By

the following, choosing Nsk = Θ(24λ) = Θ(p2) guarantees that Epk has the desired uniformly random
distribution.

Proposition 3.3.1. Let φ : E0 −→ E be an isogeny of prime degree N sampled uniformly at random
among the N + 1 isogenies of degree N with domain E0. Then, the distribution of E has statistical
distance O(

√
p/N + 1/p) to the uniform distribution in the supersingular isogeny graph.

Proof. Let SS(p) be the set of supersingular elliptic curves over Fp2 (up to Fp-isomorphism) and S
be the probability distribution on SS(p) given by S(E) := K−1/#Aut(E) for all E ∈ SS(p), with
K :=

∑
E∈SS(p) 1/#Aut(E). Let δ0 be the Dirac distribution on E0 and π the distribution obtained

118 CHAPTER 3. SQISIGNHD

from δ0 after a single step N -isogeny walk from E0. By [BCC+23, Theorem 11], the statistical distance
between S and π satisfies

dTV (S, π) :=
1

2

∑
E∈SS(p)

|S(E)− π(E)| ≤
√
6KN

(N + 1)
.

By the Eichler’s mass formula [Voi21, p. 42.3.8], we know that K = (p − 1)/24. Then, we get that
dTV (S, π) = O(

√
p/N).

Now, let U be the uniform distribution on SS(p). By [Sil09, Theorem III.10.1], we have #Aut(E) =
2 for all E ∈ SS(p) such that j(E) ̸= 0, 1728, and #Aut(E) ∈ {4, 6} otherwise. By Theorem 1.1.20,
there exists Cp ∈ Z small such that #SS(p) = 2K + Cp = (p− 1)/12 + Cp. Hence, we have

dTV (U, S) =
1

2

∑
E∈SS(p)

∣∣∣∣∣ 1

#SS(p)
−

1

K#Aut(E)

∣∣∣∣∣ = 1

2

∑
E∈SS(p)

j(E) ̸=0,1728

∣∣∣∣∣ 1

2K + Cp
−

1

2K

∣∣∣∣∣+O(p−1)

=
1

2

Cp

2K(2K + Cp)
(#SS(p) +O(1)) +O(p−1) =

Cp

4K
+O(p−1) = O(p−1). (3.4)

We finally get, by triangular inequality, that:

dTV (U, π) ≤ dTV (U, S) + dTV (S, π) = O(
√
p/N + 1/p).

Remark 3.3.2. Alternatively, we could fix Nsk as an odd prime power instead of a prime. Algorithm
3.4 would still apply and the security analysis would be comparable.

More image points required in R-SQIsignHD

The procedure is almost exactly the same in R-SQIsignHD, but some additional data is required to
simplify the response phase. The image of φsk on points of odd orders of E0 is also computed and
joined to the secret key. We refer to Section 3.3.3 for more information on the points that needs to
be evaluated.

Remark 3.3.3. Since Nsk is a big prime, we expect the torsion points to be evaluated in SQIsignHD
to have order coprime with Nsk so Algorithm 3.3 applies to compute the kernel ideals of isogenies of
smooth degrees with domain Epk.

Note that Algorithm 2.7 only evaluates φsk on points of E0[2
e]. Any point P ∈ E0[N] could be

evaluated as in Algorithm 2.7 as long as N is coprime with all the parameters (nt)0≤t≤n given on entry
as precomputed data. Indeed, an inversion of some nt mod N is needed to evaluate P . The integer
ud1 from Algorithm 2.7 also needs to be inverted modulo N . However, since gcd(ud1, vd2) = 1, we
can invert vd2 mod N instead of ud1 mod N if needed (and evaluate Φ on the second component
instead of the first) to evaluate φsk(P).

3.3.2 Commitment

The key generation efficiency is less crucial than the commitment efficiency which is executed during
the signature process. For that reason, we propose two distinct methods for F-SQIsignHD and R-
SQIsignHD.

Commitment in F-SQIsignHD

In the commitment phase, the prover wants to generate an isogeny φcom : E0 −→ Ecom of big
odd degree. To do that, they sample an odd integer Ncom < 2e at random such that Ncom(2

e −
Ncom) = Ω(p log(p)) and apply Algorithm 2.3 to obtain the codomain Ecom, the 2

e-torsion image basis
(φcom(P0), φcom(Q0)) and the associated left O0-ideal Icom of an isogeny φcom : E0 −→ Ecom of degree
Ncom. The commitment Ecom is published while the data (Icom, φcom(P0), φcom(Q0)) is kept secret.
Algorithm 3.8 follows.

3.3. MAIN PHASES OF THE SQISIGNHD IDENTIFICATION PROTOCOL 119

This method is very efficient and yields very good signing times, as we shall see in Section 3.5.2.
However, this choice is made at the expense of a heuristic security proof. Indeed, to prove the zero
knowledge property, the commitment distribution Ecom is expected to be uniform among supersingular
elliptic curves. In theory, this method gives enough entropy: we have Θ(p) choices of Ncom < 2e

and Θ(Ncom) choices of isogenies φcom for each choice of Ncom, yielding Θ(p2) = Θ(24λ) choices of
isogenies φcom in total. We would need bigger choices of Ncom and more randomness in the generation
of φcom to make a perfectly rigorous argument but we can very well reasonably assume that Ecom is
computationally indistinguishable from a uniformly random supersingular elliptic curve.

Commitment in R-SQIsignHD

In R-SQIsignHD, we avoid the above heuristic assumption by proceeding as in the key generation,
at the expense of efficiency. We fix a prime Ncom = Θ(24λ) = Θ(p2) (Ncom = Nsk would perfectly
be reasonable). The prover samples a left O0-ideal Icom of norm Ncom uniformly at random using
Algorithm 3.4. Then, they apply Algorithm 2.7 to compute the image (Ecom, φcom(P0), φcom(Q0)) of
the isogeny φcom : E0 −→ Ecom associated to Icom. As in F-SQIsignHD, the commitment Ecom is
published while the data (Icom, φcom(P0), φcom(Q0)) is kept secret. Algorithm 3.9 follows.

Algorithm 3.8: Fast commitment (F-SQIsignHD).

Result: A commitment curve com = Ecom and the associated secret data
sc = (Icom, φcom(P0), φcom(Q0)).

1 repeat
2 Sample a random odd integer Ncom ∈ J1 ; 2e − 1K;
3 until Ncom(2

e −Ncom) = Ω(p log(p));
4 Call Algorithm 2.3 to compute the images (Ecom, φcom(P0), φcom(Q0)) and the associated

ideal Icom of an Ncom-isogeny φcom : E0 −→ Ecom;
5 com← Ecom, sc← (Icom, φcom(P0), φcom(Q0));
6 return com, sc;

Algorithm 3.9: Rigorous commitment (R-SQIsignHD).

Result: A commitment curve com = Ecom and the associated secret data
sc = (Icom, φcom(P0), φcom(Q0)).

1 Extract Ncom from public parameters pp;
2 Call Algorithm 3.4 to sample an ideal Icom of norm Ncom uniformly at random;
3 Call Algorithm 2.7 on Icom and the public parameters pp to obtain the image
(Ecom, φcom(P0), φcom(Q0)) of the isogeny φcom : E0 −→ Ecom associated to Icom;
4 com← Ecom, sc← (Icom, φcom(P0), φcom(Q0));
5 return com, sc;

3.3.3 Challenge

Challenge in F-SQIsignHD

If λ is the security level, then the challenge is an integer chl ∈
q
0 ; 2λ − 1

y
. This way, we obtain a

challenge space of size 2λ. This integer describes the kernel of the challenge isogeny φchl : Epk −→
Echl as follows. One can generate a deterministic basis (Ppk, Qpk) of Epk[2

e] and compute the point
Kchl := [2e−λ]Ppk + [chl · 2e−λ]Qchl of order 2

λ that generates the kernel ker(φchl).

Challenge in R-SQIsignHD

In R-SQIsignHD, the challenge is still an integer chl ∈
q
0 ; 2λ − 1

y
representing an isogeny φchl :

Epk −→ Echl. However, φchl is assumed to have fixed odd degree Nchl in order to simplify the response

120 CHAPTER 3. SQISIGNHD

process. For security reasons (see Theorem 3.4.10 and Remark 3.4.11), we require Nchl = Θ(p5/2) and
for efficiency reasons, we require Nchl to be powersmooth.

Let us write the prime decomposition Nchl =
∏n
i=1 ℓ

ei
i with the prime powers ℓeii small enough

and distinct from the prime factors of the parameters (nt)0≤t≤n given on entry of Algorithm 2.7 for
technical reasons explained in Remark 3.3.3. Then, for all i ∈ J1 ; nK, Epk[ℓ

ei
i] is defined over a small

extension of Fp2 , so we may efficiently generate a basis (Pi, Qi) of Epk[ℓ
ei
i] in a deterministic way.

Then the challenge isogeny has kernel ker(φchl) = ⟨P + [chl]Q⟩ with P :=
∑n
i=1 Pi and Q :=

∑n
i=1Qi.

It can be computed as a chain φchl = φn ◦ · · · ◦ φ1, where for all i ∈ J1 ; nK, φi is an ℓeii -isogeny
of kernel ⟨φi−1 ◦ · · · ◦ φ1(Pi + [chl]Qi)⟩. This procedure is summarised in Algorithm 3.10 which also
returns the associated ideal Ichl used by the prover in the response generation. Following standard
ideas from [EHLMP18; DFKLPW20], the ideal Ichl is computed piecewise, as the isogeny chain φchl,
applying Algorithm 3.3 to compute ideal pieces at every step.

As explained in Section 3.3.1, note that some additional data is joined in the secret key in order to
compute Ichl. This additional data is the image (φsk(P0,i), φsk(Q0,i)) of deterministic basis (P0,i, Q0,i)
of E0[ℓ

ei
i] for all i ∈ J1 ; nK, that we denote by φsk|Nchl

:= (φsk(P0,i), φsk(Q0,i))1≤i≤n.

Algorithm 3.10: Challenge isogeny generation in R-SQIsignHD (during the response phase).

Data: The public parameters pp (including Nchl =
∏n
i=1 ℓ

ei
i), the challenge chl ∈

q
0 ; 2λ − 1

y
,

the public key Epk and the secret key sk.
Result: The corresponding isogeny φchl : Epk −→ Echl and its kernel ideal Ichl.

1 Extract Nchl =
∏n
i=1 ℓ

ei
i from pp;

2 Parse Isk, φsk(P0), φsk(Q0), φsk|Nchl
← sk;

3 for i = 1 to n do
4 Generate a deterministic basis (Pi, Qi) of Epk[ℓ

ei
i];

5 Ki ← Pi + [chl]Qi;
6 if i ≥ 2 then
7 Ki ← φi−1 ◦ · · · ◦ φ1(Ki);
8 end
9 Compute φi : Ei−1 −→ Ei of kernel ⟨Ki⟩;

10 Generate a deterministic basis (R0,i, S0,i) of E0[ℓ
ei
i];

11 (Ui, Vi)← (φi−1 ◦ · · · ◦ φ1 ◦ φsk(R0,i), φi−1 ◦ · · · ◦ φ1 ◦ φsk(S0,i));
12 Extract from pp a basis (β1, · · · , β4) of O0 and compute (ε0(βj)(R0,i), ε0(βj)(S0,i))1≤j≤4;
13 Call Algorithm 3.3 on Ki, (β1, · · · , β4), (R0,i, S0,i), (ε0(βj)(R0,i), ε0(βj)(S0,i))1≤j≤4 and

(Ui, Vi) to obtain the kernel ideal Ii of φi;

14 end
15 return φn ◦ · · · ◦ φ1, I1 · · · In;

By the following lemma, the powersmooth integer Nchl = Θ(p5/2) can be chosen so that Algo-
rithm 3.10 terminates in polynomial time (in log(p)).

Lemma 3.3.4. The integer Nchl = Θ(p5/2) can be chosen to be C-smooth with C = O(log(p)). In
that case, Algorithm 3.10 terminates in polynomial time in log(p).

Proof. We consider

N =
∏
ℓ≤C
ℓ ̸∈S

ℓ,

where S is a finite set of inadmissible primes containing 2 (and the orders of points that cannot be eval-
uated by φsk for the technical reasons explained in Remark 3.3.3). By [HW75, Theorems 413 and 434],
log(Nchl) ∼ C as C −→ +∞. Hence, in order to achieve N = Θ(p5/2), taking C = O(log(p)) is suf-
ficient. This proves that C-powersmooth integers of size Θ(p5/2) with C = O(log(p)) and prime
factors not in the set S do exist. We select Nchl such an integer and write Nchl =

∏n
i=1 ℓ

ei
i its prime

decomposition.
Let i ∈ J1 ; nK and E/Fp2 be a supersingluar elliptic curve. Then E[ℓeii] is defined over an extension

Fp2δi/Fp2 of degree δi = 6ℓei−1
i (ℓi − 1) = O(log(p)) by [ACD+24, Lemma 2.12]. By the most recent

3.3. MAIN PHASES OF THE SQISIGNHD IDENTIFICATION PROTOCOL 121

improvements of Vélu’s formulas [BDFLS20; Vé71], computing the isogeny φi : Ei−1 −→ Ei costs

O(ℓ
ei/2
i) arithmetic operations over Fp2δi which takes polynomial time in log(p). Once φi has been

expressed as rational fractions with these formulas, evaluating φi(P) on P ∈ Ei−1[ℓ
ej
j] for j ≥ i+1 costs

O(ℓeii) operations over Fp2δiδj and the result is in φi(P) ∈ Ei[ℓ
ej
j] ⊆ Ei(Fp2δj). Since n = O(log(p)), it

follows that point evaluations via the chain φi−1 ◦ · · · ◦ φ1 in Algorithm 3.10 always take polynomial
time in log(p), so the whole chain computation φn ◦· · ·◦φ1 runs in polynomial time in log(p). Besides,
the cost of each call to Algorithm 3.3 is dominated by isogeny evaluations and discrete logarithms
computations in subgroups of ℓeii -torsion. These operations also take polynomial time in log(p). It
follows that the whole algorithm runs in polynomial time in log(p).

3.3.4 Response

Given the secret key φsk : E0 −→ Epk, commitment φcom : E0 −→ Ecom and challenge φchl : Epk −→
Echl isogenies (i.e. data representing them efficiently), the prover has to return an isogeny φrsp :
Ecom −→ Echl (i.e. some efficient representation of φrsp).

In both versions of SQIsignHD, the prover starts by computing the kernel ideal Ichl of φchl using
the secret key data sk (and either Algorithm 3.3 in F-SQIsignHD or Algorithm 3.10 in R-SQIsignHD).
With the secret data sk and sc obtained during the key generation and commitment phases, the
prover also knows the ideals Isk and Icom associated to the isogenies φsk and φcom respectively so
they can compute I := Icom · Isk · Ichl. Then they sample a random ideal Irsp ∼ I using Algorithm
3.6 that can be translated into an isogeny φrsp : Ecom −→ Echl. Note that the higher dimensional
embedding of φrsp is not computed during the response but during the verification phase. The prover
evaluates φrsp on torsion points instead using the techniques of Section 2.3.3. The main difference
between F-SQIsignHD and R-SQIsignHD lie in the constraint imposed on the norm of Irsp (smaller
and with additional constraints in F-SQIsignHD than in R-SQIsignHD). This makes the description
of the R-SQIsignHD response a bit more technical to handle cases when Irsp has even norm.

Response in F-SQIsignHD

In F-SQIsignHD, we want make it possible for the verifier to embed φrsp in a 4-dimensional isogeny as
in Section 2.3. For that reason, we fix e/2 < f ≤ e− 2 and a smoothness bound B ∈ N∗ and require
q := nrd(Irsp) to be (f,B)-good in the sense of Definition 2.3.1. Indeed, if q is (f,B)-good then it
is odd and it is easy to decompose 2e − q as a sum of two squares and φrsp can be embedded in a
4-dimensional isogeny as defined in Eq. (2.10).

To sample such an ideal Irsp of (f,B)-good norm q uniformly at random, the prover applies
Algorithm 3.6 repeatedly to the lattice I := Icom · Isk · Ichl with a norm bound ρ2 = 2f nrd(I).
Algorithm 3.6 will return an element α ∈ I \ {0} sampled uniformly at random among elements of
norm ≤ 2f nrd(I). We stop the sampling once q := qI(α) = nrd(α)/ nrd(I) is (f,B)-good and set
Irsp := Iα/nrd(I).

For this to succeed, we not only need f to satisfy Eq. (3.3) 2f ≥ 313/6
√
p/π which ensures that

Algorithm 3.6 will terminate. We also need some margin to ensure that an element of (f,B)-good
can be found. Heuristically, the probability for an integer ≃ √p to be (f,B)-good is Ω(1/ log(p))
so 2f = Ω(

√
p log(p)) should be sufficient. However, we have no formal proof that an element of

(f,B)-good norm bounded by O(
√
p log(p)) can be found.

Once Irsp has been generated, we generate a deterministic basis (Pcom, Qcom) of Ecom[2
e] and

evaluate ([2λ]φrsp(Pcom), [2
λ]φrsp(Qcom)) with the techniques from Section 2.3.3 that we recall below.

Recall that we have Irsp = Iα/nrd(I) with I = Icom · Isk · Ichl and α ∈ I, so that Icom · Irsp =
Isk · Ichl · α/nrd(Isk · Ichl). By Lemma 1.2.24, it follows that:

φ̂com ◦ φ̂rsp ◦ φchl ◦ φsk = ε0(α) i.e. [2λNcomNsk]φrsp = φchl ◦ φsk ◦ ε0(α) ◦ φ̂com, (3.5)

where ε0 is an isomorphism O0
∼−→ End(E0). Since NcomNsk is odd, we can find its inverse µ modulo

2e−λ and for P = Pcom, Qcom, we can compute:

φchl ◦ φsk ◦ ε0(α) ◦ φ̂com([µ]P) = [2λNcomNskµ]φrsp(P) = [2λ]φrsp(P).

Note that the image of φrsp on the 2e−λ-torsion of Ecom is sufficient to compute the 4-dimensional
embedding in the verification phase as long as e − λ ≥ f/2 + 2 (by Remark 2.3.4). This inequality

122 CHAPTER 3. SQISIGNHD

is largely satisfied with a margin close to λ/2 since f ≃ λ ≃ e/2. For compactness reasons (see
Section 3.5.1) we use a tighter amount of torsion. Let r := ⌈f/2⌉+2. Then we multiply [2λ]φrsp(Pcom)
and [2λ]φrsp(Qcom) by 2e−r−λ to return ([2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom), q) as a response. Algo-
rithm 3.11 summarizes the whole F-SQIsignHD response procedure.

Algorithm 3.11: Fast response (F-SQIsignHD).

Data: The public parameters pp, the public key Epk, the secret key sk, the commitment Ecom

and the secret commitment data sc and the challenge chl ∈
q
0 ; 2λ − 1

y
.

Result: The response rsp = ([2e−r]φrsp(Pcom), [2
e−r]φrsp(Qcom), q), where (Pcom, Qcom) is a

deterministic basis of Ecom[2
e] and φrsp : Ecom −→ Echl a q-isogeny.

1 Extract e, λ, f,B, r,Ncom, Nsk from pp;
2 Parse Isk, φsk(P0), φsk(Q0)← sk;
3 Parse Icom, φcom(P0), φcom(Q0)← sc;
4 Compute a deterministic basis (Ppk, Qpk) of Epk[2

e];

5 Kchl ← [2e−λ]Ppk + [2e−λchl]Qpk;
6 Compute φchl : Epk −→ Echl of kernel Kchl;
7 Extract from pp a basis (β1, · · · , β4) of O0 and its image (ε0(βj)(P0), ε0(βj)(Q0))1≤j≤4;
8 Call Algorithm 3.3 on Kchl, (β1, · · · , β4), (P0, Q0) and (ε0(βj)(P0), ε0(βj)(Q0))1≤j≤4 and

(φsk(P0), φsk(Q0)) to compute the kernel ideal Ichl of φchl;

9 I ← Icom · Isk · Ichl;
10 repeat
11 Call Algorithm 3.6 on I to sample α ∈ I of norm ≤ 2f nrd(I) uniformly at random;
12 q ← nrd(α)/ nrd(I);

13 until q is (f,B)-good ;

14 µ← 1/(NcomNsk) mod 2e−λ;
15 Compute a deterministic basis (Pcom, Qcom) of Ecom[2

e];
16 Call Algorithm 2.9 on (P0, Q0), (φcom(P0), φcom(Q0)) and (Pcom, Qcom) to compute

(φ̂com(Pcom), φ̂com(Qcom));
17 Find a, b, c, d ∈ Z/2eZ such that ε0(α) ◦ φ̂com(Pcom) = [a]P0 + [b]Q0 and

ε0(α) ◦ φ̂com(Qcom) = [c]P0 + [d]Q0;

18 [2e−r]φrsp(Pcom)← [2e−r−λaµ]φchl ◦ φsk(P0) + [2e−r−λbµ]φchl ◦ φsk(Q0);

19 [2e−r]φrsp(Pcom)← [2e−r−λcµ]φchl ◦ φsk(P0) + [2e−r−λdµ]φchl ◦ φsk(Q0);
20 return ([2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom), q);

Response in R-SQIsignHD

In R-SQIsignHD, we embed φrsp in an 8-dimensional isogeny so we can relax the constraint on the
ideal norm q = nrd(Irsp). In addition, for security reasons that will be explained in Section 3.4.2, we
require q = Θ(p2) instead of q = Θ(

√
p log(p)). We select f := 2(e − 4), so that e = f/2 + 2 and a

2f -isogeny of dimension 8 embedding φrsp can be inferred from the image of φrsp on a basis of Ecom[2
e]

by dividing the computation in two pieces as explained in Remark 2.3.4.

As in F-SQIsignHD, we start by computing the kernel ideal Ichl of the challenge. Since deg(φchl) =
Nchl = Θ(p5/2), the kernel of φchl is defined over a field extension of Fp2 of exponentially big degree
so we cannot compute Ichl from a direct application of Algorithm 3.3. Instead, we use Algorithm
3.10 that computes the ideal Ichl piecewise while computing the challenge isogeny φchl as a chain of
isogenies at the same time.

Then, in order to compute Irsp equivalent to I := IcomIskIchl, we sample α ∈ I \ {0} uniformly
at random among elements of norm ≤ 2f nrd(I) with Algorithm 3.6 and set Irsp := Iα/nrd(I).
The following steps are a bit more technical than in F-SQIsignHD in order to account for the odd
norm factor of Irsp. With a simple evaluation of 2e-torsion points via φrsp similar to F-SQIsignHD,
we would lose information and that would make the verification harder. Instead, we factor Irsp =

[2a]I
(1)
rsp · I ′rsp · I

(2)
rsp , with I

(1)
rsp and I

(2)
rsp primitive and of norms 2b1 , 2b2 ≤ 2e respectively and I ′rsp of odd

3.3. MAIN PHASES OF THE SQISIGNHD IDENTIFICATION PROTOCOL 123

E0

φcom

��

φ1

��

φ2

&&

φsk // Epk

φchl

��

Ecom

φ(1)
rsp
// E′

com

φ′
rsp

// E′
chl

φ(2)
rsp
// Echl

Figure 3.2: Non commutative diagram explaining the R-SQIsignHD response computation.

norm q′. We also consider the associated decomposition (see Fig. 3.2):

φrsp = [2a]φ(2)
rsp ◦ φ′

rsp ◦ φ(1)
rsp .

To compute a response, we compute a, φ
(1)
rsp , φ̂

(2)
rsp and the image of a deterministic 2e-torsion basis

via φ′
rsp. Then, since deg(φ

′
rsp) = q′ is odd, the verifier will be able to embed φ′

rsp into an 8-dimensional

2f -isogeny. The integer a is simply the greatest integer such that 2a divides Irsp. We can then compute

Jrsp := Irsp/2
a = I

(1)
rsp ·I ′rsp ·I

(2)
rsp . The quaternion α ∈ I is also divisible by 2a, so we can write α = 2aα′,

so that Jrsp = Iα′/ nrd(I). To compute I
(1)
rsp and I

(2)
rsp , we rely on the following lemma. We compute

Ocom = OR(Icom), Ochl = OR(Ichl) and b := v2(nrd(Jrsp)). We then compute b1 := min(b, e), b2 := b−b1
and set I

(1)
rsp := Jrsp + 2b1Ocom and I

(2)

rsp := J rsp + 2b2Ochl, so that nrd(I
(1)
rsp) = 2b1 and nrd(I

(2)
rsp) = 2b2 .

Note that I
(2)
rsp is trivial when v2(nrd(Jrsp)) ≤ e. The ideal I

(2)
rsp is only used when v2(nrd(Jrsp)) > e in

order to ensure that there is always enough accessible torsion to translate the even part of Jrsp into
isogenies.

Lemma 3.3.5. Let I be a left ideal of a maximal order O ⊂ Bp,∞ of norm coprime with p. Let us
write I := m · J with m ∈ N∗ and J ⊆ O primitive. Let d ∈ N∗ prime to m and K := I + dO. Then
nrd(K) = gcd(d, nrd(J)).

Proof. Let E/Fp2 be a supersingular elliptic curve of endomorphism ring isomorphic to O. Then:

E[K] = E[mJ + dO] = E[mJ] ∩ E[d] = {P ∈ E | ∀α ∈ J, [m]α(P) = 0} ∩ E[d]

= {P ∈ E | [m]P ∈ E[J]} ∩ E[d] = [m]−1(E[J]) ∩ E[d]

Since J is primitive, E[J] is cyclic so we may consider a generator P of E[J]. Let N ′ := nrd(J)
and d′ := gcd(d,nrd(J)). Let Q0 := [N ′/d′]P . Then, [d]Q0 = [d/d′][N ′]P = 0 and [m]Q0 ∈ ⟨P ⟩ by
construction, so that Q0 ∈ E[K]. Conversely, let Q ∈ E[K]. Then [m]Q = [k]P for some k ∈ Z and
[d]Q = 0. In particular [kd]P = [md]Q = 0. Then, N ′|kd since P has order N ′, so that N ′/d′|k, so we
may write k = k′N ′/d′ with k′ ∈ Z, so that [m]Q = [k′N ′/d′]P = [k′]Q0. Since m and d are coprime,
there exists u, v ∈ Z such that mu + dv = 1 and we then have Q = [mu + dv]Q = [um]Q = [uk′]Q0.
Hence, E[K] = ⟨Q0⟩ and finally

nrd(K) = #E[K] = #⟨Q0⟩ = #⟨[N ′/d′]P ⟩ = d′ = gcd(d,nrd(J)).

Once the computation of I
(1)
rsp and I

(2)

rsp is done, we translate them into the isogenies φ
(1)
rsp : Ecom −→

E′
com and φ̂

(2)
rsp : Echl −→ E′

chl respectively. We want to use Algorithm 3.1 to obtain their kernel but
this algorithm requires to know the endomorphism ring of their respective domain. Instead, use the

public knowledge of End(E0) and apply Algorithm 3.1 to [Icom]
∗I

(1)
rsp and [Isk · Ichl]∗I

(2)

rsp respectively,

to obtain generators K1 and K2 of ker(φ∗
comφ

(1)
rsp) and ker((φchl ◦φsk)

∗φ̂
(2)
rsp) respectively. We then have

ker(φ
(1)
rsp) = ⟨φcom(K1)⟩ and ker(φ̂

(2)
rsp) = ⟨φchl ◦ φsk(K2)⟩.

We can then finally try to evaluate φ′
rsp on E′

com[2
e]. However, unlike in F-SQIsignHD, the method

from Section 2.3.3 does not directly apply to φ
(1)
rsp ◦ φcom and φ̂

(2)
rsp ◦ φchl ◦ φsk to evaluate φ′

rsp on

124 CHAPTER 3. SQISIGNHD

E′
com[2

e], since φ
(1)
rsp (and maybe φ

(2)
rsp) have even degree. To circumvent this difficulty, we use isogenies

φ1 : E0 −→ E′
com and φ2 : E0 −→ E′

chl of odd degrees. First, we set I1 := Icom · I(1)rsp and I2 :=

Isk · Ichl · I
(2)

rsp , find α1 ∈ I1 and α2 ∈ I2 such that nrd(α1)/ nrd(I1) and nrd(α2)/ nrd(I2) are odd, so
that the equivalent ideals J1 := I1α1/ nrd(I1) and J2 := I2α2/ nrd(I2) have odd norms N1 and N2. We
define φ1 and φ2 to be the isogenies respectively associated to J1 and J2. Then, we use Algorithm 2.7
in order to evaluate (φ1(P0), φ1(Q0)) and (φ2(P0), φ2(Q0)). Finally, we use the following lemma to
evaluate φ′

rsp on a deterministic basis (P ′
com, Q

′
com) of E

′
com[2

e] as in Section 2.3.3.

Lemma 3.3.6. We have:

[NchlNcomNskN1N2]φ
′
rsp = φ2 ◦ ε0(θ) ◦ φ̂1,

with N1 := nrd(J1) and N2 := nrd(J2) and θ := α2α
′α1/2

b1+b2 ∈ O0.

Proof. By Eq. (3.5), we have [NcomNskNchl]φrsp = φchl ◦ φsk ◦ ε0(α) ◦ φ̂com, so that:

[NcomNskNchl2
b1+b2]φ′

rsp = φ̂(2)
rsp ◦ φchl ◦ φsk ◦ ε0(α′) ◦ φ̂com ◦ φ̂(1)

rsp , (3.6)

since φrsp = [2a]φ
(2)
rsp ◦φ′

rsp ◦φ
(1)
rsp and α = 2aα′. By Lemma 1.2.24, and by the definition of φ1 and φ2,

we have:
φ̂1 ◦ φ(1)

rsp ◦ φcom = ε0(α1) and φ̂2 ◦ φ̂(2)
rsp ◦ φchl ◦ φsk = ε0(α2),

so that

[N1Ncom]φ̂
(1)
rsp = φcom ◦ ε0(α1) ◦ φ̂1 and [N2NskNchl]φ̂

(2)
rsp = φ2 ◦ ε0(α2) ◦ φ̂sk ◦ φ̂chl.

Combining these equations with Eq. (3.6), we obtain that

[N1N2NcomNskNchl2
b1+b2]φ′

rsp = φ2 ◦ ε0(α2α
′α1) ◦ φ̂1.

Since N1 = deg(φ1) and N2 = deg(φ2) are odd, it follows that ε0(α2α
′α1) is divisible by 2b1+b2 in

End(E0), so that θ := α2α
′α1/2

b1+b2 ∈ O0. The result follows.

The resulting response is of the form (φ
(1)
rsp , φ̂

(2)
rsp , φ′

rsp(P
′
com), φ

′
rsp(Q

′
com), q, a). The isogenies φ

(1)
rsp

and φ̂
(2)
rsp can be represented as chains of 2-isogenies or, in a more compact way, by kernel generators

(or even integers determining a kernel generator in a deterministic basis, as for the challenge isogeny).
We summarise the R-SQIsignHD response process in Algorithm 3.12.

3.3.5 Verification

In F-SQIsignHD

Given a response ([2e−r]φrsp(Pcom), [2
e−r]φrsp(Qcom), q) along with the commitment Ecom and challenge

codomain Echl, the prover proceeds exactly as in Section 2.3.2 to compute a 4-dimensional 2f -isogeny
F ∈ End(E2

com × E2
chl) embedding φrsp.

Since q is (f,B)-good, we can easily find a1, a2 ∈ Z such that q + a21 + a22 = 2f , as explained in
Section 2.3.1. We then consider the 4-dimensional 2f -isogeny

F :=

(
αcom Φ̃rsp

−Φrsp α̃chl

)
∈ End(E2

com × E2
chl), (3.7)

where for i ∈ {com, chl}, αi is an (a21 + a22)-isogeny

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i),

and Φrsp is the 2-dimensional diagonal q-isogeny Φrsp := Diag(φrsp, φrsp) : E
2
com −→ E2

chl.
Such an isogeny could be computed with 2f+2-torsion points forming an isotropic subgroup above

its kernel. However, the points [2e−r]φrsp(Pcom), [2
e−r]φrsp(Qcom) from the response have order 2r with

3.3. MAIN PHASES OF THE SQISIGNHD IDENTIFICATION PROTOCOL 125

Algorithm 3.12: Rigorous response (R-SQIsignHD).

Data: The public parameters pp, the public key Epk, the secret key sk, the commitment Ecom,
the secret commitment data sc and the challenge chl ∈

q
0 ; 2λ − 1

y
.

Result: The response rsp = (φ
(1)
rsp , φ̂

(2)
rsp , φ′

rsp(P
′
com), φ

′
rsp(Q

′
com), q, a).

1 Extract e, f,Ncom, Nchl, Nsk from pp;
2 Parse Isk, φsk(P0), φsk(Q0),B,B|2e ,B1, φsk|Nchl

← sk;
3 Parse Icom, φcom(P0), φcom(Q0)← sc;
4 Call Algorithm 3.10 on pp, chl, Epk and sk to compute the challenge isogeny φchl and its

kernel ideal Ichl;

5 I ← Icom · Isk · Ichl;
6 Call Algorithm 3.6 on I to sample α ∈ I of norm ≤ 2f nrd(I) uniformly at random;
// Factoring out the "even part" of the response

7 Find the biggest a ∈ N such that 2a divides α;
8 α′ ← α/2a, Jrsp ← Iα′/ nrd(I);
9 q ← nrd(α)/ nrd(I), b← v2(q)− 2a, b1 ← min(b, e), b2 ← b− b1;

10 Compute deterministic basis (Pcom, Qcom) and (Pchl, Qchl) of Ecom[2
e] and Echl[2

e] respectively;
11 Ocom ← OR(Icom), Ochl ← OR(Ichl);

12 I
(1)
rsp ← Jrsp + 2b1Ocom, I

(2)

rsp ← J rsp + 2b2Ochl;

13 Compute [Icom]
∗I

(1)
rsp and [Isk · Ichl]∗I

(2)

rsp ;

14 Extract from pp a basis (β1, · · · , β4) of O0 and its image (ε0(βj)(P0), ε0(βj)(Q0))1≤j≤4;
15 (P1, Q1)← ([2e−a1]P0, [2

e−a1]Q0), (P2, Q2)← ([2e−a2]P0, [2
e−a2]Q0);

16 Call Algorithm 3.1 on E0, (β1, · · · , β4), [Icom]∗I(1)rsp , (P1, Q1) and

([2e−a1]ε0(βi)(P0), [2
e−a1]ε0(βi)(Q0))1≤i≤4 to obtain a generator K1 of ker(φ∗

comφ
(1)
rsp);

17 Find x, y ∈ Z such that K1 = [x]P1 + [y]Q1;

18 Apply Vélu’s formulas to compute the 2-isogeny chain φ
(1)
rsp : Ecom −→ E′

com with kernel
⟨[2e−a1x]φcom(P0) + [2e−a1y]φcom(Q0)⟩;

19 Call Algorithm 3.1 on E0, (β1, · · · , β4), [Isk · Ichl]∗I
(2)

rsp , (P2, Q2) and

([2e−a2]ε0(βi)(P0), [2
e−a2]ε0(βi)(Q0))1≤i≤4 to obtain a generator K2 of ker((φchl ◦ φsk)

∗φ̂
(2)
rsp);

20 Find z, t ∈ Z such that K2 = [z]P2 + [t]Q2;

21 Apply Vélu’s formulas to compute the 2-isogeny chain φ̂
(2)
rsp : Echl −→ E′

chl with kernel
⟨[2e−a2x]φchl ◦ φsk(P0) + [2e−a2y]φchl ◦ φsk(Q0)⟩;
// Computing odd degree isogenies φ1 : E0 −→ E′

com and φ2 : E0 −→ E′
chl

22 I1 ← Icom · I(1)rsp , I2 ← Isk · Ichl · I
(2)

rsp ;

23 for i = 1, 2 do
24 Find αi ∈ Ii such that nrd(αi)/ nrd(Ii) is odd;
25 Ji ← Iiαi/nrd(Ii), Ni ← nrd(αi)/ nrd(Ii);
26 Call Algorithm 2.7 on Ji to obtain the image (φi(P0), φi(Q0)) of the associated isogeny;

27 end
// Evaluating φ′

rsp

28 µ← 1/(N1N2NcomNchlNsk) mod 2e, θ ← α2α
′α1/2

b1+b2 ;
29 Compute a deterministic basis (P ′

com, Q
′
com) of E

′
com[2

e];
30 Call Algorithm 2.9 on (P0, Q0), (φ1(P0), φ1(Q0)) and (P ′

com, Q
′
com) to compute

(φ̂1(P
′
com), φ̂1(Q

′
com));

31 Find a′, b′, c′, d′ ∈ Z/2eZ such that ε0(θ) ◦ φ̂1(P
′
com) = [a′]P0 + [b′]Q0 and

ε0(θ) ◦ φ̂1(Q
′
com) = [c′]P0 + [d′]Q0;

32 φ′
rsp(P

′
com)← [a′µ]φ2(P0) + [b′µ]φ2(Q0);

33 φ′
rsp(P

′
com)← [c′µ]φ2(P0) + [d′µ]φ2(Q0);

34 return (φ
(1)
rsp , φ̂

(2)
rsp , φ′

rsp(P
′
com), φ

′
rsp(Q

′
com), q, a);

126 CHAPTER 3. SQISIGNHD

r = ⌈f/2⌉+2. Therefore, we may divide the computation of F in two as explained in Remark 2.3.4. We
may decompose F = F2 ◦F1, where Fi is 2

fi-isogeny for i ∈ {1, 2}, with f = f1+f2 and f1, f2 ≤ r−2.

Knowing φrsp on a basis of Ecom[2
r], we are able to compute F1 and F̃2, then F2 =

˜̃
F 2. If the response

is valid, the codomains of F1 and F̃2 should correspond and we can finally compose F = F2 ◦ F1.
We refer to Section 6.6.7 for more details. As we shall explain in Sections 6.6 and 6.6.7, the knowl-
edge of a1, a2, q, f, Ecom, Echl and the points [2e−r]Pcom, [2

e−r]Qcom, [2
e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom)

is sufficient to compute F1 and F̃2 and then F .
Finally, as we shall see in Lemma 3.4.4, in order to verify that F represents a q-isogeny φrsp :

Ecom −→ Echl, we have to evaluate F (Pcom, 0, 0, 0) and check the following equality:

F (Pcom, 0, 0, 0) = ([a1]Pcom,−[a2]Pcom, ∗, 0).

We summarise the F-SQIsignHD verification procedure in Algorithm 3.13.

Algorithm 3.13: Fast verification (F-SQIsignHD).

Data: The public parameters pp, the public key Epk, commitment Ecom, challenge chl ∈q
0 ; 2λ − 1

y
and response rsp.

Result: A boolean value indicating if the response is valid.
1 Extract e, r, λ, f from pp;
2 Parse [2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom), q ← rsp;
3 Compute a deterministic basis (Ppk, Qpk) of Epk[2

e];

4 Kchl ← [2e−λ]Ppk + [2e−λchl]Qpk;
5 Compute φchl : Epk −→ Echl of kernel Kchl;
6 Compute a deterministic basis (Pcom, Qcom) of Ecom[2

e];
7 if q is not (f,B)-good then
8 return False;
9 end

10 Find a1, a2 ∈ Z such that a21 + a22 + q = 2f ; // Section 2.3.1
11 f1 ← ⌊f/2⌋, f2 ← f − f1;
12 Using a1, a2, q, Ecom, Echl, [2

e−r]Pcom, [2
e−r]Qcom, [2

e−r]φrsp(Pcom), [2
e−r]φrsp(Qcom), compute a

2f1 -isogeny F1 : E2
com × E2

chl −→ C1 and a 2f2 -isogeny F̃2 : E2
com × E2

chl −→ C2 such that
F = F2 ◦ F1, where F ∈ End(E2

com × E2
chl) has been defined in Eq. (3.7) ; // Section 6.6

13 if C1 ̸= C2 then
14 return False;
15 end

16 Compute the polarised dual F2 :=
˜̃
F 2 ; // Section 6.2.3

17 (T1, T2, T3, T4)← F2 ◦ F1(Pcom, 0, 0, 0);
18 if T1 = [a1]Pcom and T2 = −[a2]Pcom and T4 = 0 then
19 return True
20 else
21 return False;
22 end

In R-SQIsignHD

In R-SQIsignHD, when given a response (φ
(1)
rsp , φ̂

(2)
rsp , φ′

rsp(P
′
com), φ

′
rsp(Q

′
com), q, a) along with the com-

mitment Ecom and challenge codomain Echl, the prover computes an 8-dimensional 2f -isogeny embed-
ding φ′

rsp.

First, the prover verifies that φ
(1)
rsp and φ̂

(2)
rsp are (efficient representations of) isogenies with domains

Ecom and Echl respectively and that the points φ′
rsp(P

′
com), φ

′
rsp(Q

′
com) belong to the codomain E′

chl of

φ̂
(2)
rsp and have order 2e. Then, they compute b := v2(q)− 2a, verify that b ≥ 0 and that φ

(1)
rsp and φ̂

(2)
rsp

have respective degrees 2b1 and 2b2 with b1 := min(b, e) and b2 := b− b1.

3.4. SECURITY ANALYSIS 127

The prover then finds a1, · · · , a4 ∈ Z such that a21 + · · · + a24 + q′ = 2f where q′ := q/2a+2b, e.g.
using Pollack and Treviño’s algorithm [PT18, § 4] and consider the 8-dimensional 2f -isogeny

F :=

(
αcom Φ̃rsp

−Φrsp α̃chl

)
∈ End(E′4

com × E′4
chl), (3.8)

where for i ∈ {com, chl}, αi is an (a21 + · · ·+ a24)-isogeny

αi :=

a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ End(E4
i),

and Φrsp is the 4-dimensional diagonal q-isogeny Φrsp := Diag(φ
(1)
rsp , · · · , φ(1)

rsp) : E′4
com −→ E′4

chl.
As previously, since f/2 + 2 ≤ e, one can compute F in two parts and the knowl-

edge of a1, · · · , a4, q′, f , E′
com, E

′
chl, a deterministic basis (P ′

com, Q
′
com) of E′

com[2
e] and its image

(φ′
rsp(P

′
com), φ

′
rsp(Q

′
com)) is sufficient to compute F . Even though it has not been implemented and de-

scribed in as much detail as in dimension 4, the algorithmic approach is close. We refer to Sections 6.3,
6.4.2 and 6.6 for more details.

As we shall see in Lemma 3.4.7, in order to verify that F represents a q′-isogeny φ′
rsp : E

′
com −→ E′

chl,
we have to evaluate F on (P ′

com, 0, · · · , 0) and (Q′
com, 0, · · · , 0) in order to check the following equalities:

F (P ′
com, 0, · · · , 0) = ([a1]P

′
com, [a2]P

′
com, [a3]P

′
com, [a4]P

′
com, ∗, 0, 0, 0)

and F (Q′
com, 0, · · · , 0) = ([a1]Q

′
com, [a2]Q

′
com, [a3]Q

′
com, [a4]Q

′
com, ∗, 0, 0, 0).

We summarise the R-SQIsignHD verification procedure in Algorithm 3.14.

3.4 Security analysis

As explained in Section 3.1, the digital signature scheme SQIsignHD is obtained from a 3-round iden-
tification scheme via the Fiat-Shamir transform. To obtain a scheme that is universally unforgeable
against chosen massage attacks in the random oracle model, the identification scheme needs to be a
Σ-protocol i.e. to satisfy the security assumptions of Theorem 3.4.2.

Consider a space of values K (playing the role of public keys) and a space of witnesses W (meant
to be secret). An NP-relation R on W ×K is a function W ×K −→ {0, 1} that can be evaluated in
polynomial time and we define the language associated to R as:

LR = {(w, x) | R(w, x) = 1}.

A prover knows some pair (w, x) ∈ LR, where x is their public key and the witness w is secret.
They want to prove knowledge of w to some verifier without revealing it by performing a 3-round
identification protocol (commitment, challenge, response). Of course, such an identification protocol
only makes sense if the relation R is hard.

Definition 3.4.1. The relation R is hard if we can generate pairs (w, x) ∈ LR in probabilistic
polynomial time (meaning that key generation is efficient) but given x ∈ K, finding some witness
w ∈ W such that R(x,w) = 1 cannot be done in probabilistic polynomial time with a non-negligible
advantage (witness recovery is hard).

Theorem 3.4.2. [VV15, Theorem 7] Consider a 3-round identification scheme between a prover and
a verifier for an NP-relation R :W ×K −→ {0, 1} that satisfy the following:

(i) R is hard.

(ii) Completeness: The verifier always accepts a honest proof by the prover.

(iii) Special soundness: Given two protocol transcripts (com, chl, rsp) and (com, chl′, rsp′) accepted
by the verifier for a public key pk ∈ K with the same commitment com and distinct challenges
chl ̸= chl′, one can recover a witness w ∈W such that R(w, pk) = 1 in polynomial time.

128 CHAPTER 3. SQISIGNHD

Algorithm 3.14: Rigorous verification (R-SQIsignHD).

Data: The public parameters pp, the public key Epk, commitment Ecom, challenge chl ∈q
0 ; 2λ − 1

y
and response rsp.

Result: A boolean value indicating if the response is valid.
1 Extract e, f,Nchl =

∏n
i=1 ℓ

ei
i from pp;

2 Parse φ
(1)
rsp , φ̂

(2)
rsp , φ′

rsp(P
′
com), φ

′
rsp(Q

′
com), q, a← rsp;

// Computation of Echl

3 for i = 1 to n do
4 Generate a deterministic basis (Pi, Qi) of Epk[ℓ

ei
i];

5 Ki ← Pi + [chl]Qi;
6 if i ≥ 2 then
7 Ki ← φi−1 ◦ · · · ◦ φ1(Ki);
8 end
9 Compute φi : Ei−1 −→ Ei of kernel ⟨Ki⟩;

10 end
11 Echl ← En;

// Verification of φ
(1)
rsp and φ̂

(2)
rsp

12 if Domain(φ
(1)
rsp) ̸= Ecom or Domain(φ̂

(2)
rsp) ̸= Echl then

13 return False;
14 end

15 E′
chl ← Codomain(φ̂

(2)
rsp);

16 if φ′
rsp(P

′
com) ̸∈ E′

chl or φ
′
rsp(Q

′
com) ̸∈ E′

chl then
17 return False;
18 end
19 if order(φ′

rsp(P
′
com)) ̸= 2e or order(φ′

rsp(Q
′
com)) ̸= 2e then

20 return False;
21 end

22 b← v2(q)− 2a, q′ ← q/2a+2b, a1 ← min(a, e), a2 ← a− a1;
23 if deg(φ

(1)
rsp) ̸= 2a1 or deg(φ

(1)
rsp) ̸= 2a2 then

24 return False;
25 end

// Computation of F ∈ End(E′4
com × E′4

chl)
26 Generate a deterministic basis (Pcom, Qcom) of Ecom[2

e];

27 if q ≥ 2f then
28 return False;
29 end

30 Find a1, · · · , a4 ∈ Z such that a21 + · · ·+ a24 + q′ = 2f using [PT18, § 4];
31 f1 ← ⌊f/2⌋, f2 ← f − f1;
32 Using a1, · · · , a4, q′, E′

com, E
′
chl, P

′
com, Q

′
com, φ

′
rsp(P

′
com), φ

′
rsp(Q

′
com), compute a 2f1 -isogeny

F1 : E′4
com × E′4

chl −→ C1 and a 2f2-isogeny F̃2 : E′4
com × E′4

chl −→ C2 such that F = F2 ◦ F1,

where F ∈ End(E′4
com × E′4

chl) has been defined in Eq. (3.8) ; // Sections 6.3 and 6.4.2

33 if C1 ̸= C2 then
34 return False;
35 end

36 Compute the polarised dual F2 :=
˜̃
F 2 ; // Section 6.2.3

// Point evaluations

37 T ← F2 ◦ F1(P
′
com, 0, 0, 0, 0, 0, 0, 0);

38 U ← F2 ◦ F1(Q
′
com, 0, 0, 0, 0, 0, 0, 0);

39 if T = ([a1]P
′
com, [a2]P

′
com, [a3]P

′
com, [a4]P

′
com, ∗, 0, 0, 0) and

U = ([a1]Q
′
com, [a2]Q

′
com, [a3]Q

′
com, [a4]Q

′
com, ∗, 0, 0, 0) then

40 return True
41 else
42 return False;
43 end

3.4. SECURITY ANALYSIS 129

(iv) Honest verifier zero-knowledge (HVZK): There exists a polynomial time simulator S that
can generate transcripts (com, chl, rsp) for any public key pk ∈ K with a distribution computa-
tionally indistinguishable from honest executions of the protocol for the same public key.

Then this identification scheme yields a digital signature scheme via the Fiat-Shamir transform
which is universally unforgeable under chosen message attacks in the random oracle model.

Intuitively, the special soundness ensures that an attacker cannot ”guess” responses with a non-
negligible advantage. Indeed, if they can produce valid responses with non negligible advantage,
then with non-negligible probability, they are able to generate two valid transcripts (com, chl, rsp)
and (com, chl′, rsp′) for a public key pk ∈ K with the same commitment com and distinct challenges
chl ̸= chl′. By special soundness, they can recover a witness w ∈ W such that R(w, pk) = 1 in
polynomial time with non negligible probability, breaking the hardness of R. Intuitively, the HVZK
property means that transcripts do not leak any information on the secret key, since they can be
simulated without knowing it.

Both versions of the SQIsignHD identification protocol is based on the NP-relation R : W ×
K −→ {0, 1}, where K is the space of supersingular elliptic curves over Fp2 and W is the space of
endomorphisms of supersingular elliptic curves over Fp2 and:

∀(α,E) ∈W ×K, R(α,E) = 1⇐⇒ α ∈ End(E) \ Z. (3.9)

This relation is hard provided that the Supersingular One Endomorphism Problem is hard.

Problem 3.4.3 (Supersingular One Endomorphism Problem). Given a supersingular elliptic curve
E/Fp2 , find (an efficient representation of) a non-scalar endomorphism α ∈ End(E) \ Z.

The fastest known algorithms for this problem have classical complexity in Õ(p1/2) [DG16;

EHLMP20; FIKMN25] (see also [PW24, Theorem 8.8]) and a quantum complexity Õ(p1/4) using
Grover’s algorithm [Gro96; BJS14]. This problem is also proved to be equivalent to the Supersingular
Endomorphism Ring Problem (Problem 2.1.2) and the Supersingular Isogeny Problem (Problem 2.1.1)
[PW24; Wes22; MW25] which is the underlying problem of a key recovery attack. For these reasons,
we believe the relation R to be hard and in order to ensure λ bits of classical and λ/2 bits of quantum
security, we chose p = Θ(22λ), so that e ≃ 2λ as explained before.

The completeness of the protocol is basically trivial by construction: in Section 3.3, we described
an identification protocol so that the verifier always accepts a honest execution (i.e. Algorithms 3.13
and 3.14 always return True if the prover executed their part honestly). It remains to prove the
special soundness and HVZK properties that are discussed in the following sections, the latter being
the most delicate. Note that in the original version of SQIsign, the HVZK argument was very ad-
hoc and almost tautological: the response isogeny distribution was assumed to be computationally
indistinguishable from uniform, even though it was known not to be uniform. The argument is stronger
in both variants of SQIsignHD as it relies on more natural assumptions. We shall see that using an
8-dimensional isogeny of polarised degree 2f = Θ(p2) in R-SQIsignHD simplifies greatly the proof of
HVZK compared to F-SQIsignHD, at the expense of a more technical special soundness proof.

3.4.1 Special soundness

In F-SQIsignHD

We start by proving that the verification Algorithm 3.13 works as expected, meaning that a response
that has been validated (the algorithm returns True) always efficiently represents an isogeny φ :
Ecom −→ Echl of (f,B)-good degree.

Lemma 3.4.4. Let (Ecom, chl, rsp) be a transcript of the F-SQIsignHD identification protocol. If
the response rsp = ([2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom), q) has been validated by the verifier i.e. if
Algorithm 3.13 returned True, then q is (f,B)-good and rsp is an efficient representation of a q-isogeny
φ : Ecom −→ Echl.

Proof. Assume that Algorithm 3.13 has returned True. Then q is (f,B)-good by construction and
Algorithm 3.13 has computed a 2f -isogeny F ∈ End(E2

com × E2
chl) such that

F (Pcom, 0, 0, 0) = ([a1]Pcom,−[a2]Pcom, ∗, 0),

130 CHAPTER 3. SQISIGNHD

where (Pcom, Qcom) is a deterministic basis of Ecom[2
e]. We may write F := (fi,j)1≤i,j≤4 in matrix

notation. Then, since F̃ ◦ F = [2f], we get that

∀1 ≤ j ≤ 4,

4∑
i=1

deg(fi,j) = 2f , (3.10)

so the fi,j have degree ≤ 2f . By assumption, f1,1(Pcom) = [a1]Pcom, f2,1(Pcom) = −[a2]Pcom and
f4,1(Pcom) = 0. Besides, by Cauchy-Schwarz inequality

deg(f1,1 − [a1]) ≤
(√

deg(f1,1) +
√

deg([a1])

)2

< (2f/2 + 2f/2)2 = 2f+2.

Since f ≃ e/2, we have e > f + 2 so f1,1 − [a1] is annihilated by a subgroup of cardinality 2e >
deg(f1,1− [a1]) of Ecom. It follows that f1,1 = [a1]. We similarly obtain that f2,1 = −[a2] and f4,1 = 0.
Hence, by Eq. (3.10), we get deg(f3,1) = 2f − a21 − a22 = q. Besides, by construction φ := f3,1 is a
morphism Ecom −→ Echl, so it is a q-isogeny, as desired. Since F can be evaluated in polynomial time
in log(p), so can φ. Hence, F is an efficient representation of φ. But F can be obtained from rsp in
polynomial time in log(p) by Theorem 2.2.12. This proves that rsp is an efficient representation of φ
and completes the proof.

We also need to prove that an efficient representation of an isogeny is essentially the same as an
efficient representation of its dual, a very intuitive and very useful result of independent interest that
follows directly from the interpolation theorem (Theorem 2.2.10).

Lemma 3.4.5. Let φ : E1 −→ E2 be a d-isogeny between two elliptic curves defined over Fq. Then one
can obtain an efficient representation of φ̂ in polynomial time in log(d) and log(q) from an efficient
representation of φ.

Proof. Similarly to the proof of Lemma 3.3.4, let C ∈ N∗ and consider the products of primes:

N =
∏
ℓ≤C
ℓ∤d

ℓ and D =
∏
ℓ≤C

ℓ.

Then by [HW75, Theorems 413 and 434], log(D) ∼ C as C −→ +∞, so that D ≥ eC/2 for C big
enough, so that N ≥ D/d ≥ eC/2/d. Choosing C = 4 log(d) + O(1), we obtain that N > d as
d −→ +∞.

Let us write N :=
∏r
i=1 ℓi with distinct primes ℓ1, · · · , ℓr. Then r and all the ℓi are in O(log(d)).

For all i ∈ J1 ; rK, we may generate a basis (Pi, Qi) of E1[ℓi]. Since E1[ℓi] is defined over an extension
Fqki/Fq of degree ki ≤ ℓ2i , this basis (Pi, Qi) can be generated in polynomial time in log(d) and log(q)
(e.g. using division polynomials or via point counting and scalar multiplication) and evaluated via φ
in polynomial time in log(d) and log(q), for all i ∈ J1 ; rK (with r = O(log(d))). By Theorem 2.2.10,
(Pi, Qi)1≤i≤r, (φ(Pi), φ(Qi))1≤i≤r (together with d, E1 and E2) is an efficient representation of φ and
φ̂. This completes the proof.

We are now able to prove the:

Theorem 3.4.6. The identification protocol F-SQIsignHD is special sound for the NP-relation defined
in Eq. (3.9).

Proof. Let (Ecom, chl, rsp) and (Ecom, chl
′, rsp′) be two transcripts for the same public key Epk and

commitment Ecom but distinct challenges chl ̸= chl′. Then we can access efficient representations of
φchl : Ecom −→ Echl and φ′

chl : Ecom −→ E′
chl from chl and chl′; and of φrsp : Ecom −→ Echl and

φ′
rsp : Ecom −→ E′

chl from rsp and rsp′ by Lemma 3.4.4 (since rsp and rsp′ are valid). We may then
consider the endomorphism

α := φ̂′
chl ◦ φ′

rsp ◦ φ̂rsp ◦ φchl ∈ End(Epk)

3.4. SECURITY ANALYSIS 131

We now prove that α is not scalar. Indeed, if it was, we would have α = [m] for some m ∈ Z
and qq′22λ = m2 where q := deg(φrsp) and q′ := deg(φ′

rsp). By Lemma 3.4.4, q and q′ are (f,B)-

good so they are odd, so we may write m = 2fm′ with m′ ∈ Z odd (m′2 = qq′). It follows that

[q′]φ̂rsp ◦ φchl = [m′]φ̂′
rsp ◦ φ′

chl. Since q, q′ and m′ are odd, we get that ker(φchl) = ker(φ′
chl) i.e.

chl = chl′. Contradiction. This proves that α is not scalar.
Now, an efficient representation of φ′

chl yields an efficient representation of φ̂′
chl in polynomial time

(in log(p)) since we can compute ker(φ̂′
chl) = φ′

chl(Epk[2
λ]). Besides, from an efficient representation of

φrsp, we can obtain an efficient representation of φ̂rsp by Lemma 3.4.5. We then have access to efficient

representations of φchl, φ̂′
chl, φ̂rsp and φ′

rsp that yield an efficient representation of α by composition.
This completes the proof.

In R-SQIsignHD

Lemma 3.4.7. Let (Ecom, Echl, rsp) be a transcript of the R-SQIsignHD identification protocol. If
the response rsp = (φrsp(Pcom), φrsp(Qcom), q) has been validated by the verifier i.e. if Algorithm 3.14
returned True, then rsp is an efficient representation of a q-isogeny φ : Ecom −→ Echl with q < 2f .

Proof. Unsurprisingly, the proof is very similar to the proof of Lemma 3.4.4. Assume that Algo-
rithm 3.13 has returned True. Then, keeping the notations from this algorithm, we have q < 2f and we
have an efficient representation of a 2b1 -isogeny φ(1) : Ecom −→ E′

com, a 2b2-isogeny φ̂(2) : Echl −→ E′
chl

and a 2f -isogeny F ∈ End(E′4
com × E′4

chl) such that

F (P ′
com, 0, · · · , 0) = ([a1]P

′
com, [a2]P

′
com, [a3]P

′
com, [a4]P

′
com, ∗, 0, 0, 0)

and F (Q′
com, 0, · · · , 0) = ([a1]Q

′
com, [a2]Q

′
com, [a3]Q

′
com, [a4]Q

′
com, ∗, 0, 0, 0),

where (P ′
com, Q

′
com) is a deterministic basis of E′

com[2
e]. As in the proof of Lemma 3.4.4, we may write

F := (fi,j)1≤i,j≤8 in matrix notation. Then, since F̃ ◦ F = [2f], we get that

∀1 ≤ j ≤ 8,

8∑
i=1

deg(fi,j) = 2f , (3.11)

so the fi,j have degree ≤ 2f . By assumption, we have f1,1 and [a1] coincide on (P ′
com, Q

′
com), so they

coincide on a subgroup of cardinality 22e of E′
com. Applying Cauchy-Schwarz inequality again, we

obtain:

deg(f1,1 − [a1]) ≤
(√

deg(f1,1) +
√
deg([a1])

)2

< (2f/2 + 2f/2)2 = 2f+2,

where f + 2 = 2(e − 4) + 2 < 2e. It follows that f1,1 = [a1]. We obtain similarly that f2,1 = [a2],
f3,1 = [a3], f4,1 = [a4], f6,1 = f7,1 = f8,1 = 0. By Eq. (3.11), we also obtain that φ(1) := f5,1 is a
q′-isogeny E′

com −→ Echl, so that φ := φ(1) ◦φ(0) is a q-isogeny Ecom −→ Echl. We complete the proof
with the same arguments used in Lemma 3.4.4.

In F-SQIsignHD, the special soundness argument easily follows from the fact that the response
isogeny φrsp : Ecom −→ Echl dos not backtrack through the challenge isogeny φchl : Epk −→ Echl i.e.
that ker(φ̂rsp) ∩ ker(φ̂chl) = 0 since their degrees are coprime. In R-SQIsignHD, this assumption no
longer holds but the challenge argument is saved by the fact that two distinct challenges φchl and φ

′
chl

starting from the same public curve Epk con only have a greatest common factor of small degree in
the following sense.

Lemma 3.4.8. Let ϕ : E1 −→ E2 and ϕ′ : E1 −→ E′
2 be two cyclic isogenies. Let ϕ0 : E1 −→ E3

be the cyclic separable isogeny such that ker(ϕ0) = ker(ϕ) ∩ ker(ϕ′). Then, there exists two cyclic

isogenies ϕ1 : E3 −→ E2 and ϕ′1 : E3 −→ E′
2 such that ϕ = ϕ1 ◦ ϕ0, ϕ′ = ϕ′1 ◦ ϕ0 and ϕ′1 ◦ ϕ̂1 is cyclic.

ϕ0 will be called the greatest common factor of ϕ and ϕ′.

Proof. We can always factor ϕ = ϕ1 ◦ ϕ0, ϕ′ = ϕ′1 ◦ ϕ0, with ϕ0 : E1 −→ E3 such that ker(ϕ0) =
ker(ϕ) ∩ ker(ϕ′).

132 CHAPTER 3. SQISIGNHD

First, we prove that ker(ϕ1) ∩ ker(ϕ′1) = {0}. If it was not the case, we could find a cyclic isogeny
ψ : E2 −→ E4 with non-trivial kernel such that ϕ1 and ϕ′1 factor through ψ, and both ϕ and ϕ′

would factor through ψ ◦ ϕ0, so we would have ker(ψ ◦ ϕ0) ⊆ ker(ϕ) ∩ ker(ϕ′). But ker(ψ ◦ ϕ0) =

ϕ−1
0 (ker(ψ)) ⊋ ker(ϕ0) since ker(ψ) is non-trivial. Contradiction. Now, we prove that ϕ′1 ◦ ϕ̂1 is cyclic.
Step 1: Actually, it suffices to prove it when deg(ϕ′1) and deg(ϕ1) are powers of the same prime ℓ.

Indeed, if not, we can decompose ϕ1 = ψ2 ◦ ψ1 and ϕ′1 = ψ′
2 ◦ ψ′

1 with deg(ψ1) deg(ψ
′
1) coprime

with deg(ψ2) deg(ψ
′
2). Then, we may write ϕ′1 ◦ ϕ̂1 = ψ′

2 ◦ ψ3 ◦ ψ̂2, with ψ3 = ψ′
1 ◦ ψ̂1. Using

pushforward isogenies (as defined in Definition 1.1.12), we may write [ψ2]∗ψ3 ◦ ψ2 = [ψ3]∗ψ2 ◦ ψ3, so

that ψ3 ◦ ψ̂2 = ̂[ψ3]∗ψ2 ◦ [ψ2]∗ψ3 and

ϕ′1 ◦ ϕ̂1 = ψ′
2 ◦ ̂[ψ3]∗ψ2 ◦ [ψ2]∗ψ3.

If we assume that ψ3 is cyclic then [ψ2]∗ψ3 is cyclic. Besides, ψ′
2 and [ψ3]∗ψ2 are cyclic and ker(ψ′

2)∩
ker([ψ3]∗ψ2) = {0}. Indeed, if P ∈ ker(ψ′

2) ∩ ker([ψ3]∗ψ2), then P ∈ ker([ψ3]∗ψ2) = ψ3(ker(ψ2)) so

we may write P = ψ3(Q) with Q ∈ ker(ψ2). Let R := ψ̂1(Q). Then, ϕ1(R) = ψ2 ◦ ψ1 ◦ ψ̂1(Q) =
[deg(ψ1)]ψ2(Q) = 0 and ϕ′1(R) = ψ′

2(P) = 0, so R ∈ ker(ϕ1) ∩ ker(ϕ′1) = {0} and R = 0, so
P = ψ′

1(R) = 0.
Besides, we have

deg([ψ2]∗ψ3) = deg(ψ3) = deg(ψ1) deg(ψ
′
1) and deg(ψ′

2 ◦ ̂[ψ3]∗ψ2) = deg(ψ2) deg(ψ
′
2).

Since products of cyclic isogenies of coprime degrees are cyclic, if we can prove that ψ′
2 ◦ ̂[ψ3]∗ψ2 is

cyclic, then we can prove that ϕ′1 ◦ ϕ̂1 is cyclic.
Step 2: By Step 1, we can assume that deg(ϕ′1) and deg(ϕ1) are powers of the same prime ℓ.

We proceed by induction on deg(ϕ′1). When deg(ϕ′1) = 1 it follows from the fact that the dual of a
cyclic isogeny is cyclic. Now, we assume the result holds when deg(ϕ′1) = ℓn with n ∈ N and prove
it holds when deg(ϕ′1) = ℓn+1. We may factor ϕ′1 := ϕ2 ◦ ϕ′2 with deg(ϕ2) = ℓ and deg(ϕ′2) = ℓn.

By assumption, ϕ3 := ϕ′2 ◦ ϕ̂1 is cyclic so we only have to prove that ϕ2 ◦ ϕ3 is cyclic, i.e. that
ker(ϕ2 ◦ ϕ3) = ϕ−1

3 (ker(ϕ2)) is cyclic.
Let Q be a generator of ker(ϕ2), P be a generator of ker(ϕ3) and P

′ ∈ E2 such that Q = ϕ3(P
′).

Then
ker(ϕ2 ◦ ϕ3) = ϕ−1

3 (ker(ϕ2)) = ⟨P, P ′⟩.

To conclude, it suffices to prove that P ∈ ⟨P ′⟩. We have P ′ ∈ ker(ϕ2 ◦ ϕ3) ⊂ E2[ℓ
m+1], with

deg(ϕ3) := ℓm and [ℓm]P ′ = ϕ̂3 ◦ ϕ3(P ′) = ϕ̂3(Q) and ϕ̂3(Q) ̸= 0. Indeed, if ϕ̂3(Q) = 0, we may

write S := ϕ̂′2(Q), so that ϕ1(S) = ϕ̂3(Q) = 0 and ϕ′1(S) = ϕ2 ◦ ϕ′2 ◦ ϕ̂′2(Q) = [ℓn]ϕ2(Q) = 0, so that

S ∈ ker(ϕ1) ∩ ker(ϕ′1) = {0} and ϕ̂′2(Q) = 0. Hence, ϕ′2 factors through ϕ2 and ϕ′1 factors through

[ℓ] = ϕ2 ◦ ϕ̂2 and is not cyclic. Contradiction. Hence, ϕ̂3(Q) ̸= 0 and P ′ has order ℓm+1.
Let R ∈ E2[ℓ

m] such that ([ℓ]P ′, R) is a basis of E2[ℓ
m]. Then, we may write P := [aℓ]P ′ + [b]R

for some a, b ∈ Z since P ∈ ker(ϕ3) ⊂ E2[ℓ
m]. Since Q ∈ ker(ϕ2) has order ℓ, we get that

0 = ϕ3(P) = [aℓ]Q+ [b]ϕ3(R) = [b]ϕ3(R),

and that ϕ3(R) generates ϕ3(E2[ℓ
m]) = ker(ϕ̂3), which is cyclic so it has order ℓm. It follows that

b ≡ 0 mod ℓm, so that P = [aℓ]P ′ ∈ ⟨P ′⟩. This completes the proof.

Lemma 3.4.9. Let φchl : Epk −→ Echl and φ
′
chl : Epk −→ E′

chl be two distinct challenges from the
same public curve Epk. Then, the largest integer dividing φ′

chl ◦ φ̂chl ∈ Hom(Echl, E
′
chl) is < 2λ.

Proof. Recall that the challenge isogeny φchl has degree Nchl =
∏n
i=1 ℓ

ei
i and is defined by the kernel

⟨Kchl⟩ with Kchl = P + [chl]Q where 0 ≤ chl < 2λ, P :=
∑n
i=1 Pi and Q :=

∑n
i=1Qi and (Pi, Qi) is a

deterministic basis of Epk[ℓ
ei
i] for all i ∈ J1 ; nK. In particular, (P,Q) form a basis of Epk[Nchl] (that

cannot be represented without using exponentially large field extensions of Fp2).
The second challenge isogeny φ′

chl is defined similarly by its kernel generator Kchl′ = P + [chl′]Q,
for some chl ̸= chl′. Since φchl and φ

′
chl are cyclic, by Lemma 3.4.8 there exists three cyclic isogenies

ϕ0 : Epk −→ E, ϕ1 : E −→ Echl and ϕ′1 : E −→ E′
chl such that φchl = ϕ1 ◦ ϕ0, φ′

chl = ϕ′1 ◦ ϕ0 and

3.4. SECURITY ANALYSIS 133

ϕ′1 ◦ ϕ̂1 is cyclic. The greatest cyclic factor ϕ0 of φchl and φ
′
chl has kernel ker(ϕ0) = ker(φchl)∩ker(φ′

chl).

Since φ′
chl ◦ φ̂chl = [deg(ϕ0)]ϕ

′
1 ◦ ϕ̂1, we see that deg(ϕ0) is the largest integer dividing φ′

chl ◦ φ̂chl in
Hom(Echl, E

′
chl), so we only have to prove that deg(ϕ0) < 2λ.

Let R ∈ Epk be a generator of ker(ϕ0). Then, R = [a]Kchl = [b]Kchl′ for some a, b ∈ J0 ; Nchl − 1K,
i.e. :

[a− b]P + [a · chl− b · chl′]Q = 0.

Since (P,Q) is a basis of Epk[Nchl], it follows that a− b ≡ 0 mod Nchl so a = b and a(chl− chl′) ≡ 0
mod Nchl. It follows that Nchl/d divides a, where d := gcd(chl− chl′, Nchl), so that R ∈ Epk[d]. Since
0 ≤ chl ̸= chl′ < 2λ, it follows that d < 2λ, and deg(ϕ0) ≤ d < 2λ. This completes the proof.

We are now able to finally prove the:

Theorem 3.4.10. Assume that Nchl ≥ 2f+λ. Then the identification protocol R-SQIsignHD is special
sound for the NP-relation defined in Eq. (3.9).

Proof. We proceed as in the proof of Theorem 3.4.6. Let (Ecom, chl, rsp) and (Ecom, chl
′, rsp′) be two

transcripts for the same public key Epk and commitment Ecom but distinct challenges chl ̸= chl′. Then
we have seen that we can access efficient representations of φchl : Ecom −→ Echl and φ

′
chl : Ecom −→ E′

chl

from chl and chl′; and of φrsp : Ecom −→ Echl and φ
′
rsp : Ecom −→ E′

chl from rsp and rsp′ by Lemma 3.4.7
(since rsp and rsp′ are valid). As in the proof of Theorem 3.4.6, consider the endomorphism

α := φ̂′
chl ◦ φ′

rsp ◦ φ̂rsp ◦ φchl ∈ End(Epk).

Using similar arguments as previously (and Lemma 3.4.5 in particular), we can obtain an efficient
representation of α in polynomial time in log(p) from efficient representations of φchl, φ

′
chl, φrsp and φ

′
rsp.

To conclude, we prove that α is non-scalar. Suppose by contradiction that α = [m] for some
m ∈ Z. We deduce

[m] ◦ φ′
chl ◦ φ̂chl = [N2

chl] ◦ φ′
rsp ◦ φ̂rsp. (3.12)

Using Lemma 3.4.8, write φ′
chl ◦ φ̂chl = [d] ◦ ψ and φ′

rsp ◦ φ̂rsp = [d′] ◦ ν where ψ and ν have cyclic
kernel. We deduce from Eq. (3.12) that dm = d′N2

chl is the largest integer dividing either side of the
equality, and ψ = ν is the cyclic part of either side.

On one hand, we have deg(ν) ≤ deg(φrsp) deg(φ
′
rsp) ≤ 22f by Lemma 3.4.7. On the other

hand, Lemma 3.4.9 implies

deg(ψ) =
N2

chl

d2
>
N2

chl

22λ
≥ 22f .

This contradicts the equality ψ = ν.

Remark 3.4.11. Since we have chosen 2f = Θ(p2) for reasons that will be explained in Section 3.4.2
and p = Θ(22λ) in order to ensure λ bits of classical hardness for the relation defined in Eq. (3.9), the
condition Nchl ≥ 2f+λ implies that Nchl = Ω(p5/2). This justifies the choice Nchl = Θ(p5/2) proposed
in Section 3.3.3.

3.4.2 The zero knowledge property

The proof of the zero-knowledge property of SQIsignHD uses an oracle generating isogenies of non-
smooth degree. To our knowledge, there is no efficient algorithm implementing such an oracle.
Nonetheless, it is believed that access to such an oracle does not affect the hardness of the rela-
tion defined in Eq. (3.9) (see Section 3.4.3). In R-SQIsignHD, the definition of such an oracle is very
natural. In F-SQIsignHD, we add (mild) conditions on the degree to account for the computational
constraints imposed by the method in dimension 4. These degree constraints are the main reason
why the signatures are represented in dimension 8 instead of 4 in R-SQIsignHD. Note that the very
efficient1 isogeny based digital signature scheme PRISM [BBC+25] has been built on the assumption
that implementing oracles used in F-SQIsignHD or R-SQIsignHD is a hard problem. Also note that
another security paradigm for SQIsignHD has been proposed recently in [ABDPW25] (we shall briefly
discuss it in Section 3.4.3).

1In PRISM, signature is 1.8 times faster and verification 1.4 times slower than all SQIsign variants.

134 CHAPTER 3. SQISIGNHD

In F-SQIsignHD

Definition 3.4.12. A random uniform good degree isogeny oracle (RUGDIO) is an oracle taking
as input integers f,B ∈ N∗ and a supersingular elliptic curve E defined over Fp2 and returning an
efficient representation of a random isogeny φ : E −→ E′ of (f,B)-good degree such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.

(ii) The conditional distribution of φ given E′ is uniform among isogenies E −→ E′ of (f,B)-good
degree.

In addition to the constraint on the degree of the RUGDIO output, we add constraints on the
distributions of isogenies. These constraints are necessary to construct a simulator of F-SQIsignHD.
Using the Deuring correspondence, we heuristically justified in Section 3.3.4 that these constraints can
be mathematically satisfied, namely that for all supersingular elliptic curves E and E′, there exists
φ : E −→ E′ of (f,B)-good norm. Taking 2f slightly bigger than

√
p is heuristically sufficient. Note

that to prove the zero-knowledge property, we not only need access to a RUGDIO, but also to make a
heuristic assumption on the distribution of the commitment Ecom. This assumption is not necessary
in R-SQIsignHD.

Theorem 3.4.13. Assume that the commitments Ecom resulting from a honest execution of F-
SQIsignHD are computationally indistinguishable from elliptic curves chosen uniformly at random
in the supersingular isogeny graph. Then, the F-SQIsignHD identification protocol is computationally
honest verifier zero-knowledge in the RUGDIO model.

In other words, under this assumption, there exists a random polynomial time simulator S with
access to a RUGDIO that simulates transcripts (ES

com, chlS , rspS) with a computationally indistinguish-
able distribution from the transcripts of the F-SQIsignHD identification protocol.

Proof. First, we explain how to construct the simulator S. Given a public key Epk, the simulator
starts by generating a challenge by sampling chlS ∈

q
0 ; 2λ − 1

y
uniformly at random exactly as

in F-SQIsignHD and computes the associated isogeny φS
chl : Epk −→ ES

chl. Then, it applies the
RUGDIO on entry (f,B) and ES

chl to get an efficient representation of a dual response isogeny φ̂S
rsp :

ES
chl −→ ES

com. From this efficient representation, we obtain qS := deg(φ̂S
rsp) = deg(φS

rsp) and the image

(φS
rsp(P

S
com), φ

S
rsp(Q

S
com)) of a deterministic basis (PS

com, Q
S
com) of E

S
com[2

e] (e.g. using Algorithm 2.9 since

qS is odd or Lemma 3.4.5 to obtain an efficient representation of φS
rsp from an efficient representation

of φ̂S
rsp). Hence, we can compute rspS := ([2e−r]φS

rsp(P
S
com), [2

e−r]φS
rsp(Q

S
com), qS) in polynomial time in

log(p).
We now prove that the transcripts (ES

com, chlS , rspS) of S are computationally indistinguishable
from the transcripts (Ecom, chl, rsp) of the F-SQIsignHD identification protocol. By construction, chl
and chlS have exactly the same distribution. By the definition of the RUGDIO, ES

com is uniformly
random in the supersingular isogeny graph conditionally to ES

chl, so E
S
com is uniformly random in the

supersingular isogeny graph. Besides, Ecom is computationally indistinguishable from a uniformly
random supersingular elliptic curve by assumption.

Finally, conditionally to ES
com and ES

chl, φ̂
S
rsp (represented by rspS) is uniformly random among

the isogenies ES
chl −→ ES

com of (f,B)-good degree by the definition of the RUGDIO. The dual map

ϕ 7−→ ϕ̂ being a bijection preserving the degree, conditionally to ES
com and ES

chl, φ
S
rsp is also uniformly

random among the isogenies ES
com −→ ES

chl of (f,B)-good degree. By construction (see Sections 3.2.4
and 3.3.4), conditionally to Ecom and Echl, φrsp has the same distribution. Hence, since the basis of
Ecom[2

e] and ES
com[2

e] we consider are both deterministic, rsp and rspS have the same distributions
conditionally to their respective commitment and challenge curves. This completes the proof.

We finally justify that Ecom is computationally indistinguishable from a uniformly random super-
singular elliptic curve is a reasonable assumption. We have seen in Section 3.3.2 that the challenge
generation method outputs isogenies starting from E0 of degrees close to p and that up to Θ(p2)
distinct isogenies can be generated in that way. The number of supersingular j-invariants is ∼ p/12
and they are all linked to E0 by an isogeny of degree O(

√
p) by Lemma 2.3.2. It follows that the

commitment generation method has largely enough entropy to cover the whole supersingular isogeny
graph, which weighs in favour of our heuristic assumption.

3.4. SECURITY ANALYSIS 135

In R-SQIsignHD

In R-SQIsignHD, the oracle we use to simulate transcripts is much more natural than the RUGDIO
used for F-SQIsignHD as it simply outputs uniformly random isogenies of bounded degree without
any other condition on the degree or the codomain distribution.

Definition 3.4.14. A random any degree isogeny oracle (RADIO) is an oracle taking as input an
integer N ∈ N∗ and a supersingular elliptic curve E defined over Fp2 and returning an efficient
representation of an isogeny φ : E −→ E′, which is uniformly random among the isogenies of degree
q < N with domain E.

Since R-SQIsignHD commitment isogenies have a fixed degree Ncom = Θ(p2) and are generated
uniformly at random by construction (see Algorithm 3.9), Proposition 3.3.1 ensures that the distri-
bution of their codomain Ecom has statistical distance O(p−1/2) to the uniform distribution. Since
p = Θ(22λ), this ensures that an attacker with computing power bounded by 2λ cannot distinguish
Ecom from a uniformly random supersingular elliptic curve. Recall that in the proof of Theorem 3.4.13,
we used the fact that codomain outputs of the RUGDIO have a uniform distribution to prove that
simulated and real commitments have close distributions. With a choice of bound 2f = Θ(p2), we can
prove that this is also the case for the RADIO (up to a negligible statistical distance). This is the
following result which is of independent interest and that will be proved later.

Theorem 3.4.15. Let ε ∈]0, 2]. Let E/Fp2 be a supersingular elliptic curve and π be the proba-

bility distribution of codomains E′ (up to Fp-isomorphism) of isogenies φ : E −→ E′ chosen uni-
formly at random among isogenies of degree deg(φ) ≤ p1+ε. Let U be the uniform distribution in
the supersingular isogeny graph over Fp2 . Then, the statistical distance between U and π satisfies

dTV (U, π) = O(p−ε/2).

Then the desired result easily follows.

Theorem 3.4.16. Assume that 2f = Θ(p2) (e.g. f = 2(e− 4) as explained in Section 3.3.4). Then,
the F-SQIsignHD identification protocol is statistically honest verifier zero-knowledge in the RADIO
model.

In other words, under this assumption, there exists a random polynomial time simulator S with
access to a RADIO that simulates transcripts (ES

com, chlS , rspS) with a statistically indistinguishable
distribution from the transcripts of the R-SQIsignHD identification protocol (at statistical distance
O(p−1/2) = O(2−λ)).

Proof. The construction of S is exactly the same as in the proof of Theorem 3.4.13 but using the
RADIO instead of the RUGDIO. Keeping the same notations, in the R-SQIsignHD context we still
have to justify that an efficient representation of the dual simulated response φ̂S

rsp : ES
chl −→ ES

com

outputted from the RADIO yields a response

rspS = (φS(1)
rsp , φ̂S(2)

rsp , φ′S
rsp(P

′S
com), φ

′S
rsp(Q

′S
com), qS , a) (3.13)

in polynomial time in log(p). First, qS = deg(φ̂S
rsp) can easily be obtained from the efficient represen-

tation of φ̂S
rsp. We can the factor qS = 2vq′ with q′ odd and consider the factorisation

φ̂S
rsp = [2a]φ̂S(1)

rsp ◦ φ̂′S
rsp ◦ φ̂S(2)

rsp ,

with 2a ≤ v, φ̂
S(1)
rsp cyclic of degree 2b1 where b1 := min(v − 2a, e), φ̂

S(2)
rsp cyclic of degree 2b2 where

b2 := v − 2a− b1 and φ̂
S(1)
rsp of degree q′. With the efficient representation, we can evaluate φ̂S

rsp on a

basis (P,Q) of ES
chl[2

e] and compute the maximal 2e
′
of the orders of φ̂S

rsp(P) and φ̂S
rsp(Q) to obtain

a = e− e′. Then, we compute:

ker(φ̂S(2)
rsp) = ker(φ̂S(1)

rsp ◦ φ̂′S
rsp ◦ φ̂S(2)

rsp) ∩ ES
chl[2

b2]

by computing a discrete logarithm problem involving [2e−a−b2]φ̂S
rsp(P) and [2e−a−b2]φ̂S

rsp(Q). Once

φ̂
S(2)
rsp has been computed, we obtain an efficient representation of φS

rsp from an efficient representation

of φ̂S
rsp in polynomial time in log(p) by Lemma 3.4.5. We can then compute:

ker(φS(1)
rsp) = ker(φS(2)

rsp ◦ φ′S
rsp ◦ φS(1)

rsp) ∩ ES
chl[2

b1],

136 CHAPTER 3. SQISIGNHD

as we computed ker(φ̂
S(2)
rsp). We finally obtain an efficient representation of φ′S

rsp by embedding it into

an 8-dimensional isogeny F embedding φ′S
rsp : E

′S
com −→ E′S

chl of odd smooth and squarefree polarised

degree N , as in the proof of Theorem 2.2.10. In order to compute F , we need to evaluate φ′S
rsp on

points of E′S
com[ℓ] for all prime ℓ|N . From the knowledge of efficient representations of φS

rsp, φ
S(1)
rsp

and φ̂
S(2)
rsp , we can evaluate φ′S

rsp on such points using the tricks from Section 2.3.3 since N is odd.

Finally, with an efficient representation of φ′S
rsp, we can evaluate this isogeny on a basis (P ′S

com, Q
′S
com)

of E′S
com[2

e]. We finally obtain a simulated response in the shape of Eq. (3.13) in polynomial time in
log(p).

We finally justify that real R-SQIsignHD transcripts (Ecom, chl, rsp) have the same distribution as
simulated transcripts (ES

com, chlS , rspS). By construction, chl and chlS have exactly the same distribu-
tion so Echl and E

S
chl have the same distribution. By construction of the RADIO and Algorithm 3.12,

conditionally to their domains and codomains, both φrsp and φS
rsp have uniform distribution among

isogenies of degree ≤ 2f . Hence, rsp and rspS share the same conditional distributions conditionally to
the commitment and challenge. Besides, since 2f = Θ(p2), by Theorem 3.4.15, ES

com is at statistical
distance O(p−1/2) from the uniform distribution. Since Ncom = Θ(p2), by Proposition 3.3.1, Ecom

is also at statistical distance O(p−1/2) to the uniform distribution. It follows that transcripts from
R-SQIsignHD and S are at statistical distance O(p−1/2). This completes the proof.

On the codomain distribution of random isogenies with bounded degree (Theorem 3.4.15)

The goal of this section is to prove a bound on the statistical distance between codomains of random
isogenies with bounded degrees and the uniform distribution on the supersingular isogeny graph.
Similar results have been proved on fixed degree smooth isogeny walks [GPS20, Theorem 1] and
non-bactracking ℓ-isogeny walks [BCC+23, Theorem 11]. We generalize these results to the case of
non-fixed degree. Heuristically, we should expect lower degree bounds than in the fixed degree case to
be as close to the uniform distribution, but this is not the case. In particular, as for non-bactracking
ℓ-isogeny walks, we need to allow isogenies of degree p1+ε to reach a statistical distance of O(p−ε/2)
to the uniform distribution. However, we provide an elementary proof that does not require to
study adjacency matrices of the supersingular isogeny graph and modular forms (unlike [BCC+23]).
The main ingredients are the Deuring correspondence and a count of small quaternion ideal vectors
(Corollary 3.4.19). We start by proving a classical bound on the last minimum of quaternion ideals
claimed in [KLPT14, § 3.1] but never proved so far.

Lemma 3.4.17. Let O ⊂ Bp,∞ be a quaternion order and I be a left ideal of O. Let (α1, · · · , α4)
be a Minkowski reduced basis of I for the quadratic form qI : α ∈ I 7−→ nrd(α)/ nrd(I), so that
qI(αi) ≤ qI(αi+1) for all i ∈ {1, 2, 3}. Then

qI(α4) ≤
8p

π2
.

Proof. As we saw in the proof of Lemma 2.3.2, we have by Minkowski’s second theorem (Eq. (2.8)):

4∏
i=1

qI(αi) ≤
64p2

π4
.

This inequality is not sufficient to conclude (we only get qI(α4) = O(p2) instead of O(p)). To complete
the proof, we follow [BST+17, Theorem 3.1].

Let (β1, · · · , β4) be a Minkowski reduced basis of O. As the αi, the βi satisfy

4∏
i=1

nrd(βi) ≤
64p2

π4
.

Let A := (ai,j)1≤i,j≤4 ∈ M4(Z), where for all 1 ≤ i, j ≤ 4, ai,j is the coefficient of α4 in the
decomposition of βiαj in the basis (α1, · · · , α4) (this is an integer since OI ⊆ I). Then A is invertible.

Indeed, if x ∈ Z4 satisfies Ax = 0 i.e.
∑4
j=1 ai,jxj = 0 for all i ∈ J1 ; 4K, then α :=

∑4
j=1 xjαj satisfies

Oα ⊆ ⟨α1, α2, α3⟩. But Oα has rank 4 whenever α ̸= 0, so α = 0 and x = 0.

3.4. SECURITY ANALYSIS 137

A being invertible, there exists a permutation σ ∈ S4 such that ai,σ(i) ̸= 0 for all i ∈ J1 ; 4K. It
follows that for all i ∈ J1 ; 4K, βiασ(i) completes ⟨α1, α2, α3⟩ as a full-rank sublattice of I, so that
nrd(α4) ≤ nrd(βiασ(i)) i.e. qI(α4) ≤ nrd(βi)qI(ασ(i)), since (α1, · · · , α4) is Minkowski reduced. It
follows that

qI(α4)
4 ≤

4∏
i=1

(nrd(βi)qI(ασ(i))) =

4∏
i=1

nrd(βi)

4∏
i=1

qI(αi) ≤
(
64p2

π4

)2

.

This completes the proof.

Now, we introduce a generalization of [Wes22, Lemma 3.2] in every dimension, counting the
elements of bounded norm in a lattice.

Lemma 3.4.18. Let Λ ⊆ Rd be a full-rank lattice of last minimum λd and ρ >
√
d/2λd. Then

πd/2
(
ρ−

√
dλd

2

)d
Γ
(
d
2 + 1

)
Covol(Λ)

≤ #Λ ∩B(0, ρ) ≤
πd/2

(
ρ+

√
dλd

2

)d
Γ
(
d
2 + 1

)
Covol(Λ)

,

where B(0, ρ) is the ball of center 0 and radius ρ for the Euclidean norm and Γ is Euler’s gamma
function.

Proof. Let V := {v ∈ Rd | ∥v∥ = minλ∈Λ ∥v + λ∥} be the Voronoi cell at the origin of Λ and
µ := supv∈V ∥v∥ be the covering radius of Λ. Then, we have

B(0, ρ− µ) ⊆
⊔

λ∈Λ∩B(0,ρ)

(λ+ V) ⊆ B(0, ρ+ µ),

so that
Vol(B(0, ρ− µ)) ≤ (#Λ ∩B(0, ρ)) ·Vol(V) ≤ Vol(B(0, ρ+ µ)).

Since Vol(V) = Covol(Λ), Vol(B(0, ρ ± µ)) = πd/2(ρ ± µ)d/Γ(d/2 + 1) and µ ≤
√
dλd/2 by [MG02,

Theorem 7.9], the result follows.

Corollary 3.4.19. Let O ⊂ Bp,∞ be a maximal order and I be an integral left O-ideal. Then, for all
ε > 0 the number of ideals of norm ≤ p1+ε that are right-equivalent to I is

Np1+ε([I]) := #{J ∼ I | nrd(J) ≤ p1+ε} = 2π2

#OR(I)×
p1+2ε(1 +O(p−ε/2)).

Proof. By Lemma 1.2.19.(i), an ideal J is right-equivalent to I if and only if it is of the form J :=
Iα/nrd(I) for some α ∈ I. Furthermore, α is uniquely determined by J up to multiplication on the
right by an element of OR(I)× and we have nrd(J) = nrd(α)/ nrd(I) = qI(α). It follows that

Np1+ε([I]) := #{J ∼ I | nrd(J) ≤ p1+ε} = 1

#OR(I)×
#{α ∈ I | qI(α) ≤ p1+ε}.

Let ι : Bp,∞ ↪−→ R4 be the canonical embedding defined by Eq. (1.2), such that ∥ι(α)∥2 = nrd(α) for
all α ∈ Bp,∞, where ∥.∥ is the Euclidean norm on R4. Consider the lattice Λ := ι(I). We then have

Np1+ε([I]) =
1

#OR(I)×
#Λ ∩B

(
0, p(1+ε)/2

√
nrd(I)

)
By Lemmas 3.4.17 and 3.4.18, we get

#Λ ∩B
(
0, p(1+ε)/2

√
nrd(I)

)
≤
π2

(
p(1+ε)/2

√
nrd(I) +

2
√

2p nrd(I)

π

)4

2Covol(Λ)
,

with Covol(Λ) = p/4 nrd(I)2 by Eq. (2.9). It follows, that the right term of the inequality is
2π2p1+2ε(1 +O(p−ε/2)). Applying the lower bound of Lemma 3.4.18, we also get that

#Λ ∩B
(
0, p(1+ε)/2

√
nrd(I)

)
≥ 2π2p1+2ε(1 +O(p−ε/2)).

The result follows.

138 CHAPTER 3. SQISIGNHD

We denote by SS(p) the set of supersingular elliptic curves over Fp2 (up to Fp-isomorphism) and
S the probability distribution on SS(p) given by S(E) := 1/(K#Aut(E)) for all E ∈ SS(p), with
K :=

∑
E∈SS(p) 1/#Aut(E) = (p− 1)/24 by Eichler mass formula [Voi21, Theorem 25.1.1]. Let U be

the uniform distribution on SS(p). Recall that by Eq. (3.4), the statistical distance between S and U
is dTV (S,U) = O(p−1). We can now finally prove our main result.

Theorem 3.4.15. Let ε ∈]0, 2]. Let E/Fp2 be a supersingular elliptic curve and π be the proba-

bility distribution of codomains E′ (up to Fp-isomorphism) of isogenies φ : E −→ E′ chosen uni-
formly at random among isogenies of degree deg(φ) ≤ p1+ε. Let U be the uniform distribution in
the supersingular isogeny graph over Fp2 . Then, the statistical distance between U and π satisfies

dTV (U, π) = O(p−ε/2).

Proof. By the Deuring correspondence, it suffices to prove that given a maximal order O ⊂ Bp,∞ and
Cl(O) the set of right-equivalence classes of left-ideals of O, the distribution π′ of the ideal classes
[I] ∈ Cl(O) when I is sampled uniformly at random among ideals of norm ≤ p1+ε (which is the
quaternion analogue of π) is at statistical distance O(p−ε/2) from the uniform distribution U ′ on
Cl(O). We also denote by S′ the quaternion analogue of S, namely the distribution on Cl(O) given by
S([I]) := 1/(K#OR(I)

×) for all [I] ∈ Cl(O), where K :=
∑

[I]∈Cl(O) 1/#OR(I)
× = (p− 1)/24 is the

Eichler mass. By Eq. (3.4), dTV (U
′, S′) = O(p−1), so it suffices to prove that dTV (S

′, π′) = O(p−ε/2).
By Corollary 3.4.19, the number of left O-ideals of norm ≤ p1+ε is

Np1+ε =
∑

[I]∈Cl(O)

Np1+ε([I]) = 2π2Kp1+2ε(1 +O(p−ε/2)),

so the distribution π′ is given by

∀[I] ∈ Cl(O), π′([I]) =
Np1+ε([I])

Np1+ε

=
1

K
(1 +O(p−ε/2)).

It follows immediately that

dTV (S
′, π′) =

1

2

∑
[I]∈Cl(O)

|S′([I])− π′([I])| = #Cl(O)
K

O(p−ε/2) = O(p−ε/2).

The result follows.

3.4.3 On isogeny generation oracles

On hardness of the supersingular endomorphism problem with access to an auxiliary
oracle

The F-SQIsignHD identification protocol is secure assuming the hardness of the supersingular endo-
morphism problem (Problems 2.1.2 and 3.4.3), and zero-knowledge with respect to a simulator that
has access to a RUGDIO, as defined in Definition 3.4.12 (or a RADIO for R-SQIsignHD, as defined
in Definition 3.4.14). For the resulting signature scheme to be secure, one therefore needs to assume
that the supersingular endomorphism problem remains hard even when given access to a RUGDIO.

While it currently seems out of reach to prove that the supersingular endomorphism problem is
equivalent to the variant with RUGDIO access, let us argue that the RUGDIO indeed does not help.
We focus the following discussion on the RUGDIO, but the same arguments apply to the RADIO
despite the slightly different distribution.

The RUGDIO allows to generate random isogenies with a chosen domain E. Note that this task is
already known to be easy, with isogenies of smooth degree. The RUGDIO only lifts this smoothness
restriction and replaces it with other restrictions ((f,B)-good): it allows to generate random isogenies
whose degrees have large prime factors. It does not allow to reach more target curves, nor does it
give more control on which specific target to hit: if f is big enough, the target curve is uniformly
distributed in the supersingular graph (Theorem 3.4.15), which was already possible with smooth
degree isogenies.

3.4. SECURITY ANALYSIS 139

Smoothness of random isogenies has never been an inconvenience in finding endomorphisms. In
fact, the current fastest algorithms for this problem only require very smooth degree isogenies, typi-
cally a power of 2. The reason is the following: the purpose of constructing a random isogeny from
a fixed source is to reach a random target. As very smooth isogenies (even 2-smooth) are suffi-
cient for optimal randomisation, there is no incentive to involve much larger prime factors. More
specifically, the best known strategies to solve the supersingular endomorphism ring problem [DG16;

EHLMP20; FIKMN25] have classical time complexity Õ(
√
p) (and quantum time complexity Õ(p1/4)

with a Grover argument [Gro96; BJS14]) and essentially perform a meet-in-the-middle search in the
supersingular isogeny graph. Access to a RUGDIO would allow to use isogenies of a different shape in
the search, but would not speed it up, as the probability to find isogenies with matching codomains
stays the same. Another illustration that having access to non-smooth degree isogenies does not help
is the fact that the discovery of the

√
élu algorithm [BDFLS20] (which dramatically improved the com-

plexity of computing prime degree isogenies) did not affect the state-of-the-art of the supersingular
endomorphism problem.

The above arguments support that random isogenies of non-smooth degrees are not more helpful
than random isogenies of smooth degrees. Now, one may be concerned that the encoding of the
output of the RUGDIO may leak more information than it should. Non-smooth degree isogenies
are represented as a component of a higher dimensional isogeny. This representation is universal, in
the sense that any efficient representation of an isogeny can be efficiently rewritten in this form. In
particular, this encoding contains no more information than any other efficient representation of the
same isogeny.

Another security framework for the higher dimensional variants of SQIsign

In both variants of SQisignHD, the security proof is done in a non-standard model where the simulator
has access to an auxiliary oracle, namely a RUGDIO or a RADIO. This is also the case for SQIsign2D-
West (see Section 4.2.2) and other higher dimensional variants [NOC+25; DF25]. Unfortunately, such
isogeny oracles cannot be constructed in practice and constructing such oracles is even believed to be
a hard problem that can be used for cryptographic applications like PRISM [BBC+25]. The need for
non-standard security models with oracles indicate that the usual Fiat-Shamir transform is not the
appropriate framework to prove the security of SQIsign higher dimensional variants.

In [ABDPW25], the Fiat-Shamir with hints framework has been introduced to bypass completely
the use of such oracles and prove the universal unforgeability under chosen message attacks (EUF-
CMA) of SQIsign2D-West purely in the random oracle model under the hardness of the supersingular
endomorphism ring with hints. The argument is easily adaptable to other SQIsign higher dimensional
variants, including SQIsignHD. In this new framework, the oracle is replaced by hints given to the zero-
knowledge simulator following the same distribution as the former oracle, hence the same distribution
as response isogenies generated with honest protocol executions. The authors of [ABDPW25] reduce
the EUF-CMA security of SQIsign2D-West to:

• The difficulty of the supersingular one endomorphism problem with hints when the hint distri-
bution can be pushed through 2n-isogenies from one supersingular elliptic curve to another.

• A hint distribution indistinguishability assumption between hints used by the simulator and
pushable hints through 2n-isogenies.

[ABDPW25] also reduce the supersingular endomorphism problem with hints to the supersingular
one endomorphism problem with hints whose hardness has been discussed in the previous paragraph
(where hints replace the oracle).

The Fiat-Shamir with hints framework to prove EUF-CMA security of SQIsign variants is a strong
contribution enhancing the confidence in their security. We chose not to present the security proof of
SQIsignHD and SQIsign2D-West in this framework as this contribution was not ours and simultaneous
to the writing of this PhD thesis.

140 CHAPTER 3. SQISIGNHD

3.5 Instantiation of the SQIsignHD signature scheme

In this section, we finally discuss the performance of the F-SQIsignHD digital signature scheme (re-
ferred to as SQIsignHD by abuse) obtained via the Fiat-Shamir transform. The performance of
R-SQIsignHD is not discussed as it is not implemented.

3.5.1 Parameter choices and compression techniques

As explained previously, we choose p = Θ(22λ) in order to offer λ bits of classical and λ/2 bits of
quantum soundness security which relies on the hardness of the endomorphism ring problem (Prob-

lems 2.1.2 and 3.4.3) with best known classical attacks in Õ(
√
p) and best quantum attacks in Õ(p1/4).

The prime parameter p for different security levels can be found in Table 3.1. In order to simplify the
implementation, p was chosen to fit in respectively 4, 6 and 8 words of 64-bits for NIST levels I, III
and V. Note that this choice of primes is exactly the same in SQIsign2D-West that will be presented
in Chapter 4 but far different from the one proposed in the original version of SQIsignHD [DLRW24,
§ 3.1] (where p = 13 · 2126 · 378 − 1 for NIST-I level).

As explained in Sections 3.1.3 and 3.3.4, a signature in SQIsignHD is of the form (Ecom, rsp) with
rsp = ([2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom), q) and (Pcom, Qcom) a basis of Ecom[2
e]. This data can be

represented and compressed as follows. The curve Ecom can be represented as a scalar in Fp2 i.e. as
two elements of Fp which is in bijection with J0 ; p− 1K. For instance, working with a Montgomery
equation y2 = x3+Acomx

2+x, Ecom is determined by its Montgomery coefficient Acom ∈ Fp2 . Since p
has 2λ bits, Ecom can be represented with 4λ bits. We also know that q < 2f with 2f = Ω(

√
p log(p))

for reasons explained in Section 3.3.4, so we may choose f = λ + ⌈log2(2λ)⌉. Hence q may be
represented with λ+ ⌈log2(2λ)⌉ bits.

Finally, ([2e−r]φrsp(Pcom), [2
e−r]φrsp(Qcom)) can be represented by 3 integers of r bits. Indeed, we

can always generate a deterministic basis (Pchl, Qchl) of Echl[2
e] and express

[2e−r]φrsp(Pcom) = [a2e−r]Pchl + [b2e−r]Qchl, and [2e−r]φrsp(Qcom) = [c2e−r]Pchl + [d2e−r]Qchl,

with a, b, c, d ∈ J0 ; 2r − 1K. Each one of the integers a, b, c, d can be written with λ bits. Actually,
only three of them are necessary. Indeed, we have on the one hand:

e2r ([2
e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom)) = e2r ([2
e−r]Pcom, [2

e−r]Qcom)
q,

and on the other hand:

e2r ([2
e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom)) = e2r ([2
e−r]Pchl, [2

e−r]Qchl)
ad−bc.

Since both ([2e−r]Pchl, [2
e−r]Qchl) and ([2e−r]Pcom, [2

e−r]Qcom) generate the 2
r-torsion of their respec-

tive curves, their Weil pairings are primitive 2r-th roots of unity and there exists k ∈ J0 ; 2r − 1K odd
such that e2r ([2

e−r]Pcom, [2
e−r]Qcom) = e2r ([2

e−r]Pchl, [2
e−r]Qchl)

k, so that

ad− bc ≡ kq mod 2r.

If a is odd, then a, b and c determine d. Otherwise, b must be odd (since φrsp has odd de-
gree, it preserves the order of 2r-torsion points), and a, b and d determine c. As a consequence,
([2e−r]φrsp(Pcom), [2

e−r]φrsp(Qcom)) can be represented with 3r bits and the whole signature can be
represented with 4λ+ f + 3r bits. Since f = λ+ ⌈log2(2λ)⌉ and r = ⌈f/2⌉+ 2, the signature size is
13/2λ+5/2 log2(2λ)+O(1) bits. Note that the Weil pairing and discrete logarithm computation must
take place during the verification, which is already quite costly. In order to save some verification
time, it would be possible to use signatures of 4λ+ f + 4r = 7λ+ 3 log2(2λ) +O(1) bits instead.

As the commitment, the public key Epk is simply represented by its Montgomery coefficient Apk ∈
Fp2 which can be stored in 4λ bits. The signature and public key sizes can be found in Table 3.1 along
with prime choices. We refer to Table 3.2 for a comparison with SQIsign original signature sizes. We
find that F-SQIsignHD signatures are 40% more compact than SQIsign ones.

3.5. INSTANTIATION OF THE SQISIGNHD SIGNATURE SCHEME 141

Security level NIST-I NIST-III NIST-V
λ 128 192 256

p = c · 2e − 1 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1

Signature size (bytes*) 108 160 212
Public key size (bytes*) 64 96 128

Table 3.1: Prime parameter, signature and public key sizes for different security levels in F-SQIsignHD.
*One byte contains 8 bits.

Security level NIST-I NIST-III NIST-V

SQIsign (bytes) 177 263 335
F-SQIsignHD (bytes) 108 160 212

Table 3.2: Comparison of signature sizes in SQIsign and F-SQisignHD.

3.5.2 Performance

F-SQIsignHD key generation and signature have been implemented in C mostly by Antonin Leroux
as part of the SQIsign2D-West code. The code repository may be found at https://github.com/

SQISign/sqisign2d-west-ac24. Timings are displayed in Table 3.3. At NIST-I security level, signing
takes around 9 ms and key generation takes around 15 ms on an Intel Core i5-1335U 4600MHz CPU.
This compares favourably to the former implementation of SQIsignHD that did not rely on SQIsign2D-
West new algorithms (especially Algorithm 2.3) where signing took 28 ms and key generation 70 ms
at security level NIST-I on the same CPU2.

Most importantly, in both implementations of SQIsignHD, signing is considerably faster than
in SQIsign. Comparing with NIST first implementation of SQIsign [CSSD+23], F-SQIsignHD last
implementation signing is respectively 63.5 and 728.5 times faster at NIST-I and NIST-V security levels
(see Table 3.3). The gap between SQIsign and SQIsignHD grows with higher security parameters,
highlighting the scalability issue of SQIsign that SQIsignHD solves completely. As we shall see,
SQIsignHD signing time is also faster than SQIsign2D-West signing time by a factor 6.7 at NIST-I
level (see Section 4.3.2).

Security level NIST-I NIST-III NIST-V

SQIsign NIST v 1.0

Key generation
ms 355.72 5 625.72 22 445.3

106 cycles 889.29 14 064.29 56 113.25

Signing
ms 554.78 10 553.18 41 322.21

106 cycles 1 386.95 26 382.94 103 305.53

Verification
ms 7.77 195.86 571.77

106 cycles 19.43 489.65 1 429.42

F-SQIsignHD
Key generation

ms 14.85 48.5 112.31
106 cycles 37.12 121.29 280.92

Signing
ms 8.74 25.68 56.72

106 cycles 21.83 64.24 141.86

Table 3.3: Comparison of timings of F-SQIsignHD and SQIsign original NIST submission on an Intel
Core i5-1335U 4600MHz CPU. F-SQIsignHD verification has not been implemented in C so verification
times were not displayed in this table.

However, this spectacular signing and key generation performance is realised at the expense of
the verification which requires a 4-dimensional isogeny computation. For now, the verification is

2This implementation can be found at https://github.com/Pierrick-Dartois/SQISignHD-lib.

https://github.com/SQISign/sqisign2d-west-ac24
https://github.com/SQISign/sqisign2d-west-ac24
https://github.com/Pierrick-Dartois/SQISignHD-lib

142 CHAPTER 3. SQISIGNHD

implemented in SageMath and imported as a submodule of the old SQIsignHD implementation https:

//github.com/Pierrick-Dartois/SQISignHD-lib. For NIST-I security level, the old SQIsignHD
verification takes around 600 ms on an Intel Core i5-1335U 4600MHz CPU. Currently, the time spent
on verification is as follows: around 60 ms for the challenge computation3, 510 ms for the 4-dimensional
isogeny and 30 ms for the image of a point through F . A C implementation of 4-dimensional isogenies
is ongoing and is expected to considerably accelerate this verification phase. Besides, SQIsign2D-
West has been proposed to accelerate the verification with a 2-dimensional instead of a 4-dimensional
isogeny computation while keeping competitive signing time.

3Which consisted in computing a chain of 3-isogenies in dimension 1 in the old SQIsignHD version, which is more
costly than a chain of 2-isogenies of similar degree, which is used in F-SQIsignHD.

https://github.com/Pierrick-Dartois/SQISignHD-lib
https://github.com/Pierrick-Dartois/SQISignHD-lib

Chapter 4

SQIsign2D-West: faster verification
with 2-dimensional isogenies

In this chapter, we reach one of the main goals of this PhD. We introduce SQIsign2D-West [BDF+25],
a variant of SQIsign using only 2-dimensional isogenies to translate quaternion ideals into isogenies
between supersingular elliptic curves. Using Algorithm 2.7 (introduced for SQIsign2D-West in the
first place), we are able to completely bypass the use of 4-dimensional isogenies in the verification
phase that was necessary in F-SQIsignHD. With this optimisation, we obtain a verification that is
even faster than the original version of SQIsign while achieving security properties almost as rigorous
as the purely theoretical R-SQIsignHD. The signing time is slower than in SQIsignHD but remains
very competitive compared to SQIsign.

Note that SQIsign2D-West is not the only 2-dimensional variant of SQIsign. SQIsign2D-East
[NOC+25] and SQIPrime [DF25] have been introduced at the same time as SQIsign2D-West. Though
probably more efficient than SQIsign2D-West1, their security proof relies on heuristic or ad-hoc as-
sumptions. There is also a heuristic version of SQIsign2D-West which is comparable (and close to
SQIsign2D-East in particular).

For these reasons, SQIsign2D-West is the optimal compromise that has been proposed as a reference
to replace the original version of SQIsign at round 2 of the NIST competition [AAA+25]. The
presentation in this chapter follows the original SQIsign2D-West paper [BDF+25] and also relies on
some already introduced algorithmic ideas from NIST round 2 specification [AAA+25] (especially
Algorithm 2.7 improving Algorithm 2.5).

4.1 The SQIsign2D-West identification protocol

As SQIsignHD, SQIsign2D-West is a variant of SQIsign using different methods for effective Deuring
correspondence. In this section, we describe the identification protocol underlying the SQIsign2D-
West digital signature scheme obtained via the Fiat-Shamir transform. We mostly present the main
version of SQIsign2D-West as described in [BDF+25], which inspired the NIST round 2 SQIsign
submission [AAA+25]. There is also a faster version with a heuristic security proof introduced in
[BDF+25, Appendix B] and referred to as H-SQIsign2D-West, that we will not present in detail.

4.1.1 Setting and algorithmic building blocks

As in SQIsignHD, we are given the following public parameters:

• A prime of the form p = c2e − 1 with c ∈ N∗ odd and small, and e ≃ 2λ to grant a classical
security level of λ bits.

• The supersingular elliptic curve E0 of equation y2 = x3 + x defined over Fp2 with an explicit

isomorphism ε0 : O0
∼−→ End(E0) between a maximal order of Bp,∞ and the endomorphism

ring End(E0) (by Lemma 1.2.25).

1A low level implementation of SQIsign2D-East and SQIPrime is lacking to certify it.

143

144 CHAPTER 4. SQISIGN2D-WEST

• A basis (P0, Q0) of E0[2
e].

• A basis (β1, · · · , β4) of O0 (e.g. (1, i, (i + j)/2, (1 + ij)/2)) and the image of (P0, Q0) by this
basis (ε0(βi)(P0), ε0(βi)(Q0))1≤i≤4.

• Some precomputed data to apply Algorithm 2.7 translating left O0-ideals into isogenies (as
described in the last paragraph of Section 2.4.3).

We denote by pp these public parameters along with others that will be introduced later.

We shall use the following algorithms. Even though they were presented in Chapter 3 to construct
SQIsignHD most of them were introduced specifically for SQIsign2D-West in the first place (which
was designed afterwards).

• Algorithm 2.3 taking as input an odd integer u < 2e such that u(2e − u) = Ω(p log(p)) and
returning (Eu, φu(P0), φu(Q0), Iu), where φu : E0 −→ Eu is a u-isogeny and Iu ⊂ O0 is its
associated ideal.

• Algorithm 2.7 taking as input a left O0-ideal I (and some precomputed data) and returning the
image (EI , φI(P0), φI(Q0)) of the isogeny φI : E0 −→ EI associated to I.

• Algorithm 3.1 taking as input a supersingular elliptic curve E/Fp2 of known endomorphism ring
O ≃ End(E) and a primitive O-ideal I (in the sense of Definition 2.1.3) of smooth norm D
and returning a kernel generator P ∈ E[I]. This direct ideal to kernel translation algorithm is
efficient only when D is smooth and E[D] is defined over a small extension of Fp2 .

• Algorithm 3.3 to compute the kernel ideal of a cyclic isogeny φ : E1 −→ E2 of smooth degree
D given a kernel generator P ∈ E1[D], a basis (β1, · · · , β4) of O0, a basis (R0, S0) of E0[D]
and the images (ε0(βi)(R0), ε0(βi)(S0))1≤i≤4, and the image (ψ(R0), ψ(S0)) of an N -isogeny
ψ : E0 −→ E1 with gcd(N,D) = 1.

• Algorithm 3.4 taking as input a maximal order O ⊂ Bp,∞ and an integer N coprime with p and
returning a primitive left O-ideal of norm N sampled uniformly at random.

• Algorithm 3.6 sampling a uniform non-zero element in the intersection of a ball and a lattice of
rank 4. We use it to sample at random quaternion ideals of small norm equivalent to a given
ideal.

4.1.2 Key generation and commitment

The key generation phase in SQIsign2D-West is identical to F-SQIsignHD key generation summarised
in Algorithm 3.7. We fix a big prime number Nsk = Θ(p2) = Θ(24λ), where λ is the security level.
During the key generation, the prover samples uniformly at random a left O0-ideal Isk of norm Nsk

with Algorithm 3.4. Then they call Algorithm 2.7 to compute the image (Epk, φsk(P0), φsk(Q0)) of
the isogeny φsk : E0 −→ Epk associated to Isk. The curve pk = Epk is published as a public key and
sk := (Isk, φsk(P0), φsk(Q0)) is safely stored as a secret key.

The commitment in SQIsign2D-West is identical to SQIsign2D-West key generation and R-
SQIsignHD commitment summarised in Algorithm 3.9. We fix a big prime number Ncom = Θ(p2)
(e.g. Ncom = Nsk). The prover samples uniformly at random a left O0-ideal Icom of norm Ncom with
Algorithm 3.4 and call Algorithm 2.7 to compute the image (Ecom, φcom(P0), φcom(Q0)) of the isogeny
φcom : E0 −→ Ecom associated to Icom. The curve com = Ecom is published as the commitment and
sc := (Icom, φcom(P0), φcom(Q0)) is stored as secret data.

Remark 4.1.1. In the heuristic version H-SQIsign2D-West, the commitment phase is identical to
F-SQIsignHD commitment summarised in Algorithm 3.8. Algorithm 2.3 is used instead of 2.7, saving
more than half the computational time.

4.1. THE SQISIGN2D-WEST IDENTIFICATION PROTOCOL 145

4.1.3 Challenge

As in SQIsignHD, the challenge consists in an integer chl ∈ J0 ; 2echl − 1K, where echl is a parameter
denoting the size of the challenge space. This integer chl describes the kernel of the challenge isogeny
φchl : Epk −→ Echl:, i.e. ker(φchl) = ⟨Ppk+[chl]Qpk⟩, where (Ppk, Qpk) is a deterministic basis of Echl[2

e].
It is worth noting that, although deg(φchl) = 2e, the challenge space contains only 2echl ≪ 2e

possible challenges, i.e. we only allow 2echl possible kernels. As in R-SQIsignHD, the extra length
of φchl is needed to deal with the fact that response isogenies may backtrack with φchl. In order to
ensure λ bits of soundness security, we require echl ≃ λ but echl may be a slightly smaller in practice
to prevent backtracking with the response.

Recall that in the signature scheme obtained via the Fiat-Shamir transform, the challenge is
generated with a hash function applied to the commitment and the message m to be signed chl =
H(Ecom,m). With m fixed, finding a colliding message m′ such that H(Ecom,m

′) = H(Ecom,m)
would provide a forgery: an attacker could claim to have signed m′ by using the prover’s signature
of m. This collision attack costs Θ(2echl) which is smaller than the required cost Θ(2λ) to ensure λ
bits of security. The solution proposed in [AAA+25] to increase the cost of the attack to Θ(2λ) is to
iterate the hash function application 2λ−echl times. This solution is called grinding.

Remark 4.1.2. In H-SQIsign2D-West, the challenge space is the same but the challenge isogeny
φchl : Epk −→ Echl associated to chl ∈ J0 ; 2echl − 1K is of degree 2echl instead of 2e. Indeed, the extra
length to prevent backtracking with the response becomes unnecessary.

4.1.4 Response

Unlike F-SQIsignHD, SQIsign2D-West exploits Algorithm 2.7 to embed the response isogeny φrsp :
Ecom −→ Echl in dimension 2 instead of 4 (or 8). The general idea is to generate a random response
ideal Irsp ∼ Icom · Isk · Ichl of norm q < 2ersp using Algorithm 3.6 and an auxiliary ideal I ′′aux in O0 of
norm 2ersp − q using Algorithm 3.4. Then, we compute the pushforward I ′aux := [Icom · Irsp]∗I ′′aux and
apply Algorithm 2.7 to Icom · Irsp · I ′aux to evaluate the corresponding isogeny φ′

aux ◦ φrsp ◦ φcom on the
basis (P0, Q0) of E0[2

e]. Knowing φcom on (P0, Q0), we obtain easily φ′
aux ◦φrsp on a basis of Ecom[2

e]
and this data can be used to compute a 2-dimensional 2ersp -isogeny embedding of φrsp. However, this
natural method only applies when q = nrd(Irsp) is odd, a condition that we do not impose in order to
have more uniform response ideal distributions, as in R-SQIsignHD.

The complete SQIsign2D-West response algorithm is explained in the following. The description
is unfortunately is a bit technical, as in R-SQIsignHD, in order to account for the even part of Irsp.
The diagram to keep in mind as we explain is the following one (see Fig. 4.1), where:

• φchl : Epk −→ Echl is the isogeny described by the challenge chl;

• φ′
chl : Epk −→ E

(0)
chl is the portion of φchl that does not backtrack with the response isogeny;

• φ
(1)
rsp : Ecom −→ E′

chl is the odd part of the response isogeny;

• φ
(0)
rsp : E′

chl −→ E
(0)
chl is the even, non-backtracking part of the response isogeny;

• φaux : Ecom −→ Eaux is the auxiliary isogeny needed to embed the isogeny φ
(1)
rsp into a 2-

dimensional isogeny;

• φ′
aux : E

′
chl −→ E′

aux is the pushforward of φaux under φ
(1)
rsp .

The first step is to compute the ideal Ichl corresponding to the isogeny φchl : Epk −→ Echl with ker-
nel ⟨Ppk+[chl]Qpk⟩, where (Ppk, Qpk) is a deterministic basis of Epk[2

e]. This is done via Algorithm 3.3
using the secret key sk = (Isk, φsk(P0), φsk(Q0)).

Then the prover can compute I := Icom · Isk · Ichl, apply Algorithm 3.6 to sample α ∈ I \ {0} of
norm ≤ 2ersp nrd(I) uniformly at random and set Irsp := Iα/nrd(I). Note that to apply Algorithm 3.6,
ersp should be chosen so that 2ersp ≥ 313/6

√
p/π by Eq. (3.3), so ersp is very close to but slightly bigger

than e/2 ≃ λ.
Once Irsp has been generated, we factor out its even part as in R-SQIsignHD response. Let us write

the norm of Irsp as nrd(Irsp) = q = 2nq′ < 2ersp for an odd q′. We decompose φrsp as φrsp := ψ ◦ φ(1)
rsp

146 CHAPTER 4. SQISIGN2D-WEST

E0 Epk

Ecom E
(0)
chl

Echl

E′
chl

E′
auxEaux

φsk

φcom φ′
chl φchl

φ
(1)
rsp φ

(0)
rsp

φaux φ′
aux⟳

Figure 4.1: Response diagram.

with φ
(1)
rsp : Ecom −→ E′

chl of degree q′ and ψ : E′
chl −→ Ecom of degree 2n. It may happen that

ker(ψ̂) ∩ ker(φ̂chl) is not trivial. We say that φrsp backtracks through φchl. Let nbt be the positive

integer such that 2nbt = #ker(ψ̂)∩ker(φ̂chl). Equivalently, 2
nbt is the norm of the ideal Ibt = I rsp+Ichl.

Let r := n − nbt and define φ
(0)
rsp : E′

chl −→ E
(0)
chl to be the isogeny with kernel ker(ψ)[2r] – the

isogeny φ
(0)
rsp coincides with the non-backtrack portion of φrsp. Now, let us factor Irsp as I

(1)
rsp · I(0)rsp · Ibt,

where nrd(I
(1)
rsp) = q′ and nrd(I

(0)
rsp) = 2r. The isogenies φ

(1)
rsp and φ

(0)
rsp correspond to I

(1)
rsp and I

(0)
rsp ,

respectively. Actually, φ
(0)
rsp is a cyclic isogeny by the following lemma.

Lemma 4.1.3. I
(0)
rsp is a primitive left ideal of O′

chl := OL(I
(0)
rsp).

Proof. Let us factor Ichl = I ′chl · Ibt. Then, we have

Ibt = I rsp + Ichl = Ibt(I
(0)

rsp · I
(1)

rsp + I
′
chl).

Multiplying this equality on the left by Ibt, we get that I
(0)

rsp · I
(1)

rsp + I
′
chl = 1/2nbtIbt · Ibt = O′

chl. If I
(0)
rsp

was not a primitive ideal, then we would have I
(0)
rsp ⊆ 2O′

chl. In particular, there would exist α ∈ O′
chl

and β ∈ I ′chl such that 2α+ β = 1, so that

nrd(β) = nrd(1− 2α) = 1− 2Tr(α) + 4 nrd(α) ≡ 1 mod 2.

But 2e−nbt = nrd(I
′
chl)|nrd(β) and nbt ≤ ersp < e so 2|nrd(β). Contradiction.

To compute this ideal factorisation Irsp = I
(1)
rsp ·I(0)rsp ·Ibt, the prover may compute Jrsp := Irsp ·I−1

bt =

Irsp · Ibt/2nbt . We then have I
(0)

rsp = J rsp + 2rOR(Jrsp) by Lemma 3.3.5 and since 2 does not divide Jrsp

by Lemma 4.1.3. Finally, we have I
(1)
rsp = Jrsp · I(0)rsp

−1
= Jrsp · I

(0)

rsp /2
r which completes the factorisation.

Since φ
(1)
rsp has odd degree bounded by 2f with f := ersp−n, it can be represented via a 2f -isogeny

in dimension 2 by Kani’s Lemma. This requires computing an auxiliary isogeny φ′
aux : E

′
chl −→ E′

aux

of degree 2f − q′.
For security reasons (see Section 4.2.2), we need the isogeny φ′

aux : E
′
chl −→ E′

aux to be uniformly
sampled among all the isogenies of degree 2f − q′. Hence, the prover samples a random left ideal
I ′′aux of O0 of norm 2f − q′ using Algorithm 3.4 and then computes I ′aux as the pushforward I ′aux :=

[Icom · I(1)rsp]∗I
′′
aux. The prover can then evaluate φ′

aux ◦φ
(1)
rsp ◦φcom on (P0, Q0) by running Algorithm 2.7

on input Icom · I(1)rsp · I ′aux.
While a representation of φ′

aux ◦ φ
(1)
rsp could act as a valid response, we want the identification

protocol to be commitment recoverable, i.e. ensure it is possible to recompute the commitment curve
from a the challenge and corresponding response. This eventually leads to a more compact signature
(since the commitment does not need to be included). To achieve such a property, we want the

isogeny φ
(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux connecting Eaux and E′
chl, passing through Ecom. Thus, the prover has to

4.1. THE SQISIGN2D-WEST IDENTIFICATION PROTOCOL 147

compute the isogeny φaux : E0 −→ Eaux of degree 2f − q′ with f := ersp − n, fitting in the following
(q′, 2f − q′)-isogeny diamond:

Ecom E′
chl

E′
auxEaux

φ
(1)
rsp

φaux φ′
aux

φ

⟳

By Kani’s lemma (Lemma 2.2.6), we may consider the 2f -isogeny (with f := ersp − n):

Φ =

(
φ
(1)
rsp φ̂′

aux

−φaux φ̂

)
: Ecom × E′

aux −→ E′
chl × Eaux. (4.1)

whose kernel is:

ker(Φ) = {([q′]P,φ′
aux ◦ φ(1)

rsp (P)) | P ∈ Ecom[2
f]}.

To compute Φ, the prover computes T1, T2 ∈ (Ecom × E′
aux)[2

f+2] forming an isotropic subgroup and
such that ker(Φ) = ⟨[4]T1, [4]T2⟩. The prover may define T1, T2 as follows:

T1 := ([2e−f−2q′]φcom(P0), [2
e−f−2]φ′

aux ◦ φ(1)
rsp ◦ φcom(P0))

and T2 := ([2e−f−2(q′ − 2e−f)]φcom(Q0), [2
e−f−2]φ′

aux ◦ φ(1)
rsp ◦ φcom(Q0)),

thus exploiting the knowledge of (φcom(P0), φcom(P0)) and (φ′
aux◦φ

(1)
rsp ◦φcom(P0), φ

′
aux◦φ

(1)
rsp ◦φcom(P0))

obtained previously. By Theorem 2.2.12, Φ can be computed from T1, T2 as a chain of 2-isogenies,
with techniques that will be presented in Section 6.5.

To complete the response algorithm, we still need to compute the non-backtracking part of the

response isogeny. Let φ
(0)
rsp : E′

chl −→ E
(0)
chl be such an isogeny, which corresponds to the ideal I

(0)
rsp .

From the evaluation of:

Φ(φcom(P0), 0) = (φ(1)
rsp ◦ φcom(P0),−φaux ◦ φcom(P0))

and Φ(φcom(Q0), 0) = (φ(1)
rsp ◦ φcom(P0),−φaux ◦ φcom(P0)), (4.2)

we extract (φ
(1)
rsp ◦ φcom(P0), φ

(1)
rsp ◦ φcom(Q0)). Then, I

(0)
rsp being primitive by Lemma 4.1.3, φ

(0)
rsp can

be computed by applying Algorithm 3.3 to I
(0)
rsp and the image of ([2e−r]φ

(1)
rsp ◦ φcom(P0), [2

e−r]φ
(1)
rsp ◦

φcom(Q0)).

Let φ′
chl : Epk −→ E

(0)
chl be the isogeny with kernel ⟨[2nbt](Ppk+[chl]Qpk)⟩. In other words, φ′

chl is the

portion of φchl that does not backtrack with the response isogeny. Even though φ′
chl and φ

(0)
rsp map onto

the same elliptic curve, the curves obtained after an explicit computation of the two isogenies will only
be equal up to isomorphism. Thus, the prover additionally has to compute an explicit isomorphism
to let the two curves agree. The explicit computation of the isomorphism between the codomains of

φ′
chl and φ

(0)
rsp is required to facilitate the verification.

Let (Paux, Qaux) be a deterministic basis of Eaux[2
ersp−nbt+2], µ ≡ (2f − q′)−1 mod 2f+2, ν ≡ q′−1

mod 4 and define

Pchl := [µ]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux(Paux), Qchl := [µ(1− 2fν)]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux(Qaux). (4.3)

(Pchl, Qchl) can be computed by evaluating Φ and computing some discrete logarithms as follows.

From Eq. (4.2) and the previous computation of φ
(0)
rsp , we obtain P̃chl := φ

(0)
rsp ◦φ(1)

rsp ◦φcom(P0), Q̃chl :=

φ
(0)
rsp ◦φ(1)

rsp ◦φcom(Q0), P̃aux := φaux ◦φcom(P0) and Q̃aux := φaux ◦φcom(Q0). Now, (P̃aux, Q̃aux) is a basis
of Eaux[2

e] so we can find a, b, c, d ∈ Z/2ersp−nbt+2Z such that:

Paux = [2e−ersp+nbt−2]([a]P̃aux + [b]Q̃aux) and Qaux = [2e−ersp+nbt−2]([c]P̃aux + [d]Q̃aux),

148 CHAPTER 4. SQISIGN2D-WEST

It then follows that:

Pchl = [µ]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux(Paux) = [µ2e−ersp+nbt]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux([a]P̃aux + [b]Q̃aux)

= [µ2e−ersp+nbt]([a]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux ◦ φaux ◦ φcom(P0) + [b]φ(0)
rsp ◦ φ(1)

rsp ◦ φ̂aux ◦ φaux ◦ φcom(Q0))

= [(2f − q′)−1(2f − q′)2e−ersp+nbt]([a]φ(0)
rsp ◦ φ(1)

rsp ◦ φcom(P0) + [b]φ(0)
rsp ◦ φ(1)

rsp ◦ φcom(Q0))

= [2e−ersp+nbt−2]([a]P̃chl + [b]Q̃chl)

And similarly, Qchl = [2e−ersp+nbt−2(1−2fν)]([c]P̃chl+[d]Q̃chl). Once (Pchl, Qchl) is computed, the prover
finally outputs the response that consists in (Eaux, Pchl, Qchl, r, nbt). We shall see in Section 4.1.5 that

the verifier will be able to compute Φ̃ from this data. We summarise what has been explained in this
section in Algorithm 4.1.

Remark 4.1.4. In H-SQIsign2D-West, Irsp is selected so that q = nrd(Irsp) is odd at the expense of
some small but non-negligible failure probability to find such an ideal which complexifies the security
analysis. However, the response procedure is greatly simplified from a technical point of view, as the

factorisation of Irsp and the computation of the non-backtracking even part φ
(0)
rsp can be avoided. The

computation of the 2-dimensional isogeny Φ : Ecom ×E′
aux −→ Echl ×Eaux can also be avoided, which

saves a significant amount of time. We refer to [BDF+25, Appendix B] for more details.

4.1.5 Verification

Given the public key Epk, a challenge chl ∈ J0 ; 2echl − 1K and response rsp = (Eaux, Pchl, Qchl, r, nbt),
the verifier first generates a deterministic basis (Ppk, Qpk) of Epk[2

e] and computes the isogeny φ′
chl :

E0 −→ E
(0)
chl with kernel ⟨[2nbt](Ppk + [chl]Qpk)⟩ – this corresponds to the non-backtracking portion of

the challenge isogeny as in the previous paragraph. Additionally, they compute a deterministic basis
(Paux, Qaux) of Eaux[2

ersp−nbt+2]
If r > 0, it means that the prover has chosen a response isogeny having an even, non-

backtrack component. In this case, [2ersp−r−nbt+2]Pchl and [2ersp−r−nbt+2]Qchl are linearly depen-

dent, and ⟨[2ersp−r−nbt+2]Pchl, [2
ersp−r−nbt+2]Qchl⟩ is the kernel of the dual of the isogeny φ

(0)
rsp

(see Fig. 4.1). The verifier then computes the isogeny φ̂
(0)
rsp : E

(0)
chl −→ E′

chl with kernel

⟨[2ersp−r−nbt+2]Pchl, [2
ersp−r−nbt+2]Qchl⟩ and computes φ̂

(0)
rsp (Pchl) and φ̂

(0)
rsp (Qchl).

By Lemma 2.2.9, the polarised dual Φ̃ : E′
chl×Eaux −→ Ecom×E′

aux of the 2-dimensional 2f -isogeny
defined in Eq. (4.1) has kernel:

ker(Φ̃) = {(φ(1)
rsp (P),−φaux(P)) | P ∈ Ecom[2

f]} = {([µ]φ(1)
rsp ◦ φ̂aux(P),−P) | P ∈ Eaux[2

f]},

with µ ≡ (2f − q′)−1 mod 2f+2. Besides, we have by Eq. (4.3):

φ̂(0)
rsp (Pchl) = [2rµ]φ(1)

rsp ◦ φ̂aux(Paux) and φ̂(0)
rsp (Qchl) = [2rµ(1− 2fν)]φ(1)

rsp ◦ φ̂aux(Qaux),

with ν ≡ q′−1 mod 4. Since f := ersp − nbt − r, it follows that ker(Φ̃) is generated by ([4]T1, [4]T2),
where:

T1 = (φ̂(0)
rsp (Pchl),−[2r]Paux) and T2 = (φ̂(0)

rsp (Qchl),−[2r]Qaux),

form a maximal isotropic subgroup of (E′
chl ×Eaux)[2

f+2] by construction. Using the techniques from

Section 6.5, the prover can compute Φ̃ from T1 and T2. Then the codomain of Φ̃ is expected to be
of the form Ecom × E′

aux. If Ecom is indeed the first component of the codomain, this proves that

Φ̃ efficiently represents an isogeny connecting Ecom and E′
chl, so that the response (together with

the challenge) efficiently represents an isogeny connecting Ecom and Echl, as desired. Algorithm 4.2
summarises the whole verification procedure.

4.2 Security analysis

As SQIsignHD, SQIsign2D-West is a digital signature scheme obtained via the Fiat-Shamir transform
so we rely on Theorem 3.4.2 to prove this scheme is universally unforgeable under chosen message

4.2. SECURITY ANALYSIS 149

Algorithm 4.1: Response

Data: The public parameters pp, public key Epk, the secret key sk, the commitment
(Ecom, com), the secret commitment data sc, and the challenge chl ∈ J0 ; 2echl − 1K.

Result: A response rsp = (Eaux, Paux, Qaux, r, nbt)
1 Isk, φsk(P0), φsk(Q0)← sk;
2 Icom, φcom(P0), φcom(Q0)← sc;
3 Extract ersp, Ncom, a basis (β1, · · · , β4) of O0 and (ε0(βi)(P0), ε0(βi)(Q0))1≤i≤4 from pp;
// Computation of Ichl

4 Compute a deterministic basis (Ppk, Qpk) of Epk[2
e];

5 Kchl ← Ppk + [chl]Qpk;
6 Call Algorithm 3.3 on Kchl, (β1, · · · , β4), (ε0(βi)(R0), ε0(βi)(S0))1≤i≤4 and (φsk(P0), φsk(Q0))

to obtain Ichl;

7 I ← Icom · Isk · Ichl;
// Computation and factorisation of Irsp

8 Call Algorithm 3.6 to sample α ∈ I \ {0} of norm nrd(α) ≤ 2ersp nrd(I) uniformly at random;
9 Irsp ← Iα/nrd(I);

10 q ← nrd(Irsp), n← v2(q), q
′ ← q/2n;

11 Ibt ← I rsp + Ichl, nbt ← log2(nrd(Ibt)), r ← n− nbt;

12 Jrsp ← Irsp · Ibt/2nbt , I
(0)

rsp ← J rsp + 2rOR(Jrsp),I
(0)
rsp ← I

(0)

rsp , I
(1)
rsp ← Jrsp · I

(0)

rsp /2
r;

// Evaluation of φ′
aux ◦ φ

(1)
rsp ◦ φcom

13 Call Algorithm 3.4 to sample a left O0-ideal I
′′
aux of norm 2ersp−n − q′;

14 I ′aux ← [Icom · I(1)rsp]∗I
′′
aux;

15 Call Algorithm 2.7 on Icom · I(1)rsp · I ′aux to compute the image

(E′
aux, φ

′
aux ◦ φ

(1)
rsp ◦ φcom(P0), φ

′
aux ◦ φ

(1)
rsp ◦ φcom(Q0)) of the associated isogeny

φ′
aux ◦ φ

(1)
rsp ◦ φcom : E0 −→ E′

aux;
// Computation and evaluation of Φ : Ecom × E′

aux −→ E′
chl × Eaux

16 T1 ← ([2e−(ersp−n)−2q′]φcom(P0), [2
e−(ersp−n)−2]φ′

aux ◦ φ
(1)
rsp ◦ φcom(P0));

17 T2 ← ([2e−(ersp−n)−2(q′ − 2e−(ersp−n))]φcom(Q0), [2
e−(ersp−n)−2]φ′

aux ◦ φ
(1)
rsp ◦ φcom(Q0));

18 Apply the algorithms from Section 6.5 to (T1, T2) to compute Φ : Ecom × E′
aux −→ E′

chl × Eaux

with kernel ⟨[4]T1, [4]T2⟩;
19 (±I(S),±I ′(S))← Φ(φcom(S), 0) for S ∈ {P0, Q0, P0 −Q0};
20 Lift (P̃chl, Q̃chl) := (I(P0), I(Q0)) from ±I(P0),±I(Q0),±I(P0 −Q0);

21 Lift (P̃aux, Q̃aux) := (I ′(P0), I
′(Q0)) from ±I ′(P0),±I ′(Q0),±I ′(P0 −Q0);

// Computation and evaluation of φ
(0)
rsp : E′

chl −→ E
(0)
chl and φ′

chl : Epk −→ E′(0)
chl

22 if r > 0 then

23 Call Algorithm 3.3 on I
(0)
rsp , ([2e−r]P̃chl, [2

e−r]Q̃chl), Icom · I(1)rsp , (β1, · · · , β4) and
([2e−r]ε0(βi)(P0), [2

e−r]ε0(βi)(Q0))1≤i≤4 to compute a generator K
(0)
rsp ∈ E′

chl[2
r] of

ker(φ
(0)
rsp);

24 Compute the isogeny φ
(0)
rsp : E′

chl −→ E
(0)
chl of kernel ⟨K(0)

rsp ⟩;
25 P̃chl, Q̃chl ← φ

(0)
rsp (P̃chl), φ

(0)
rsp (Q̃chl);

26 end

27 Compute φ′
chl : Epk → E′(0)

chl of kernel ⟨[2nbt]Kchl⟩;
28 Compute the isomorphism ιchl : E

(0)
chl → E′(0)

chl ;

29 P̃chl, Q̃chl ← ιchl(P̃chl), ιchl(Q̃chl);
// Computation of (Pchl, Qchl)

30 Compute a deterministic basis (Paux, Qaux) of Eaux[2
ersp−nbt+2];

31 Compute a, b, c, d ∈ Z/2ersp−nbt+2Z such that Paux = [2e−ersp+nbt−2]([a]P̃aux + [b]Q̃aux) and

Qaux = [2e−ersp+nbt−2]([c]P̃aux + [d]Q̃aux);
32 f ← ersp − n, ν ← q′−1 mod 4;

33 Pchl, Qchl ← [2e−ersp+nbt−2]([a]P̃chl + [b]Q̃chl), [2
e−ersp+nbt−2(1− 2fν)]([c]P̃chl + [d]Q̃chl);

34 return (Eaux, Pchl, Qchl, r, nbt);

150 CHAPTER 4. SQISIGN2D-WEST

Algorithm 4.2: Verify

Data: The public parameters pp, the public key Epk, the commitment Ecom, the challenge chl
and the response rsp = (Eaux, Pchl, Qchl, r, nbt).

Result: A boolean value indicating the validity of the response rsp.
1 Extract e, ersp from pp;
2 Eaux, Pchl, Qchl, r, nbt ← rsp;
3 Compute a deterministic basis (Ppk, Qpk) of Epk[2

e];

4 Compute φ′
chl : E0 −→ E

(0)
chl with kernel ⟨[2nbt](Ppk + [chl]Qpk)⟩;

5 if Pchl ̸∈ E(0)
chl or Qchl ̸∈ E(0)

chl then
6 return False;
7 end
8 if [2ersp−nbt+1]Qchl ̸= 0 then
9 R← [2ersp−nbt−r+2]Qchl;

10 else
11 R← [2ersp−nbt−r+2]Pchl;
12 end

13 Compute φ̂
(0)
rsp : E

(0)
chl → E′

chl of kernel ⟨R⟩;
14 Compute a deterministic basis (Paux, Qaux) of Eaux[2

ersp−nbt+2];

15 T1 ← (φ̂
(0)
rsp (Pchl),−[2r]Paux), T2 ← (φ̂

(0)
rsp (Qchl),−[2r]Qaux);

16 Apply the algorithms from Section 6.5 to (T1, T2) to compute Φ̃ : E′
chl × Eaux −→ E1 × E2

with kernel ⟨[4]T1, [4]T2⟩;
17 if the computation of Φ̃ fails then
18 return False;
19 else

20 return j(E1)
?
= j(Ecom);

21 end

attacks in the random oracle model. SQIsign2D-West is also built on the NP-relation R : W ×
K −→ {0, 1}, where K is the space of supersingular elliptic curves over Fp2 and W is the space of
endomorphisms of supersingular elliptic curves over Fp2 and:

∀(α,E) ∈W ×K, R(α,E) = 1⇐⇒ α ∈ End(E) \ Z,

as defined in Eq. (3.9). We have seen that R is hard provided the supersingular one endomorphism
problem (Problem 3.4.3) is hard. The completeness follows by construction and we justify the special
soundness and honest verifier zero knowledge (HVZK) property as in Section 3.4. The proof of the
HVZK property we shall obtain relies on auxiliary isogeny generation oracles but is almost as rigorous
as in R-SQIsignHD. As explained in Section 3.4.3, the Fiat-Shamir with hints framework introduced
in [ABDPW25] gives an alternative and stronger security argument making the use of such oracles
obsolete but we do not discuss it here.

4.2.1 Special soundness

We start by proving that the verification (Algorithm 4.2) works as expected, meaning that a response
that has been validated (the algorithm returns True) always efficiently represents an isogeny φ :
Ecom −→ Echl of degree deg(φ) < 2ersp .

Lemma 4.2.1. Let (Ecom, chl, rsp) be a transcript of the SQIsign2D-West identification protocol. If the
response rsp = (Eaux, Pchl, Qchl, r, nbt) has been validated by the verifier i.e. if Algorithm 4.2 returned
True, then rsp is an efficient representation of an isogeny φ : Ecom −→ Echl of degree deg(φ) < 2ersp .

Proof. Consider the factorisation φchl = φbt ◦φ′
chl of the challenge isogeny, where φbt : E

(0)
chl −→ Echl is

a 2nbt-isogeny (the challenge part backtracking through the response). If Algorithm 4.2 has validated

the response rsp = (Eaux, Pchl, Qchl, r, nbt), then Pchl, Qchl ∈ E(0)
chl and these points yield a 2r-isogeny

4.2. SECURITY ANALYSIS 151

φ̂(0) : E
(0)
chl −→ E′

chl and a 2-dimensional 2f -isogeny Φ̃ : E′
chl × Eaux −→ Ecom × E′

aux (with f :=
ersp − nbt − r).

By the converse of Kani’s lemma (Lemma 2.2.7), Φ̃ can be written as a matrix

Φ̃ =

(
ϕ1,1 −ϕ1,2
ϕ2,1 ϕ2,2

)
,

where ϕ̂1,1 ◦ ϕ1,1 = [a], ϕ̂2,2 ◦ ϕ2,2 = [a], ϕ̂2,1 ◦ ϕ2,1 = [b], ϕ̂1,2 ◦ ϕ1,2 = [b] and a+ b = 2f . Besides, we
cannot have a = 0, otherwise we would have ϕ1,1 = 0, ϕ2,2 = 0 and:

ker(Φ̃) = ker(ϕ2,1)× ker(ϕ1,2).

Since [4]T1 = (∗, [2r+2]Paux) and [4]T2 = (∗, [2r+2]Qaux) belong to ker(Φ̃), where T1, T2 have been
defined in Line 15, with (Paux, Qaux) a basis of Eaux[2

ersp−nbt+2], it follows that ker(ϕ1,2) contains
Eaux[2

f], so b = deg(ϕ1,2) ≥ 22f . Contradiction. So a ̸= 0 and ϕ1,1 is an isogeny E′
chl −→ Ecom

of degree 0 < a < 2f . By Lemma 3.4.5 an efficient representation of an isogeny yields an efficient
representation of its dual. It follows that rsp yields an efficient representation of φ := φbt ◦φ(0) ◦ ϕ̂1,1 :
Ecom −→ Echl. Its degree is a2r+nbt < 2f+r+nbt = 2ersp . This completes the proof.

We also prove an analogue of Lemma 3.4.9 from which the special soundness argument directly
follows.

Lemma 4.2.2. Let φchl : Epk −→ Echl and φ
′
chl : Epk −→ E′

chl be two distinct challenges from the same
public curve Epk. Then, the largest integer dividing φ′

chl ◦ φ̂chl ∈ Hom(Echl, E
′
chl) is strictly smaller

than 2echl .

Proof. The proof is almost identical to Lemma 3.4.9. By Lemma 3.4.8, φchl and φ
′
chl admit a greatest

cyclic factor and we can use the structure of kernel generators of φchl and φ
′
chl to bound its degree.

Theorem 4.2.3. Assume that echl + ersp ≤ e. Then the SQIsign2D-West identification protocol is
special sound for the NP-relation R defined in Eq. (3.9).

Proof. This is the same argument used in the proof of Theorem 3.4.10. If (Ecom, chl, rsp) and
(Ecom, chl

′, rsp′) are two transcripts for the same public key Epk and commitment Ecom but distinct
challenges chl ̸= chl′, then we consider the endomorphism:

α := φ̂′
chl ◦ φ′

rsp ◦ φ̂rsp ◦ φchl ∈ End(Epk).

By Lemma 4.2.1 and Lemma 3.4.5, the two transcripts give access to an efficient representation of α.
Then, using Lemma 4.2.2, we can prove that α is non scalar when echl + ersp ≤ e.

4.2.2 The zero knowledge property

To prove that the protocol has the zero-knowledge property, we prove that there exists a simulator
producing transcripts indistinguishable from an honest run of the protocol. Like in SQIsignHD (see
Section 3.4.2), the simulator runs in polynomial time if it has access to an oracle producing random
isogenies. This “random isogeny” oracle comes in two variants: the uniform target oracle (UTO)
and the fixed degree isogeny oracle (FIDIO). Note that the zero knowledge property does not rely
on any heuristic except the access to a UTO and a FIDIO (unlike F-SQIsignHD). Furthermore, in
Section 4.2.3, we justify that a FIDIO can generate a RADIO as defined in Definition 3.4.14 and that
the UTO is heuristically redundant. This means that the security proof in SQIsign2D-West is close to
the rigorous security proof of the theoretical R-SQIsignHD variant optimised for security while being
practical and efficient unlike the latter.

Definition 4.2.4. A uniform target oracle (UTO) is an oracle taking as input a supersingular elliptic
curve E defined over Fp2 and an integer N ≥ 2

√
2p/π, and outputs a random isogeny φ : E −→ E′

(in efficient representation) such that:

152 CHAPTER 4. SQISIGN2D-WEST

1. The distribution of E′ is uniform among all the supersingular elliptic curves.

2. The conditional distribution of φ given E′ is uniform among isogenies E −→ E′ of degree smaller
or equal to N .

Remark 4.2.5. The condition N ≥ 2
√
2p/π ensures such an oracle exists: by Lemma 2.3.2, for any

pair (E1, E2), the collection of isogenies E1 −→ E2 of degree smaller than N is non-empty.

Definition 4.2.6. A fixed degree isogeny oracle (FIDIO) is an oracle taking as input a supersingular
elliptic curve E defined over Fp2 and an integer N , and outputting a uniformly random isogeny
φ : E −→ E′ (in efficient representation) with domain E and degree N .

Theorem 4.2.7. If 2ersp ≥ 2
√
2p/π and Ncom ≥ 24λ, then the SQIsign2D-West identification protocol

is statistically honest-verifier zero-knowledge in the UTO and FIDIO model. In other words, there
exists a polynomial time simulator S with access to a UTO and a FIDIO that produces random
transcripts which are statistically indistinguishable from honest protocol transcripts.

Remark 4.2.8. Note that we have chosen ersp in Section 4.1.4, so that 2ersp ≥ 313/6
√
p/π in order to

apply Algorithm 3.6. Consequently, the condition 2ersp ≥ 2
√
2p/π is automatically satisfied.

Proof. The simulator proceeds as follows:

1. Generate an isogeny φchl : Epk −→ Echl according to the honest challenge distribution.

2. Call the UTO on input (Echl, 2
ersp), resulting in the isogeny φ̂rsp : Echl −→ Ecom.

3. Decompose φrsp = ψ ◦ φ(1)
rsp with q′ = deg(φ

(1)
rsp) odd and deg(ψ) = 2n a power of two. Let

2nbt = #(ker(ψ̂) ∩ ker(φ̂chl)). Let r := n− nbt and f := ersp − n.

4. Call the FIDIO on input (Ecom, 2
f − q′), resulting in the isogeny φaux : Ecom −→ Eaux.

From the properties of the UTO and FIDIO, the above procedure returns transcripts with the same
distribution as transcripts generated as follows:

1. Generate a uniformly random supersingular curve Ecom

2. Generate an isogeny φchl : Epk −→ Echl according to the honest challenge distribution.

3. Generate a uniformly random isogeny φrsp : Ecom −→ Echl, of degree at most 2ersp .

4. Decompose φrsp = ψ ◦ φ(1)
rsp with q′ = deg(φ

(1)
rsp) odd and deg(ψ) = 2n a power of two. Let

2nbt = #(ker(ψ̂) ∩ ker(φ̂chl)). Let r := n− nbt and f := ersp − n.

5. Generate a uniformly random isogeny φaux from Ecom and of degree 2f − q′.

This is precisely the order in which an honest run of the protocol proceeds. The distribution for the
first step matches the honest protocol run by Proposition 3.3.1. The distributions of following steps
match the honest ones by construction.

4.2.3 On the UTO and FIDIO oracles

Let us first argue that the UTO is essentially redundant: given a FIDIO, one can implement an oracle
that is computationally indistinguishable from a UTO, at least when the bound N is sufficiently large.
We proceed in two steps:

1. First, we use the FIDIO to build an oracle which outputs a uniform isogeny σ from E with
deg(σ) ≤ N . In other words, one can turn a FIDIO into a RADIO, as defined in Definition 3.4.14.

2. Second, we argue that this distribution (the output of a RADIO) is indistinguishable from the
output of a UTO.

Recall the definition of a RADIO.

4.3. INSTANTIATION AND PERFORMANCE 153

Definition 4.2.9. A random any-degree isogeny oracle (RADIO) is an oracle taking as input a
supersingular elliptic curve E defined over Fp2 and an integer N , and outputting a uniformly random
isogeny φ : E −→ E′ (in efficient representation) with domain E and degree at most N .

Let us first explain how one can turn a FIDIO into a RADIO. Let fN be the probability distribution
of the degree of the output of a RADIO: for any integer q, let fN (q) be the probability that the degree
of the output of a RADIO on input (E,N) is equal to q. Note that conditional on the degree of the
output begin q, the FIDIO and the RADIO follow the same distribution: uniform among isogenies
with domain E and degree q. Therefore, to simulate a RADIO, we can proceed as follows: on input
(E,N),

1. sample an integer q following the distribution fN ;

2. call the FIDIO on input (E, q), and return the output.

To sample from the distribution fN , observe that the value fN (q) = Θ̃(q/N2) can be computed
efficiently if the factorisation of q is known. Therefore, we can do rejection sampling by sampling
uniformly random integers in J1 ; NK together with their factorisation (see [Bac88]).

Now that we can turn a FIDIO into a RADIO, it remains to argue that a RADIO is indistinguish-
able from a UTO. For N large enough, it is indeed statistically indistinguishable: conditionally on
the target curve, the two distributions are identical, and it is proven in Theorem 3.4.15 that when
N = Θ(p1+ε) for ε ∈]0, 2], the distribution on the target curves are at statistical distance O(p−ε/2).
Therefore, when N = Θ(p1+ε), the RADIO and the UTO are at statistical distance O(p−ε/2). The
bound N = O(p1/2) used in the protocol is not large enough for this theorem to apply, but we expect
the distributions to remain computationally indistinguishable.

The conclusion of the above discussion is that in Theorem 4.2.7, the UTO is heuristically redun-
dant. In other words, there is a (heuristic) simulator in the FIDIO model. It remains to argue that
this FIDIO does not hurt the security assumption: access to a FIDIO does not help with solving the
endomorphism ring problem. We refer to the analogous discussion about the security of SQIsignHD
in Section 3.4.3. In essence, all a FIDIO does is compute a random walk from a source curve. We al-
ready know how to compute random walks of smooth degree (by taking a sequence of random isogeny
steps of small prime degree), and a FIDIO extends this capability to random walks with potentially
large prime steps.

4.3 Instantiation and performance

4.3.1 Parameter choices and signature sizes

The choice of prime p = c2e − 1 is the same as in F-SQIsignHD (see Section 3.5.1 and Table 3.1
in particular) since SQIsign2D-West has the same security and torsion requirements. In particular,
p has size close to but slightly smaller than 2λ bits in order to ensure λ bits of security against
endomorphism ring attacks while fitting into λ/32 words of length 64 bits. We now explain in more
detail the shape of the public key and signature.

As in F-SQIsignHD, the public key is a Montgomery curve Epk : y
2 = x3 +Apkx

2 + x represented
by its Montgomery coefficient Apk ∈ Fp2 . Since p has size 2λ, Apk can be represented by 4λ bits.
Some data can be added to the public key in order to speed up the verification. Indeed, the verifier
has to generate a deterministic basis (Ppk, Qpk) of Epk[2

e]. This basis is determined by some small
integer h ∈ N called a hint. Giving this hint to the verifier speeds up the basis generation. We refer to
[AAA+25, Algorithm 2.1 and 2.2] for more details on the deterministic basis generation with hints.
It has been conjectured that the hint h can be represented with one byte (8 bits) with overwhelming
probability. Hence, the total public key size is 4λ+ 8 bits.

Now, the signature is a bit different than in F-SQIsignHD where it was of the form (Ecom, rsp),
following the traditional Fiat-Shamir transform. Recall that SQIsign2D-West is a commitment recov-
erable scheme in order to allow for smaller signature. This means Ecom does not have to be included
in the signature and can be replaced by the challenge chl ∈ J0 ; 2echl − 1K which results from the
application of a hash function chl = H(j(Epk), j(Ecom),m), where m is the message to be signed. The
verifier will recover the commitment Ecom during the verification process and will be able to check the

154 CHAPTER 4. SQISIGN2D-WEST

equality chl = H(j(Epk), j(Ecom),m). Given that Ecom takes 4λ bits to store and echl is smaller but
close to λ, this method saves 3λ bits on the signature.

Furthermore, since the verifier will also have to generate a deterministic basis of a torsion subgroup
of Eaux, some hint haux has to be added to the signature in order to speed-up the verification. As a
consequence, the signature is of the form (chl, Eaux, Pchl, Qchl, r, nbt, haux). As we have seen, chl takes
echl ≃ λ bits to store, Eaux is stored as a Montgomery coefficient Aaux ∈ Fp2 which takes 4λ bits. We

also have nbt, r ≤ ersp and by Remark 4.2.8, we may choose ersp = ⌈log2(313/6
√
p/π)⌉ ≤ λ+2. Hence,

nbt and r take ⌈log2(λ)⌉ bits to store each.

In addition, Pchl, Qchl ∈ E(0)
chl [2

ersp−nbt+2] with ersp ≤ λ+ 2. As explained in Section 3.5.1, Pchl, Qchl

may be represented by 4 coefficients in Z/2ersp−nbt+2Z determining their coordinates in a deterministic

basis of E
(0)
chl [2

ersp−nbt+2]. Hence, Pchl, Qchl can be represented with 4(λ + 2 + 2) = 4λ + 16 bits and
some hint hchl accelerating the deterministic basis generation, for a total of 4λ + 24 bits. As in
Section 3.5.1, we could gain λ + 2 bits by forgetting one integer coefficient at the expense of a Weil
pairing computation during the verification. This optimisation was not considered in order to optimise
verification time.

On the whole, the signature takes 9λ + 2⌈log2(λ)⌉ + 32 bits to store, including λ bits for chl, 4λ
bits for Eaux, 4λ+24 bits for (Pchl, Qchl), 2⌈log2(λ)⌉ bits for r, nbt and 8 bits for haux. The parameters,
public key and signature sizes may be found in Table 4.1. Note that SQIsign2D-West is less compact
than F-SQIsignHD but still 15% more compact than SQIsign (see Table 4.2).

Security level NIST-I NIST-III NIST-V
λ 128 192 256

p = c · 2e − 1 5 · 2248 − 1 65 · 2376 − 1 27 · 2500 − 1

Signature size (bytes*) 150 222 294
Public key size (bytes*) 65 97 129

Table 4.1: Prime parameter, signature and public key sizes for different security levels in SQIsign2D-
West. *One byte contains 8 bits.

Security level NIST-I NIST-III NIST-V

SQIsign (bytes) 177 263 335
F-SQIsignHD (bytes) 108 160 212

SQIsign2D-West (bytes) 150 222 294

Table 4.2: Comparison of signature sizes (in bytes) in SQIsign, F-SQisignHD and SQIsign2D-West.

4.3.2 Performance

SQIsign2D-West and its heuristic version H-SQIsign2D-West have been implemented in C. The code
repository may be found at https://github.com/SQISign/sqisign2d-west-ac24. This code was
then used as reference and further optimised for the SQIsign round 2 NIST submission. The NIST
v 2.0 repository may be found at https://github.com/SQIsign/the-sqisign/tree/nist-v2 and
we refer to [AAA+25] for the associated specification. Timings on an Intel Core i5-1335U 4600MHz
CPU are displayed in Table 4.3.

We observe that SQIsign2D-West verification times are very competitive and respectively 3.1 and
24.3 times faster than SQIsign original verification time at NIST-I and NIST-V levels (see Table 4.3).
The NIST v 2.0 version with optimised finite field arithmetic even reaches 1 ms verification for
NIST-I level. However, SQIsign2D-West signing is 6.7 times slower than F-SQIsignHD signing at
NIST-I level. This gap is reduced by a factor two in the heuristic H-SQIsign2D-West and NIST v 2.0
optimised version. Furthermore, SQIsign2D-West signing is still respectively 9.5 and 99.9 times faster
than the original SQIsign NIST submission at NIST-I and NIST-V levels. Even though it is three
orders of magnitudes slower than lattice based or code based competitors, with such performance and

https://github.com/SQISign/sqisign2d-west-ac24
https://github.com/SQIsign/the-sqisign/tree/nist-v2

4.3. INSTANTIATION AND PERFORMANCE 155

given its compactness, SQIsign NIST v 2.0 derived from SQIsign2D-West is a credible candidate for
standardisation and industrial deployment.

Security level NIST-I NIST-III NIST-V

SQIsign NIST v 1.0

Key generation
ms 355.72 5 625.72 22 445.3

106 cycles 889.29 14 064.29 56 113.25

Signing
ms 554.78 10 553.18 41 322.21

106 cycles 1 386.95 26 382.94 103 305.53

Verification
ms 7.77 195.86 571.77

106 cycles 19.43 489.65 1 429.42

F-SQIsignHD
Key generation

ms 14.85 48.5 112.31
106 cycles 37.12 121.29 280.92

Signing
ms 8.74 25.68 56.72

106 cycles 21.83 64.24 141.86

SQIsign2D-West

Key generation
ms 16.53 52.24 113.18

106 cycles 41.37 130.65 283.04

Signing
ms 58.17 220.26 413.46

106 cycles 145.52 551.16 1 034.52

Verification
ms 2.53 9.77 23.57

106 cycles 6.32 24.45 58.93

H-SQIsign2D-West

Key generation
ms 14.84 47.44 107.51

106 cycles 37.13 118.67 268.85

Signing
ms 24.17 70.25 170.69

106 cycles 60.48 175.64 426.78

Verification
ms 2.52 8.61 23.16

106 cycles 6.30 21.51 57.90

SQIsign NIST v 2.0

Key generation
ms 10.63 32.05 51.37

106 cycles 26.59 80.13 128.43

Signing
ms 24.53 74.20 126.72

106 cycles 61.33 185.51 316.80

Verification
ms 1.13 4.10 8.49

106 cycles 2.83 10.26 21.22

Table 4.3: Key generation, signing and verification times of different versions of SQIsign on an Intel
Core i5-1335U 4600MHz CPU. The NIST v 2.0 version based on SQIsign2D-West was implemented
with an assembly optimised finite field arithmetic for Intel processors. F-SQIsignHD verification has
not been implemented in C so verification times were not displayed for this scheme.

156 CHAPTER 4. SQISIGN2D-WEST

Part II

Fast computation of higher
dimensional isogenies with the

theta model

157

Chapter 5

Introduction to the algebraic
theory of theta functions

Throughout this chapter, k will be an algebraically closed field, unless explicitly stated otherwise.
In Section 1.4, we have seen that abelian varieties are projective. The goal of this chapter is to
define systems of projective coordinates that are convenient to do arithmetic. We shall use them to
compute isogenies in Chapter 6. The exposition of this chapter follows from Mumford’s introductory
article to the algebraic theory of theta functions [Mum66] and Damien Robert’s PhD thesis [Rob10].
Essentially no original result will be presented here. Nonetheless, some proofs are more detailed than
in the literature.

If (A,φL) is a polarised abelian variety defined over k, and L is generated by global sections
s0, · · · , sn (in the sense of Definition 1.4.8), these global sections define a map A −→ Pnk Theo-
rem 1.4.9. When L is very ample, this map is an embedding and s0, · · · , sn define coordinates on
A. In Section 5.1, we define the theta group G(L) and its action on global sections. We also define
families of global sections called theta functions that behave nicely under the action of G(L), ensuring
convenient arithmetic properties. There are several choices of such families determined by choices of
theta structures.

In Section 5.2, we study how theta groups, theta structures and theta functions are related via
isogenies. We obtain an isogeny evaluation formula. In Section 5.3, we present symmetric theta
structures that ensure even nicer arithmetic properties than generic ones. With such theta structures,
we obtain differential addition and duplication formulas but also change of level that can be used to
compute isogenies along with change of theta coordinate formulas (introduced later in Section 6.2).

5.1 Theta structures

Throughout this section, A will be an abelian variety over k.

5.1.1 The theta group

Let L be a line bundle on A. Recall the definition of the subgroup K(L) ⊆ A(k) formed by elements
x ∈ A(k) such that t∗xL ≃ L.

Definition 5.1.1 (Theta group). The theta group of L on A is the set of couples (x, ϕx), where
x ∈ A(k) and ϕx is an isomorphism L ∼−→ t∗xL. It is denoted by G(L).

The group structure on G(L) is given by (x, ϕx) · (y, ϕy) := (x + y, t∗xϕy ◦ ϕx), where t∗xϕy is the
map t∗xL −→ t∗x(t

∗
yL) = t∗x+yL induced by ϕy : L −→ t∗yL.

Lemma 5.1.2. If L is a line bundle on A, we have an exact sequence:

1 −→ k∗
ιL−→ G(L) ρL−→ K(L) −→ 0

where ιL : λ ∈ k∗ 7−→ (0, λ · idL) and ρL : (x, ϕ) ∈ G(L) 7−→ x ∈ K(L) is the forgetful map.

159

160 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Proof. ρL is surjective by the definition of G(L) and K(L). It remains to prove that the group of
automorphisms ϕ : L ∼−→ L is isomorphic to k∗. Indeed, we have the classical result HomOA

(L,L) ≃
OA [GW10, p. 7.5.7] and that Γ(A,OA) = k since A is projective and k is algebraically closed [Har77,
Theorem I.3.4]. It follows that Aut(L) = HomOA

(L,L)∗ ≃ k∗.

5.1.2 Descending theta groups

In this section, we study how isogenies relate to theta groups. Let f : A −→ B be a separable isogeny
with kernel K := ker(f), L andM be separable ample line bundles on A and B respectively such that
L ≃ f∗M and α be an isomorphism f∗M ∼−→ L. Then, for all x ∈ K, t∗xα induces an isomorphism

t∗xf
∗M = (f ◦ tx)∗M = f∗M ∼−→ t∗xL,

so t∗xα ◦α−1 : L −→ t∗xL is well defined and is an isomorphism, so that x ∈ K(L) and (x, t∗xα ◦α−1) ∈
G(L). The subset K̃ := {(x, t∗xα ◦ α−1) | x ∈ K} ⊆ G(L) is a subgroup and the restriction of the

forgetful map ρL : G(L) −→ K(L) to K̃ induces an isomorphism K̃
∼−→ K.

Definition 5.1.3. For any subgroup K ⊆ K(L), a level subgroup above K is a subgroup K̃ ⊆ G(L)
isomorphic to K via the forgetful map ρL : G(L) −→ K(L).

Given a kernel K = ker(f), we have multiple choices of level subgroups K̃ ⊂ G(L) which are
determined by a choice of isomorphism f∗M ∼−→ L. Conversely, a choice of level subgroup determines
f∗M ∼−→ L, so we have a correspondence.

Theorem 5.1.4 (Grothendieck’s descent theorem [Mum74, Theorem 2, p. 231]). Given a separable
ample line bundle L on A and a separable isogeny f : A −→ B of kernel K ⊆ K(L), there is a one

to one correspondence between level subgroups K̃ of G(L) above K and couples (M, α), where M
is a line bundle of B such that f∗M ≃ L and α : f∗M ∼−→ L is an isomorphism of OA-modules.
Explicitly, this correspondence maps (M, α) to

K̃ := {(x, t∗xα ◦ α−1) | x ∈ K},

defined as above.

Proposition 5.1.5. [Mum66, § 1, Proposition 2]Let f : A −→ B be a separable isogeny with kernel
K := ker(f), L and M be separable ample line bundles on A and B respectively such that L ≃ f∗M
and K̃ ⊂ G(L) be a level subgroup above K. Then we have:

(i) f−1(K(M)) ⊆ K(L).

(ii) The centralizer of K̃ in G(L) is Z(K̃) = ρ−1
L f−1(K(M)).

(iii) G(M) is canonically isomorphic to Z(K̃)/K̃.

Proof. Let α : f∗M ∼−→ L be the isomorphism associated to K̃ by Theorem 5.1.4. Let x ∈
f−1(K(M)) and y = f(x) ∈ K(M). By the definition of K(M), there exists an isomorphism
ψ :M ∼−→ t∗yM, so f∗ψ is an isomorphism f∗M ∼−→ f∗t∗yM. Furthermore,

f∗t∗yM = (ty ◦ f)∗M = (f ◦ tx)∗M = t∗xf
∗M.

It follows that t∗xα ◦ f∗ψ ◦ α−1 is a well defined isomorphism L ∼−→ t∗xL, and that x ∈ K(L). This
proves (i).

From this and (ii), we easily get (iii). Indeed, we have seen that (x, t∗xα ◦ f∗ψ ◦α−1) ∈ G(L) when
(f(x), ψ) ∈ G(M). Since f is surjective (as any isogeny), ψ is entirely determined by f∗ψ (locally,
hence globally), hence by t∗xα ◦ f∗ψ ◦ α−1, so we have a surjective map

αf : H := ρ−1
L f−1(K(M)) = {(x, ϕx) | f(x) ∈ K(M)} −↠ G(M)

(x, t∗xα ◦ f∗ψ ◦ α−1) 7−→ (f(x), ψ)
(5.1)

5.1. THETA STRUCTURES 161

which is a group homomorphism. If αf (x, ϕx) = (0, idM), then we have

ϕx = t∗xα ◦ f∗idM ◦ α−1 = t∗xα ◦ idf∗M ◦ α−1 = t∗xα ◦ α−1

so (x, φ) ∈ K̃ and conversely, any element of K̃ maps to (0, idM) via αf , so ker(αf) = K̃ and αf
induces a canonical isomorphism G(M) ≃ H/K̃. Hence, to prove (iii), it suffices to prove (ii) i.e. that

H = Z(K̃).

We obtain easily that H ⊆ Z(K̃). Indeed, if (x, ϕx) ∈ H then we have seen that there exists an

isomorphism ψ :M ∼−→ t∗f(x)M such that ϕx = t∗xα ◦ f∗ψ ◦ α−1. Then, for all (w, ϕw) ∈ K̃, we have

ϕw = t∗wα ◦ α−1 so, on the one hand

t∗xϕw ◦ ϕx = t∗x+wα ◦ t∗xα−1 ◦ t∗xα ◦ f∗ψ ◦ α−1 = t∗x+wα ◦ f∗ψ ◦ α−1,

and on the other hand

t∗wϕx ◦ ϕw = t∗x+wα ◦ t∗wf∗ψ ◦ t∗wα−1t∗wα ◦ α−1 = t∗x+wα ◦ f∗t∗f(w)ψ ◦ α
−1 = t∗xϕw ◦ ϕx

since f(w) = 0, so that (x, ϕx) and (w, ϕw) commute for all (w, ϕw) ∈ K̃ and (x, ϕx) ∈ Z(K̃).

Conversely if (x, ϕx) ∈ Z(K̃), then for all (w, ϕw) ∈ K̃, we have

(x+ w, t∗xϕw ◦ ϕx) = (x, ϕx) · (w, ϕw) = (w, ϕw) · (x, ϕx) = (x+ w, t∗wϕx ◦ ϕw).

Let D and E be divisors on A and B such that L ≃ L(D) and M = L(E) respectively. Then,
for all (y, ϕy) ∈ G(L), ϕy : L ∼−→ t∗yL is the multiplication by g−1

y with gy ∈ k(A) such that
div(gy) = t∗yD −D. The equality t∗xϕw ◦ ϕx = t∗wϕx ◦ ϕw is equivalent to

gx · (gw ◦ tx) = gw · (gx ◦ tw) (5.2)

for all (w, ϕw) ∈ K̃.
Besides, we have L ≃ f∗M so D ∼ f∗E and there exists h ∈ k(A) such that div(h) = D − f∗E,

so that

div(gx) = t∗xD −D = t∗xf
∗E − f∗E + t∗xdiv(h)− div(h) = f∗(t∗f(x)E − E) + div(h ◦ tx/h) (5.3)

and for all (w, ϕw) ∈ K̃, div(gw) = f∗(t∗f(w)E − E) + div(h ◦ tw/h) = div(h ◦ tw/h), so there exists

a constant cw ∈ k∗ such that gw = cw · h ◦ tw/h. Then Eq. (5.2) implies that hx := gx · h/h ◦ tx
is invariant by translation by elements of K. Then, we can see hx as a function A −→ A1

k which
is invariant by the action of K and since f is separable, we may apply Lemma 1.4.66 which ensures
the existence of sx ∈ k(B) such that hx = sx ◦ f . We then have f∗ div(sx) = f∗(t∗f(x)E − E) by

Eq. (5.3) so div(sx) = t∗f(x)E−E by surjectivity of f and the multiplication by s−1
x is an isomorphism

M ∼−→ t∗f(x)M, so that f(x) ∈ K(M) i.e. (x, ϕx) ∈ H. This completes the proof.

5.1.3 The commutator pairing

For x, y ∈ K(L), let x̃, ỹ ∈ G(L) be lifts of x, y respectively (x = ρL(x̃) and y = ρL(ỹ)). Since
ker(ρL) ≃ k∗, x̃ and ỹ are defined up to a scalar. Hence,

eL(x, y) := x̃ỹx̃−1ỹ−1

is independent of the choice of x̃ and ỹ, so this formula defines a pairing eL : K(L) ×K(L) −→ k∗.
This pairing is skew-symmetric and has values in k∗ because its image is annihilated by ρL since K(L)
is abelian. We call it the commutator pairing of L.

The commutator pairing satisfies the following convenient properties.

Proposition 5.1.6. (i) If f : A −→ B is a homomorphism of abelian varieties and L is a line
bundle over B, then

∀x, y ∈ f−1(K(L)), ef∗L(x, y) = eL(f(x), f(y)).

162 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

(ii) For any line bundles L andM on A, we have:

∀x, y ∈ K(L) ∩K(M), eL⊗M(x, y) = eL(x, y)eM(x, y).

(iii) If L ∈ Pic0(A), then eL = 1.

(iv) If L andM are algebraically equivalent line bundles on A (L⊗M−1 ∈ Pic0(A)), then eL = eM.

(v) If L is a line bundle on A, then for all x ∈ K(L) and y ∈ [n]−1K(L),

eLn(x, y) = eL(x, [n]y)

Proof. (i) Let x, y ∈ f−1(K(L)). Let z̃ := (f(x), ϕ), t̃ := (f(y), ψ) ∈ G(L) be lifts of x and y
respectively. Then on the one hand, we have by the definition of eL(f(x), f(y)):

(0, eL(f(x), f(y))idL) = z̃t̃z̃−1t̃−1 = (0, ψ−1 ◦ t∗f(y)ϕ
−1 ◦ t∗f(x)ψ ◦ ϕ).

On the other hand, x̃ := (x, f∗ϕ), ỹ := (y, f∗ψ) ∈ G(f∗L) are lifts of x and y respectively, so we have
by the definition of ef∗L(x, y):

(0, ef∗L(x, y)idf∗L) = x̃ỹx̃−1ỹ−1 = (0, f∗ψ−1 ◦ t∗yf∗ϕ−1 ◦ t∗xf∗ψ ◦ f∗ϕ)
= (0, f∗(ψ−1 ◦ t∗f(y)ϕ

−1 ◦ t∗f(x)ψ ◦ ϕ)) = (0, f∗(eL(f(x), f(y))idL))

= (0, eL(f(x), f(y))idf∗L).

This proves (i).
(ii) Let x, y ∈ K(L)∩K(M) and x̃1 := (x, ϕ1), ỹ1 := (y, ψ1) be lifts of x and y in G(L) respectively

and x̃2 := (x, ϕ2), ỹ2 := (y, ψ2) be lifts of x and y in G(M) respectively. Then x̃3 := (x, ϕ1 ⊗ ϕ2) and
ỹ3 := (y, ψ1 ⊗ ψ2) are lifts of x and y in G(L ⊗M) respectively. It follows that

(0, eL⊗M(x, y)idL⊗M) = (0, ψ−1
1 ⊗ ψ

−1
2 ◦ t∗yϕ

−1
1 ⊗ t∗yϕ

−1
2 ◦ t∗xψ1 ⊗ t∗xψ2 ◦ ϕ1 ⊗ ϕ2)

= (0, (ψ−1
1 ◦ t∗yϕ

−1
1 ◦ t∗xψ1 ◦ ϕ1)⊗ (ψ−1

2 ◦ t∗yϕ
−1
2 ◦ t∗xψ2 ◦ ϕ2))

= (0, eL(x, y)eM(x, y)idL⊗M).

This proves (ii).
(iii) If L ∈ Pic0(A), then K(L) = A and eL is a pairing A × A −→ k∗. We can see eL as a

morphism of k-varieties A × A −→ Gm := Spec(k[T, T−1]). Since A × A is an abelian variety, it is
complete and Gm is affine so eL must be constant by [GW10, Corollary 12.67].

(iv) Let L andM be algebraically equivalent. ThenM = L⊗N withN ∈ Pic0(A) so eM = eL ·eN
by (ii) and eN = 1 by (iii), so eM = eL.

(v) By (ii), we get for all x ∈ K(L) and y ∈ [n]−1K(L):

eLn(x, y) = eL(x, y)
n = eL(x, [n]y).

Lemma 5.1.7. Let L be an ample and separable line bundle and n ∈ N∗ not divisible by char(k).
Then K(Ln) = [n]−1(K(L)) and K(L) = [n]K(Ln).

Proof. By the theorem of the square Theorem 1.4.19, we have for all x ∈ A(k)

φLn(x) = [t∗xLn ⊗ L−n] = [(t∗xL ⊗ L−1)n] = [t∗[n]xL ⊗ L
−1] = φL([n]x)

As a consequence, K(Ln) = ker(φLn) = ker(φL ◦ [n]) = [n]−1 ker(φL) = [n]−1(K(L)). It follows that
[n]K(Ln) ⊆ K(L) but the converse inclusion is also true since A is n-divisible (because char(k) ∤ n).
This completes the proof.

Unsurprisingly, the commutator pairing is related to the Weil pairing.

5.1. THETA STRUCTURES 163

Proposition 5.1.8. If L is a line bundle on A and char(k) ∤ n, then for all x ∈ A[n] and y ∈
[n]−1(K(L)),

en(x, φL(y)) = eLn(x, y),

where en : A[n]× Â[n] −→ k∗ is the n-th Weil pairing.

Proof. First, the equality makes sense because [n]−1K(L) = φ−1
L (A[n]), A[n] ⊆ [n]−1(K(L)) and

K(Ln) = [n]−1(K(L)) by Lemma 5.1.7. Now, let x ∈ A[n] and y ∈ [n]−1(K(L)). Then, we may write
y = [n]z for some z ∈ [n2]−1(K(L)) and we have by points (v) and (iv) of Proposition 5.1.6,

eLn(x, y) = eLn(x, [n]z) = eLn2 (x, z) = e[n]∗L(x, z),

where the last equality comes from the fact that [n]∗L and Ln2

are algebraically equivalent. Indeed,

by Corollary 1.4.18, we have [n]∗L ≃ Ln2 ⊗ ([−1]∗L ⊗ L−1)n(n−1)/2 and by Lemma 1.4.65, we have
[−1]∗L ⊗ L−1 ∈ Pic0(A) since it is antisymmetric. Hence, we have to prove that e[n]∗L(x, z) =
en(x, φL(y)).

Let D be a divisor such that L ≃ L(D). By the definition of the Weil pairing (see Theorem 1.4.67),
we then have en(x, φL(y)) = gy/gy ◦ tx with gy ∈ k(A) such that div(gy) = [n]∗(t∗yD −D).

Besides, t∗x[n]
∗L = [n]∗t∗[n]xL = [n]∗L since x ∈ A[n], so (x, id[n]∗L) ∈ G([n]∗L) lifts x. Let

(z, ϕz) ∈ G([n]∗L) be a lift of z. Then, the composition map

[n]∗L
id[n]∗L−→ [n]∗L ϕz−→ t∗z[n]

∗L
t∗zid[n]∗L−→ t∗z[n]

∗L t∗xϕ
−1
z−→ [n]∗L,

which equals t∗xϕ
−1
z ◦ ϕz is the multiplication by e[n]∗L(x, z). But ϕz is the multiplication by h−1

z ,
where hz ∈ k(A) satisfies

div(hz) = t∗z[n]
∗D − [n]∗D = [n]∗(t∗[n]zD −D) = [n]∗(t∗yD −D) = div(gy),

so that hz = c · gy for some c ∈ k∗ and e[n]∗L(x, z) = hz/hz ◦ tx = gy/gy ◦ tx = en(x, φL(y)). This
completes the proof.

Lemma 5.1.9. Let G be a finite abelian group and e : G × G −→ k∗ be a non-degenerate skew-
symmetric pairing. Then:

(i) There exists a symplectic decomposition of G, i.e. two subgroups G1, G2 ⊆ G such that G =

G1 ⊕ G2 that are isotropic for e (e(x, y) = 1 for all x, y ∈ Gi and i = 1, 2) and G2 ≃ Ĝ1 :=
Hom(G1, k

∗).

(ii) There exists integers d1, · · · , dg ≥ 2 such that d1| · · · |dg and for all tuple (ζ1, · · · , ζg) ∈ (k∗)g

where ζi is a primitive di-th root of unity for all i ∈ J1 ; gK, there exists x1, · · · , xg, y1, · · · , yg ∈
G such that

G = ⟨x1⟩ ⊕ · · · ⊕ ⟨xg⟩ ⊕ ⟨y1⟩ ⊕ · · · ⊕ ⟨yg⟩

and for all i, j ∈ J1 ; gK,

e(xi, xj) = e(yi, yj) = 1 and e(xi, yj) = ζ
δi,j
i .

We say that (x1, · · · , xg, y1, · · · , yg) is a (ζ1, · · · , ζg)-symplectic basis of G.

Proof. (i) follows immediately form (ii) so we prove (ii). We proceed by strong induction on the
cardinality of G. The result is immediate if #G = 1.

Now, if #G > 1 we may assume the result holds for finite abelian groups of cardinality ≤ #G− 1.
Then G has a non-trivial exponent d ≥ 2 and we may consider x ∈ G of order d. Since e is non-
degenerate, the character ex : y ∈ G 7−→ e(x, y) ∈ k∗ has order k = d. Indeed, we already know that
l|d since d is the exponent of G and elx = 1, so that e(lx, y) = 1 for all y ∈ G, so lx = 0 since e
is non-degenerate and d|l. It follows that there exists y ∈ G such that e(x, y) has order d, i.e. is a
primitive d-th root of unity. Rescaling y by an integer coprime with d if necessary, we can choose the
value ζ := e(x, y). We also immediately obtain that y has order d.

Consider the subgroup H := {z ∈ G | e(x, z) = e(y, z) = 1}. We prove that G = ⟨x⟩ ⊕H ⊕ ⟨y⟩.
Then, applying the recursion hypothesis to H of cardinality #H = #G/d2 < #G will complete the

164 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

proof. Let λ, µ ∈ Z and z ∈ H such that λx + µy + z = 0. Then, we obtain that e(x, y)µ = 1
and e(x, y)λ = 1, so d|µ and d|λ. Hence, z = 0. This proves that ⟨x⟩, ⟨y⟩ and H are in direct sum.
Now, if z ∈ G, then e(x, z) and e(z, y) are d-th roots of unity so we may write e(x, z) = e(x, y)µ and
e(z, y) = e(x, y)λ for some λ, µ ∈ J0 ; d− 1K. Let z′ := z − λx− µy. Then,

e(x, z′) = e(x, z)e(x, y)−µ = 1 and e(y, z′) = e(y, z)e(y, x)−λ = e(z, y)−1e(x, y)λ = 1,

so z′ ∈ H. This completes the proof.

Proposition 5.1.10. Assuming L is ample and separable, eL is non-degenerate.

Proof. Let K̃ be a maximal level subgroup of G(L) and K := ρL(K̃). Then the centralizer of K̃ is

Z(K̃) = k∗K̃. Indeed, the center trivially contains k∗K̃ and an element z ̸∈ k∗K̃ has image ρL(z) ̸∈ K
so if such an element commute with K̃, the subgroup generated by z and K̃ is a level subgroup above
the group generated by ρL(z) and K, contradicting the maximality of K̃.

We consider the isogeny π : A −→ B := A/K of kernel K and M := π∗L (so that L ≃ π∗M).

Then, by Proposition 5.1.5, G(M) ≃ Z(K̃)/K̃ = k∗ so K(M) = {0} by Lemma 5.1.2, so φM has
degree 1. Since L ≃ π∗M, we get that φL = π̂ ◦ φM ◦ π by Lemma 1.4.60, so that

#K(L) = deg(φL) = deg(π)2 = (#K)2, (5.4)

where we used the separability of L (hence of π), to obtain the first and last equalities.
Let K0 := {x ∈ K(L) | ∀y ∈ K(L), eL(x, y) = 1} be the degenerate space of eL. Then, eL

induces a non-degenerate skew-symmetric pairing on K(L)/K0 and by Lemma 5.1.9, it admits a
symplectic decomposition K(L)/K0 = K1 ⊕K2. We then have

#(K(L)/K0) = #K1 ·#K2 = (#K1)
2.

Besides, K1 is maximal isotropic in K(L)/K0, so its preimage K in K(L) is maximal isotropic and
we have by Eq. (5.4)

(#K)2 = #K(L) = #(K(L)/K0) ·#K0 = (#K1)
2 ·#K0 = (#K/#K0)

2 ·#K0 = (#K)2/#K0

Hence, #K0 = 1 and eL is non-degenerate.

Corollary 5.1.11. If L is ample and separable, the center of G(L) is ker(ρL) ≃ k∗.

Proof. If g ∈ Z(G(L)) then, eL(ρL(g), y) = 1 for all y ∈ K(L) so ρL(g) = 0 since eL is non-
degenerate.

Not all subgroups K ⊆ K(L) admit a level subgroup of G(L) and define an isogeny. The commu-
tator pairing gives a condition for that.

Proposition 5.1.12. Let K ⊆ K(L) be a subgroup. The following conditions are equivalent:

(i) K admits a level subgroup of G(L).

(ii) ρ−1
L (K) is abelian.

(iii) K is isotropic for eL.

Proof. (ii) and (iii) are trivially equivalent by the definition of eL. Assume that (i) holds. Let

K̃ ⊂ G(L) be a level subgroup above K. Then, ρ−1
L (K) = k∗ · K̃ and K̃ ≃ K so K̃ is abelian and

ρ−1
L (K) as well. Hence, (i) =⇒ (ii).
Conversely, assume that ρ−1

L (K) is abelian. If we apply the theorem of finite abelian groups to K,
we get a basis of K. ρ−1

L (K) being abelian, it suffices to lift this basis to obtain a level subgroup, so
we simply explain how to lift an element. Let x ∈ K of order ℓ and x̃ ∈ G(L) such that ρL(x̃) = x.
Then, ρL(x̃

ℓ) = 1 so α := x̃ℓ ∈ k∗. Let β ∈ k∗ be a ℓ-th root of α. Then, x̃/β has order ℓ and has
image x via ρL. Hence, (ii) =⇒ (i). This completes the proof.

Using Grothendieck’s descent theorem (Theorem 5.1.4) and the previous proposition, we obtain a
characterisation of polarised isogenies by the isotropy of their kernel.

5.1. THETA STRUCTURES 165

Corollary 5.1.13. Let f : (A,L) −→ (B,M) be a polarised isogeny, as defined in Definition 1.4.58.
Then ker(f) is isotropic for eL.

Conversely, if (A,L) is a polarised abelian variety and f : A −→ B is an isogeny of kernel
ker(f) ⊆ K(L) isotropic for eL, then there exists a line bundleM on B such that f∗M≃ L, so that
f is a polarised isogeny (A,L) −→ (B,M).

Proof. Assume that f : (A,L) −→ (B,M) is a polarised isogeny. Then Lemma 1.4.60 ensures that
f∗M≃ L⊗N with N ∈ Pic0(A). By Grothendieck’s descent theorem (Theorem 5.1.4), ker(f) admits
a level subgroup in G(L ⊗N) so ker(f) is isotropic for eL⊗N by Proposition 5.1.12. But eL⊗N = eL
by Proposition 5.1.6 so ker(f) is isotropic for eL.

Conversely, if ker(f) ⊆ K(L) is isotropic for eL, then there exists a level subgroup above ker(f)
corresponding to a line bundle M on B and an isomorphism α : f∗M ∼−→ L by Grothendieck’s
descent theorem. This completes the proof.

Definition 5.1.14 (Othogonality). If K ⊆ K(L) is a subgroup, we define the orthogonal of K by:

K⊥ := {y ∈ K(L) | ∀x ∈ K, eL(x, y) = 1}

This notion is different from the usual orthogonality because we may have K ∩K⊥ ̸= {0}. It is
especially the case when K is isotropic K ⊆ K⊥.

Lemma 5.1.15. Let K ⊆ K(L) be a subgroup. Then:

(i) K⊥ ≃ ̂K(L)/K := Hom(K(L)/K, k∗).

(ii) K⊥⊥ = K.

(iii) K is maximal isotropic if and only if K is isotropic and #K(L) = (#K)2.

Proof. (i) Consider y ∈ K⊥ 7−→ eL(., y) ∈ ̂K(L)/K. This map is well-defined since eL(x, y) = 1
for all x ∈ K and y ∈ K⊥. If y ∈ K⊥ satisfies eL(x, y) = 1 for all x ∈ K(L), then y = 0 by

non-degeneracy of eL so the map is injective. Besides, if χ ∈ ̂K(L)/K, then χ induces a character

χ̃ ∈ K̂(L) annihilating K and there exists y ∈ K(L) such that χ̃ = eL(., y). Since χ̃ annihilates K,

we must have y ∈ K⊥, so the map is surjective and is an isomrophism K⊥ ∼−→ ̂K(L)/K.

(ii) Since # ̂K(L)/K = #K(L)/K = #K(L)/#K, we have #K⊥ = #K(L)/#K by (i). It follows
that #K⊥⊥ = #K(L)/#K⊥ = #K. Furthurmore, K ⊆ K⊥⊥. Hence, K⊥⊥ = K.

(iii) Assume that K is isotropic. Then K ⊆ K⊥ and K is maximal for this property if and
only if K = K⊥. But we have seen that #K(L) = #K · #K⊥ by (i), so K = K⊥ if and only if
#K(L) = (#K)2. This proves (iii).

5.1.4 Theta structures

Previously, we have seen results on the structure of the theta group G(L) (Lemma 5.1.2) and the
subgroup K(L) (Lemma 5.1.9) that give a purely canonical description of G(L). In this section, we
shall introduce this canonical description - called the Heisenberg group - and study isomorphisms
between the Heisenberg group and the theta group - called theta structures.

The pairing eL being non-degenerate, there exists by Lemma 5.1.9 a symplecitic decomposition
K(L) = K1(L) ⊕ K2(L), where K1(L) and K2(L) are maximal isotropic subgroups of K(L) and
K2(L) ≃ Hom(K1(L), k∗). By the finite abelian subgroups theorem, there exists δ := (d1, · · · , dr) ∈
(N∗)r with d1| · · · |dr such that

K1(L) ≃ K2(L) ≃
r∏
i=1

Z/diZ.

It follows that K(L) ⊆ A[dr]. Since A[dr] has rank 2g by Corollary 1.4.34, we have r ≤ g. We can
assume r = g and complete δ with ones if necessary.

Definition 5.1.16. When K(L) can be decomposed as above, we say that L is of type δ. When
δ = (n, · · · , n) we say that L is of level n.

166 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Let K1(δ) :=
∏g
i=1 Z/diZ, K2(δ) := Hom(K1(δ), k

∗) and K(δ) := K1(δ)⊕K2(δ). Define a skew-
symmetric pairing eδ : K(δ)×K(δ) −→ k∗ by:

∀(x1, χ1), (x2, χ2) ∈ K1(δ)⊕K2(δ), eδ((x1, χ1), (x2, χ2)) := χ2(x1)χ1(x2)
−1. (5.5)

Proposition 5.1.17. (i) K(L) is symplectically isomorphic to K(δ), i.e. there exists an isomor-
phism ϕ : K(δ)

∼−→ K(L) such that:

∀x, y ∈ K(δ), eδ(x, y) = eL(ϕ(x), ϕ(y)).

Such an isomorphism induces a symplectic decomposition K(L) = K1(ϕ)⊕K2(ϕ) with Ki(ϕ) :=
ϕ(Ki(δ)) for i ∈ {1, 2}.

(ii) Let K(L) = K1(L) ⊕ K2(L) be a symplectic decomposition. Then there is a bijection between
symplectic isomorphisms K(δ)

∼−→ K(L) mapping Ki(δ) to Ki(L) for i ∈ {1, 2} and isomor-
phisms K1(δ)

∼−→ K1(L). This bijection is given by the restriction to K1(δ).

Proof. (i) follows easily from (ii) so we prove (ii). Let σ : K1(δ)
∼−→ K1(L) be an isomorphism. Let

(x1, · · · , xg) be the canonical basis of K1(δ) and (χ1, · · · , χg) be its dual basis in K2(δ) given by:

∀i, j ∈ J1 ; gK , χj(xi) = eδ(xi, χj) = ζ
δi,j
i ,

where ζi is a δi-th primitive root of unity for all i ∈ J1 ; gK.
Consider the group homomorphism:

Φ : y ∈ K2(L) 7−→ (eL(σ(xi), y))1≤i≤g ∈
g∏
i=1

µdi(k),

where µdi(k) ⊂ k∗ is the subgroup of di-th roots of unity for all i ∈ J1 ; gK. If y ∈ K2(L) is such
that Φ(y) = 1, then y ∈ ⟨σ(x1), · · · , σ(xg)⟩⊥ = K1(L)⊥ = K1(L) since (σ(x1), · · · , σ(xg)) is a basis
of K1(L) and K1(L) is maximal isotropic. It follows that y ∈ K1(L) ∩ K2(L) = {0}. Hence, Φ
is injective. By cardinality, it is also surjective and (σ(x1), · · · , σ(xg)) admits a unique dual basis
(y1, · · · , yg) in K2(L) given by:

∀i, j ∈ J1 ; gK , eL(σ(xi), yj) = ζ
δi,j
i .

Let τ : K2(δ) −→ K2(L) such that τ(χj) := yj for all j ∈ J1 ; gK. Then τ is an isomorphism

K2(δ)
∼−→ K2(L) such that

σ × τ : (x, χ) ∈ K(δ) 7−→ σ(x) + τ(χ) ∈ K(L)

is symplectic and maps Ki(δ) to Ki(L) for i ∈ {1, 2} by construction. This proves the surjectivity.
Now, if ϕ and ψ are symplectic isomorphismsK(δ)

∼−→ K(L) mappingKi(δ) toKi(L) for i ∈ {1, 2}
and such that ϕ|K1(δ) = ψ|K1(δ), then we have for all (x, χ) ∈ K1(δ)×K2(δ),

eL(ϕ(x, 1), ϕ(0, χ)− ψ(0, χ)) = eL(ϕ(x, 1), ϕ(0, χ))eL(ϕ(x, 1), ψ(0, χ))
−1

= eδ((x, 1), (0, χ))eL(ψ(x, 1), ψ(0, χ))
−1

= χ(x)χ(x)−1 = 1.

Since eL is non-degenarate by Proposition 5.1.10, we conclude that ϕ(0, χ) = ψ(0, χ) for all χ ∈ K2(δ),
so that ϕ = ψ. This proves the injectivity and completes the proof.

We now present, as promised, a description of G(L) extending the description K(δ) of K(L).

Definition 5.1.18. We define the Heisenberg group H(δ) as k∗×K(δ) with the following group law:

(α, x1, χ1) · (β, x2, χ2) := (αβχ2(x1), x1 + x2, χ1χ2).

5.1. THETA STRUCTURES 167

Remark 5.1.19. eδ is the equivalent of the commutator pairing eL. Indeed, it is also a commutator
pairing in the Heisenberg group. Let ρδ : H(δ) −→ K(δ), (α, x, χ) 7−→ (x, χ) be the forgetting
map. Then, if y, z ∈ K(δ) and ỹ, z̃ ∈ H(δ) are lifts of x, y respectively through ρδ, then we have
eδ(y, z) = ỹz̃ỹ−1z̃−1 (with the convention that scalars α ∈ k∗ are identified with (α, 0, 1)). Indeed, if
we write ỹ := (α, x1, χ1) and z̃ := (β, x2, χ2), then

ỹz̃ỹ−1z̃−1 = (αβχ2(x1), x1 + x2, χ1χ2) · (αβχ1(x2), x1 + x2, χ1χ2)
−1

= αβχ2(x1)α
−1β−1χ1(x2)

−1(1, x1 + x2, χ1χ2) · (1, x1 + x2, χ1χ2)
−1

= χ2(x1)χ1(x2)
−1 = eδ((x1, χ1), (x2, χ2)) = eδ(y, z)

Definition 5.1.20. A theta structure is an isomorphism of central extensions ΘL : H(δ) ∼−→ G(L),
namely an isomorphism inducing a symplectic isomorphism ΘL : K(δ)

∼−→ K(L) such that the
following diagram commutes:

1 // k∗ // H(δ) //

ΘL

��

K(δ) //

ΘL
��

0

1 // k∗ // G(L) // K(L) // 0

Proposition 5.1.21. There is a bijection between theta structures ΘL : H(δ) −→ G(L) and triples
(ΘL, s1, s2), where ΘL : K(δ) −→ K(L) is a symplectic isomorphism, Ki(ΘL) := ΘL(Ki(δ)) and si
is a section Ki(ΘL) −→ G(L) for i ∈ {1, 2}. As a consequence, theta structures always exist.

Proof. Let ΘL be a theta structure. Then it induces a symplectic isomorphism ΘL : K(δ)
∼−→ K(L)

mapping the canonical symplectic decompositionK(δ) = K1(δ)⊕K2(δ) to a symplectic decomposition
K(L) = K1(ΘL)⊕K2(ΘL). Let sδ : (x, χ) ∈ K(δ) 7−→ (1, x, χ) ∈ H(δ) and si be the composition

Ki(ΘL)
Θ

−1
L−→ Ki(δ)

sδ−→ H(δ) ΘL−→ G(L)

for i ∈ {1, 2}. This defines sections Ki(ΘL) −→ G(L), as desired.
Conversely, let (ΘL, s1, s2) be a triple formed of a symplectic isomorphism and sections. Then the

map H(δ) −→ G(L) defined by the formula:

ΘL(α, x, χ) := s1 ◦ΘL(x, 0) + s2 ◦ΘL(0, χ)

is a theta structure.

Remark 5.1.22. Similarly, the theta structure ΘL is determined by the couple (ΘL, sL), where
sL : K(L) = K1(ΘL) ⊕K2(ΘL) −→ G(L) is the extension of the sections si : Ki(ΘL) −→ G(L) for
i ∈ {1, 2}.

Definition 5.1.23. The choice of the section sL : K(L) −→ G(L) lifting a symplectic decomposition
K(L) = K1(L) ⊕K2(L) or equivalently of sections si : Ki(L) −→ G(L) or equivalently of the level

subgroups K̃i(L) := si(Ki(L)) for i ∈ {1, 2} is called a level structure of G(L). It contains all the
geometric information of a theta structure.

Lemma 5.1.24. Two level structures sL, s
′
L : K(L) −→ G(L) lifting the same symplectic decompo-

sition K(L) = K1(L) ⊕K2(L) differ by conjugation by a character eL(c, ·) : K(L) −→ k∗, for some
c ∈ K(L).

Proof. For i ∈ {1, 2}, s′L differs from sL on Ki(L) by a character χi : x ∈ Ki(L) −→ s′L(x) ·sL(x)−1 ∈
k∗ (the result is indeed in k∗ by Lemma 5.1.2). By non-degeneracy of eL, there exists ci ∈ K(L) such
that χi = eL(ci, ·). Since the Ki(L) are isotropic and K(L) = K1(L) ⊕K2(L), we can assume that
c1 ∈ K2(L) and c2 ∈ K1(L). Then s′L differs from sL by eL(c, ·) with c := c1 + c2.

168 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

5.1.5 Theta functions

By [Har77, Theorem II.7.1], if L is a line bundle on A generated by global sections, then these sections
define a map A −→ Pnk . Such a map is a closed immersion when L is very ample. In this paragraph,
we explain how to fix a basis of global sections given a theta structure ΘL. Those will be the theta
functions.

To find basis of global sections, we consider the action of G(L) on the ring of global sections
Γ(A,L). This will lead to different choices of basis. Knowing the representations of the Heisenberg
group H(δ) better and fixing a theta structure will help to make this choice canonical.

Theorem 5.1.25. [Mum66, Proposition 3]

(i) H(δ) has a unique irreducible representation V (δ) on which k∗ acts naturally. V (δ) can be
described explicitly as the space of functions K1(δ) −→ k with the action:

∀g ∈ V (δ), (α, x, χ) ∈ H(δ), (α, x, χ) · g : y 7−→ αχ(y)−1g(y − x).

(ii) Any representation V of H(δ) on which k∗ acts naturally is isomorphic to V (δ)r with

r := dimk(V
K̃), V K̃ being the subspace of K̃-invariant elements of V for any maximal level

subgroup K̃ ⊂ H(δ).

Proof. (i) Let (V, ρ) be an irreducible representation on which H(δ) acts naturally. Let K̃ ⊂ H(δ) be
any maximal level subgroup. Since ρ(x) ∈ GL(V) is annihilated by T#K̃ − 1 ∈ k[T] for all x ∈ K̃,

and char(k) ∤ #K̃, we can diagonalize ρ(x) for all x ∈ K̃. Since K̃ is abelian, we can co-diagonalize
all of these endomorphisms with the same basis, so that V can be decomposed into

V =
⊕

χ∈Hom(K̃,k∗)

Vχ,

where Vχ := {v ∈ V | ∀x ∈ K̃, ρ(x)(v) = χ(x) · v} is the eigenspace of weight χ for all character

χ ∈ Hom(K̃, k∗).
Let y ∈ H(δ). Then, by easy computations in the Heisenberg group, we get that

∀z ∈ K̃, y−1zy = eδ(z, y) · z.

We denote by χy the character z ∈ K̃ 7−→ eδ(z, y) ∈ k∗. Now, let χ0 be the trivial character and

v ∈ Vχ0
. Then, we have for all z ∈ K̃:

ρ(z)(ρ(y)(v)) = ρ(y) ◦ ρ(y−1zy)(v) = ρ(y) ◦ ρ(χy(z) · z)(v) = χy(z) · ρ(y) ◦ ρ(z)(v)
= χy(z) · ρ(y)(χ0(z) · v) = χy(z) · ρ(y)(v)

Hence, ρ(y)(v) ∈ Vχy
.

We consider the map

γ : H(δ)/(k∗ · K̃) −→ Hom(K̃, k∗)
y 7−→ χy

This map is well defined since χy(z) = eδ(z, y) = z−1y−1zy = 1 for all y ∈ k∗ · K̃ and z ∈ K̃. It

is injective since χy(z) = 1 for all z ∈ K̃ implies that z commutes with y, so that y ∈ k∗ · K̃ by

maximality of K̃. Finally, it is surjective because eδ is non-degenerate. Hence γ is an isomorphism.
Now, since γ is surjective, all the characters of Hom(K̃, k∗) are of the form χy for some y ∈ H(δ)

and since ρ(y) maps Vχ0
to Vχy

, we either have all the eigenspaces zero or non-zero. We suppose the
latter. Furthermore, if we fix v ∈ Vχ0

and denote by W the subspace spanned by all the ρ(y)(v) for

y ∈ H(δ) then W ∩ Vχ must have dimension one for all χ ∈ Hom(K̃, k∗) by injectivity of γ. W being
stable by ρ and V being irreducible, we must have V =W so the Vχ all have dimension 1. This proves
the uniqueness.

To conclude point (i), consider the space V (δ) of functions K1(δ) −→ k with the action of H(δ)
given by:

∀g ∈ V (δ), (α, x, χ) ∈ H(δ), (α, x, f) · g : y 7−→ αχ(y)−1g(y − x).

5.1. THETA STRUCTURES 169

Taking K̃ := sδ(K1(δ)) = {(1, x, 1) | x ∈ K1(δ)}, we still have a decomposition

V (δ) =
⊕

χ∈Hom(K̃,k∗)

V (δ)χ.

With V (δ)χ = {g ∈ V (δ) | ∀x, y ∈ K1(δ), g(y − x) = χ(x)g(y)} = k · χ−1, so that dimk V (δ)χ = 1 for

all χ ∈ Hom(K̃, k∗). Consequently, V (δ) is an irreducible representation, and is the only one up to
isomorphism. This proves (i).

(ii) Any representation V on which k∗ acts naturally can be decomposed into a direct sum of
irreducible representations, so V is isomorphic to V (δ)r by (i). With this decomposition, we see

that V K̃ = Vχ0 ≃ V (δ)rχ0
, χ0 being the trivial character of a maximal level subgroup K̃. Since

dimk V (δ)χ0 = 1, we conclude that r = dimk(V
K̃).

Corollary 5.1.26. Let V be an irreducible representation of H(δ) on which k∗ acts naturally. Then

for any maximal level subgroup K̃ ⊂ H(δ), the subspace V K̃ of elements fixed by K̃ has dimension 1.

Proof. By point (i) of Theorem 5.1.25, we have V ≃ V (δ) so point (ii) of the same theorem ensures

that dimk(V
K̃) = 1 for any maximal level subgroup K̃ ⊂ H(δ).

Definition 5.1.27. We define the representation V := Γ(A,L) of G(L) given by:

∀(x, ϕ) ∈ G(L), s ∈ Γ(A,L), UL(x, ϕ)(s) := t∗−x(ϕ(s)).

Remark 5.1.28. This is well defined because ϕ maps L to t∗xL so that ϕ(s) ∈ Γ(A, t∗xL) and
t∗−x(ϕ(s)) ∈ Γ(A, t∗−xt

∗
xL) ≃ Γ(A,L).

Theorem 5.1.29. If L is ample and separable, then the representation (Γ(A,L), UL) of G(L) is
irreducible.

Proof. Let K̃ be a maximal level subgroup ofG(L) andK ⊂ K(L) its image via ρL. LetB := A/K and
π : A −→ B be the projection map (of kernelK). By Grothendieck’s descent theorem (Theorem 5.1.4),

L descends to a line bundleM such that L = π∗M. By maximality of K̃, we get that the polarization
φM associated to M has degree 1 (see the proof of Proposition 5.1.10). Hence, χ(M) = ±1 by
Theorem 1.4.62. Since L = π∗M is ample,M is also ample by [The24, Tag 0B5V] and it follows that
dimk Γ(A,M) = χ(M) = 1 by Corollary 1.4.64. Besides, π∗ maps the sections ofM to the sections

of L invariant under the action of K̃. It follows that dimk Γ(A,L)K̃ = dimk Γ(A,M) = 1, so that
(Γ(A,L), UL) is irreducible by Theorem 5.1.25.

By Theorem 5.1.29 the action of the theta group G(L) on global sections Γ(A,L) is irreducible
and by Theorem 5.1.25, this representation must be isomorphic to the canonical representation V (δ)
of the Heisenberg group H(δ). Hence, there exists an isomorphism β : V (δ)

∼−→ Γ(A,L) respecting
the group actions of H(δ) and G(L), namely such that:

∀v ∈ V (δ), h ∈ H(δ), β(h · v) = ΘL(h) · β(v). (5.6)

Since both V (δ) and Γ(A,L) are irreducible, β is uniquely determined up to multiplication by a scalar,
as a consequence of Schur’s lemma [Lan04, Lemma XVIII.5.9]. V (δ), which is the space of functions
K1(δ) −→ k has a canonical basis (δi)i∈K1(δ) given by the Kronecker delta functions:

∀i, j ∈ K1(δ), δi(j) :=

{
1 if i = j
0 if i ̸= j

This gives a basis (θi)i∈K1(δ) of Γ(A,L) given by θi := β(δi) for all i ∈ K1(δ).

Definition 5.1.30. The basis (θi)i∈K1(δ) is called the basis of theta functions associated to the theta
structure ΘL.

https://stacks.math.columbia.edu/tag/0B5V

170 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

5.1.6 When theta functions become coordinates

When computing isogenies and performing arithmetic operations on abelian varieties, we shall natu-
rally represent points in the projective space by evaluating a basis of theta functions at these points.
The goal of this section is to define this evaluation properly and to determine when it fully represents
points in the projective space i.e. when theta functions define a projective embedding and can be
considered as coordinates. Let L be a separable ample line bundle on A.

Definition 5.1.31. Let x ∈ A. We define

L(x) := Lx ⊗OA,x
κ(x),

where Lx and OA,x are respectively the stalks of L and OA at x and κ(x) := OA,x/mA,x is the residue
field of OA,x.

When x is a closed point (x ∈ A(k)), we have κ(x) = k since k is algebraically closed, so L(x) ≃ k.
Consider an isomorphism λx : L(x) ∼−→ k and define for all s ∈ Γ(A,L), s(x) := λx(s(x)), where s(x) is
the image of s in L(x). Since λx is determined up to a scalar in k∗, so is s(x) but [θi(x)]i∈K1(δ) defines
a projective point (provided one of the coordinates is non-zero) independent of the choice of λx. When
L is generated by global sections (so that (θi(x))i∈K1(δ) is never zero), this defines a morphism

JL : A −→ Pd−1
k

x 7−→ [θi(x)]i∈K1(δ)
(5.7)

with d := #K1(δ) =
∏
i=1 di, which corresponds to the morphism induced by the basis of theta

functions (θi)i∈K1(δ) (Theorem 1.4.9). When L is very ample this map is a closed immersion.

Lemma 5.1.32. Let L be an ample and separable line bundle and n ∈ N∗ not divisible by char(k). If
A[n] ⊆ K(L), there exists an ample and separable line bundleM such that L =Mn.

Proof. We assume that A[n] ⊆ K(L). Then, for all x, y ∈ A[n], we have by Proposition 5.1.6.(v)

eLn(x, y) = eL(x, ny) = eL(x, 0) = 1.

Hence, A[n] is isotropic in K(Ln), so by Proposition 5.1.12, we can lift A[n] to a level subgroup of
G(Ln) and by Grothendieck’s descent theorem (Theorem 5.1.4), there exists an ample line bundle

M′ such that Ln = [n]∗M′. But, we know that [n]∗M′ ≃ M′n2 ⊗ (M′−1 ⊗ [−1]∗M′)(n
2−n)/2 by

Corollary 1.4.18 and we know thatM′−1⊗[−1]∗M′ ∈ Pic0(A) by Lemma 1.4.65, so that (L⊗M′−n)n ∈
Pic0(A). It follows that L ⊗M′−n ∈ Pic0(A) by Lemma 1.4.65. Since Pic0(A) = Â(k) is n-divisible,
we can write L⊗M′−n = Nn with N ∈ Pic0(A), so that L =Mn withM :=M′ ⊗N . M is ample
and separable since L is and char(k) ∤ n. This completes the proof.

Theorem 5.1.33. Let L be an ample separable line bundle of A of type δ. If there exists n ≥ 3 such
that n|δ then L is very ample and the map JL from Eq. (5.7) is a closed immersion.

Proof. Under the assumptions of the theorem, we have A[n] ⊆ K(L) with n ≥ 3 and there exists an
ample and separable line bundleM on A such that L =Mn by Lemma 5.1.32. Since n ≥ 3 andM
is ample, we then get that L is very ample by Theorem 1.4.22.

In particular, by the above theorem, theta functions (θLi)i are theta coordinates i.e. define a
projective embedding when L is of level 3 (δ = (3, · · · , 3)) or bigger. However, this theorem does not
apply when L is of level 2 (δ = (2, · · · , 2)), an assumption that we shall make when computing isogenies
to minimize the number of theta functions to handle. In that case, we still have a partial result that
will be sufficient for our needs. We obtain that theta functions define embedding of the Kummer
variety KA := A/± ↪−→ Pd−1

k . By abuse of language, we shall still call them theta coordinates in this
case.

Theorem 5.1.34. Let L be a symmetric line bundle on A ([−1]∗L ≃ L). Assume that char(k) ̸= 2.
Then:

(i) L2 is generated by global sections, so that JL2 : A −→ Pd−1
k introduced in Eq. (5.7) is well-defined.

5.1. THETA STRUCTURES 171

(ii) JL2 factors through the projection π : A −→ KA = A/±.

(iii) If (A,L) is irreducible i.e. cannot be decomposed into a product of polarised abelian varieties,
then JL2 induces an embedding of the Kummer variety KA ↪−→ Pd−1

k .

In other words, theta functions (θL
2

i)i induce projective coordinates on KA.

Proof. (i) has been proved in [PP02, Corollary 3.9.(ii)]. (ii) follows from Proposition 5.3.7 and point
(ii) of Proposition 5.3.8. (iii) has been proved in [BL04, Theorem 4.8.1] over the complex numbers.
The result is more general but a proof over any field could not be found in the literature.

5.1.7 The theta null point

For algorithmic applications, it will be necessary to represent theta structures on a computer. In this
section, we introduce the theta null point as the evaluation of theta functions at zero. We shall see
that when L is very ample, the theta null point fully determines the theta-structure from which it is
obtained and may be used to represent it.

Let L be an ample separable line bundle on A generated by global sections. In Section 5.1.6, we
have seem how to evaluate theta functions at closed points. Since 0 ∈ A(k) is a closed point, we can
evaluate the map defined in Eq. (5.7) JL(0) := (θi(0))i∈K1(δ).

Definition 5.1.35. We call JL(0) ∈ Pd−1
k the theta null point attached to the theta structure ΘL.

To prove our main theorem (Theorem 5.1.39), we shall see how a theta null point can determine
the evaluation of theta functions on the whole of K(L). We first explain how to evaluate sections of
Γ(A,L) at all points x ∈ K(L) in a coherent way (if we work in affine space instead of projective space).
Recall the notations of Section 5.1.6 and Definition 5.1.31 in particular. We define isomorphisms
λx : L(x) ∼−→ k that factors through a fixed choice of isomorphism λ0 : L(0) ∼−→ k for all x ∈ K(L).
As we have seen in Proposition 5.1.21, the theta structure ΘL defines a symplectic isomorphism

ΘL : K(δ)
∼−→ K(L) and a section sL : K(L) −→ G(L) by the formula sL := ΘL ◦ sδ ◦ Θ

−1

L , with
sδ : (x, χ) ∈ K(δ) 7−→ (1, x, χ) ∈ H(δ). For all x ∈ K(L), let us write sL(x) := (x, ϕx), with
ϕx : L ∼−→ t∗xL. For all x ∈ K(L), ϕx induces an isomorphism ϕx(0) : L(0)

∼−→ t∗xL(0) = L(x), so we
can define λx := λ0 ◦ ϕx(0)−1 : L(x) ∼−→ k. As in Section 5.1.6, we can then define:

∀s ∈ Γ(A,L),∀x ∈ K(L), s(x) := λx(s(x)) = λ0(ϕ
−1
x (t∗xs)(0)),

where s(x) is the image of s in L(x). Up to a choice of symplectic isomorphism ΘL : K(δ) −→ K(L),
this method to evaluate points of K(L) yields a method to evaluate points of K(δ).

Definition 5.1.36. For all (i, χ) ∈ K(δ) and s ∈ Γ(A,L), we define the value of s at (i, χ) by:

s(i, χ) := s(x) = λx(s(x)) = λ0(ϕ
−1
x (t∗xs)(0)),

with x := ΘL(i, χ) ∈ K(L) and s(x) the image of s in L(x).

Lemma 5.1.37. Let s ∈ Γ(A,L) and g ∈ G(L). Let (α, i1, χ1) := Θ−1
L (g) ∈ H(δ). Then, for all

(i2, χ2) ∈ K(δ),
(g · s)(i2, χ2) = αχ2(i1)χ1(i1)

−1s(i2 − i1, χ2χ
−1
1),

where g · s is the result of the the theta group action of g on s defined in Definition 5.1.27.

Proof. Let (i2, χ2) ∈ K(δ) and x := ΘL(i2, χ2). Then

s(i2, χ2) = λ0(ϕ
−1
x (t∗xs)(0)) = λ0((t

∗
−xϕ

−1
x)(s)(0)) = λ0(((−x, t∗−xϕ−1

x) · s)(0))
= λ0((g

′−1 · s)(0)),
(5.8)

with g′ := sL(x) = (x, ϕx) ∈ G(L). It follows that

(g · s)(i2, χ2) = λ0((g
′−1g · s))(0)) = λ0(((g

−1g′)−1 · s)(0)). (5.9)

172 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Besides,

Θ−1
L (g−1g′) = Θ−1

L (g)−1 ·Θ−1
L (g′)

= (α, i1, χ1)
−1 ·Θ−1

L ◦ sL ◦ΘL(i2, χ2)

= (α, i1, χ1)
−1 · sδ(i2, χ2) = (χ1(i1)α

−1,−i1, χ−1
1) · (1, i2, χ2)

= (χ1(i1)χ2(i1)
−1α−1, i2 − i1, χ2χ

−1
1),

so that g−1g′ = γ · g′′ with g′′ := sL ◦ ΘL(i2 − i1, χ2χ
−1
1) and γ := χ1(i1)χ2(i1)

−1α−1 ∈ k. Finally,
we obtain by Eqs. (5.8) and (5.9):

(g · s)(i2, χ2) = λ0(((γ
−1 · g′′−1) · s)(0)) = γ−1λ0((g

′′−1 · s)(0))
= γ−1s(i2 − i1, χ2χ

−1
1) = αχ2(i1)χ1(i1)

−1s(i2 − i1, χ2χ
−1
1).

Lemma 5.1.38. For all i ∈ K1(δ) and (j, χ) ∈ K(δ),

θi(j, χ) = χ(i)θi−j(0).

Proof. Let i ∈ K1(δ), (j, χ) ∈ K(δ) and g := ΘL(1, j, χ). Recall the notations of the previous section:
H(δ) acts on V (δ), δi ∈ V (δ) is the Kronecker function and β is an isomorphism V (δ)

∼−→ Γ(A,L)
respecting the actions of H(δ) on V (δ) and G(L) on Γ(A,L). Then

g · θi = g · β(δi) = β((1, j, χ) · δi) = β(χ(i+ j)−1δi+j) = χ(i+ j)−1β(δi+j)

= χ(i+ j)−1θi+j

Combining this equality with Lemma 5.1.37, we get that

χ(i+ j)−1θi+j(0) = (g · θi)(0) = χ(j)−1θi(−j, χ−1).

Replacing g by g′ := ΘL(1,−j, χ−1), we finally get the desired equality:

θi(j, χ) = χ(i)θi−j(0).

Theorem 5.1.39. Let L be a separable line bundle generated by global sections.

(i) If the symplectic isomorphism ΘL : K(δ)
∼−→ K(L) is fixed then the theta null point (θi(0))i∈K(δ)

completely determines the section sL : K(L) −→ G(L).

(ii) If L is very ample, the theta null point completely determines the full theta structure ΘL.

Proof. (i) Assume (θi(0))i∈K(δ) ̸= 0 and let y ∈ K(L) and (j, χ) := Θ
−1

L (y) ∈ K(δ). Let i ∈ K1(δ)
such that θi−j(0) ̸= 0. Then

λ0(ϕ
−1
y (t∗yθi)(0)) = θi(j, χ) = χ(i)θi−j(0) ̸= 0.

ϕy being determined up to a scalar, ϕy is entirely determined by the value θi−j(0) so sL(y) = (y, ϕy)
is entirely determined by θi−j(0).

(ii) If L is very ample, then the map JL : A −→ Pd−1
k from Eq. (5.7) is an embedding so for all

(j, χ) ∈ K(δ) the projective point (θi(ΘL(j, χ)))i∈K1(δ) fully determines ΘL(j, χ). But by construction,

θi(ΘL(j, χ)) = θi(j, χ), which is determined by the theta null point by Lemma 5.1.38. It follows that
the theta null point also determines ΘL : K(δ)

∼−→ K(L), so it determines the whole theta structure
by (i) and Proposition 5.1.21 (see also Remark 5.1.22).

Remark 5.1.40. When 4|δ (4|di for all i ∈ J1 ; gK), the theta null point also determines projective
equations defining the image of the embedding A ↪−→ Pd−1

k (called Riemann relations), so it com-
pletely determines the triple (A,L,ΘL) made of the polarised abelian variety with the theta structure.
We refer to [Mum66, Corollary p. 340] for a proof of this result.

5.2. ISOGENIES AND THETA STRUCTURES 173

5.1.8 Action by translation of the theta group on theta functions

Let L be a separable ample line bundle on A generated by global sections. We have seen in Section 5.1.7
that the theta-group G(L) acts on theta null point by translation (see Lemma 5.1.38 in particular).
In this section, we prove that this fact is general. Let us define an action on JL(A) as follows:

∀g ∈ G(L),∀x ∈ A(k), g · JL(x) := [(g · θLi)(x)]i∈K(δ)

Lemma 5.1.41. This is a well-defined group action, in the sense that JL(A) is stable by G(L)-action.
More precisely, if x ∈ A(k) and (y, ϕy) ∈ G(L), then (y, ϕy) · JL(x) = JL(x+ y).

Proof. Let x ∈ A(k), (y, ϕy) ∈ G(L) and s ∈ Γ(A,L). Choose an isomorphism λx : L(x) ∼−→ k
defining the evaluation at x (as in Section 5.1.7), so that

((y, ϕy) · s)(x) = λx(((y, ϕy) · s)(x)) = λx(t
∗
−yϕy(s)(x)).

Now, define λx+y : L(x + y)
∼−→ k that factor through λx by λx+y := λx ◦ ϕy(x)−1, where ϕy(x) :

L(x) ∼−→ t∗yL(x) = L(x + y) is the image at x of ϕy : L ∼−→ t∗yL. We then define the evaluation of s
at x+ y by

s(x+ y) := λx+y(s(x+y)) = λx(ϕy(x)
−1(s(x+y))) = λx(ϕy(x)

−1(t∗ys(x))) = λx(ϕ
−1
y (t∗ys)(x)).

But s 7−→ t∗−yϕy(s) and s 7−→ ϕ−1
y (t∗ys) are automorphisms of L and Aut(L) ≃ k∗ (as we have seen in

the proof of Lemma 5.1.2) so they differ by a constant µ ∈ k∗. It follows that ((y, ϕy)·s)(x) = µs(x+y)
for all s ∈ Γ(A,L), so that

(y, ϕy) · JL(x) = [((y, ϕy) · θLi)(x)]i∈K(δ) = [µθLi (x+ y)]i∈K(δ) = [θLi (x+ y)]i∈K(δ) = JL(x+ y).

This completes the proof.

Remark 5.1.42. If we fix a theta-structure ΘL, this action on the basis of theta-functions is given
by

∀(α, i, χ) ∈ H(δ),∀j ∈ K1(δ), ΘL(α, i, χ) · θj = αχ(i+ j)−1θi+j . (5.10)

If x ∈ A(k) and y = ΘL(j, χ) ∈ K(L), we then have:

[θi(x+ y)]i = [ΘL(1, j, χ) · θi(x)]i = [χ(i+ j)−1θi+j(x)]i = [χ(i)−1θi+j(x)]i. (5.11)

The above result is consistent with Lemma 5.1.38 when x = 0.

5.2 Isogenies and theta structures

In this section, we present how the theory of theta functions applies to isogenies. Our goal is to prove
a formula that relates theta functions on the domain and codomain of an isogeny called the isogeny
theorem (Theorem 5.2.5). As expected, this formula will be crucial to our computational algorithms
introduced in Chapter 6.

5.2.1 Compatible theta structures

Before introducing the isogeny theorem in Section 5.2.2, we give some compatibility conditions on
theta structures defined on the domain and codomain of a polarised isogeny. This section is quite
technical and the reader does not need to focus too much attention on details. The main goal is to
characterise theta structures on the codomain that may be compatibles with a fixed theta structure
on the domain. This is achieved in Proposition 5.2.4.

Let f : (A,L) −→ (B,M) be an isogeny between polarized abelian varieties (such that f∗M≃ L).
The goal of this paragraph is to relate the theta structures on (A,L) and (B,M) via f . For this, we
first define a notion of compatibility between theta structures.

174 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Let us recall some notations of Section 5.1.2. Let K := ker(f) and K̃ be the level subgroup above
K given by an isomorphism α : f∗M ∼−→ L:

K̃ = {(x, t∗xα ◦ α−1) | x ∈ K}.

Let αf : Z(K̃) −↠ G(M) be the surjective map defined by Equation 5.1. It induces an isomorphism

Z(K̃)/K̃
∼−→ G(M) by Proposition 5.1.5.(iii).

Let ΘL and ΘM be theta structures on (A,L) and (B,M) respectively and sL : K(L) −→ G(L),
sM : K(M) −→ G(M) be the sections induced by ΘL and ΘM respectively (see Remark 5.1.22).

These sections define level structures on their respective theta groups given by K̃i(sL) := sL(Ki(ΘL))

and K̃i(sM) := sM(Ki(ΘM)) for i ∈ {1, 2}, given the symplectic decompositions K(L) = K1(ΘL)⊕
K2(ΘL) and K(M) = K1(ΘM)⊕K2(ΘM) induced by ΘL and ΘM respectively.

Definition 5.2.1. We say that the level structures given by sL and sM are compatible (with respect
to f) if:

(i) K̃ = (K̃ ∩ K̃1(sL))⊕ (K̃ ∩ K̃2(sL)).

(ii) αf maps K̃i(sL) ∩ Z(K̃) to K̃i(sM) for i ∈ {1, 2}.

When sL satisfies point (i) only, we say that sL is compatible with K̃.
We say that the theta structures ΘL and ΘM are compatible (with respect to f) if their induced

level structures are compatible.

Lemma 5.2.2. Assume that sL is compatible with K̃ i.e. that K̃ = sL(K) = (K̃ ∩ K̃1(sL)) ⊕ (K̃ ∩
K̃2(sL)). Then:

(i) K = (K ∩ K1(ΘL)) ⊕ (K ∩ K2(ΘL)) (we say that K is compatible with the decomposition
K(L) = K1(ΘL)⊕K2(ΘL)).

(ii) K⊥ = (K⊥ ∩K1(ΘL))⊕ (K⊥ ∩K2(ΘL)).

(iii) sL(K
⊥ ∩Ki(ΘL)) = Z(K̃) ∩ K̃i(sL) for i ∈ {1, 2}.

(iv) Z(K̃) = k∗ · (Z(K̃) ∩ K̃1(sL))⊕ (Z(K̃) ∩ K̃2(sL)).

Proof. (i) Follows immediately from the assumption K̃ = (K̃ ∩ K̃1(sL))⊕ (K̃ ∩ K̃2(sL)).
(ii) Let x ∈ K⊥ that we can write uniquely x = x1 + x2 with xi ∈ Ki(ΘL) for i ∈ {1, 2}. Now, if

y ∈ K ∩K1(ΘL), we have

1 = eL(x, y) = eL(x1, y)eL(x2, y) = eL(x2, y),

since K1(ΘL) and K are isotropic, so x2 is orthogonal to K ∩ K1(ΘL) and it is also orthogonal to
K ∩K2(ΘL) since K2(ΘL) is isotropic. Hence x2 ∈ K⊥. Similarly, we get x1 ∈ K⊥. (ii) follows.

(iii) Let y ∈ sL(Ki(ΘL)). Then y = sL(x) for some x ∈ Ki(ΘL). Let y′ ∈ K̃. Then there exists

x′ ∈ K such that y′ = sL(x
′) (since K̃ = sL(K) by assumption). We then have:

yy′y−1y′−1 = eL(x, x
′),

so y ∈ Z(K̃) if and only if x ∈ K⊥. (iii) follows.

(iv) If y ∈ Z(K̃), then we have ρL(y) ∈ K⊥ as we saw in the proof of (iii). Since ysL(ρL(y))
−1 ∈

ker(ρL) ≃ k∗, we have y ∈ k∗sL(K⊥). Hence, the result follows from the equality sL(K
⊥) = (Z(K̃)∩

K̃1(sL))⊕ (Z(K̃) ∩ K̃2(sL)) proved in point (iii).

Lemma 5.2.3. Assume that K is compatible with the decomposition of K(L): K = (K ∩K1(ΘL))⊕
(K ∩ K2(ΘL)). Then sL is compatible with K̃ if and only if αf (K̃i(sL) ∩ ρ−1

L (K)) = {1} for all
i ∈ {1, 2}.

5.2. ISOGENIES AND THETA STRUCTURES 175

Proof. Proposition 5.1.5 ensures that αf induces an isomorphism Z(K̃)/K̃
∼−→ G(M). It follows that

ker(αf) = K̃.

If sL is compatible with K̃, we have K̃ = (K̃1(sL) ∩ ρ−1
L (K)) ⊕ (K̃2(sL) ∩ ρ−1

L (K)) so K̃i(sL) ∩
ρ−1
L (K) ⊆ ker(αf) i.e. αf (K̃i(sL) ∩ ρ−1

L (K)) = {1} for all i ∈ {1, 2}.
Conversely, if αf (K̃i(sL) ∩ ρ−1

L (K)) = {1} for all i ∈ {1, 2}, then we have (K̃1(sL) ∩ ρ−1
L (K)) ⊕

(K̃2(sL)∩ρ−1
L (K)) ⊆ ker(αf) = K̃. But ρL maps injectively K̃ toK and we haveK = (K∩K1(ΘL))⊕

(K ∩K2(ΘL)), so the preceding inclusion must be an equality. This completes the proof.

Proposition 5.2.4. Let (A,L,ΘL) be a polarized abelian variety with a theta structure of type δL.
Let K ⊆ K(L) be a subgroup that we write K = K1 ⊕ K2 with Ki ⊂ Ki(ΘL) for i ∈ {1, 2} and

f : A −→ B an isogeny of kernel K. Let K̃ be the level subgroup above K given by:

K̃ := sL(K) = (K̃1(sL) ∩ ρ−1
L (K))⊕ (K̃2(sL) ∩ ρ−1

L (K)),

and M be the ample line bundle on B induced by K̃ satisfying f∗M ≃ L (see Theorem 5.1.4). We
denote δM ∈ Zg the type ofM.

Let K⊥ = K⊥,1 ⊕ K⊥,2 (K⊥,i = K⊥ ∩ Ki(ΘL) for i ∈ {1, 2}) be the symplectic decomposition
induced by the symplectic decomposition of K(L). Then there is a bijection between theta structures
of type δM on (B,M) compatible with ΘL and isomorphisms σ : K⊥,1/K1

∼−→ K1(δM).

Proof. Let sL : K(L) −→ G(L) be the section induced by ΘL (defining the level subgroups K̃i(sL)).
Consider the group k∗ ×K⊥,1 ×K⊥,2, equiped with the group law:

(α, x1, y2) · (β, x2, y2) := (αβeL(x1, y2), x1 + x2, y1 + y2),

similar to the Heisenberg group law. Consider the map:

k∗ ×K⊥,1 ×K⊥,2 −→ Z(K̃)
(α, x, y) 7−→ α · sL(x+ y)

which is a group homomorphism. This is actually an isomorphism by Lemma 5.2.2 (points (iii) and

(iv)). Besides, it maps {1} ×K1 ×K2 to sL(K) = K̃ so it induces an isomorphism

ΦL : k∗ ×K⊥,1/K1 ×K⊥,2/K2
∼−→ Z(K̃)/K̃.

If x ∈ K⊥,1 and y ∈ K⊥,2, then eL(x, y) is invariant modulo K1 on the left and modulo K2 on the
right. Hence

y ∈ K⊥,2 7−→ eL(., y) ∈ Hom(K⊥,1, k∗)

induces a map φ : K⊥,2/K2 −→ Hom(K⊥,1/K1, k
∗). If y ∈ K⊥,2/K2 is in the kernel of this map

then any representative y ∈ K⊥,2 of y is orthogonal to K⊥,1 and to K⊥,2 since K⊥,2 ⊂ K2(ΘL)
is isotropic so y ∈ K⊥⊥ = K (by Lemma 5.1.15.(ii)), and y = 0. Hence, φ is injective. Now, let
χ ∈ Hom(K⊥,1/K1, k

∗). Then χ induces a character χ ∈ Hom(K⊥,1, k∗) annihilating K1. Let us
extend χ to a charcter χ̃ ∈ Hom(K(L), k∗) annihilating K2(ΘL) and write χ̃ = eL(., y) for some
y ∈ K(L) (by non degeneracy of eL). Since χ̃ annihilates K2(ΘL) which is maximal isotropic,
y ∈ K2(L) and since χ̃ annihilates K1 and K2 ⊆ K2(ΘL), we have y ∈ K⊥, so y ∈ K⊥,2. Hence φ is
surjective, so it is an isomorphism.

Let σ be an isomorphism K⊥,1/K1
∼−→ K1(δM). Then σ̂ : y 7−→ φ(y) ◦ σ−1 is an isomorphism

K⊥,2/K2
∼−→ K2(δM) = K̂1(δM). We can then define a theta-structure ΘM on M making the

following diagram commute:

k∗ ×K⊥,1/K1 ×K⊥,2/K2
ΦL //

idk∗×σ×σ̂
��

Z(K̃)/K̃

αf

��

H(δM)
ΘM // G(M)

(5.12)

176 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Now, we prove that ΘM is compatible with ΘL. Indeed, K̃ = sL(K) so point (i) of Definition 5.2.1
is satisfied. For point (ii), we have by construction of ΘM:

K̃1(sM) = ΘM({1} ×K1(δM)× {1}) = αf (sL(K
1,⊥)) = αf (K̃1(sL) ∩ Z(K̃))

the last equality following from Lemma 5.2.2.(iii). Similarly, we have K̃2(sM) = αf (K̃2(sL)∩Z(K̃)),
so that ΘM and ΘL are indeed compatible.

Conversely, let ΘM be a theta-structure on M compatible with ΘL. Then the canonical level
subgroups defined by ΘM are K̃i(sM) = αf (Z(K̃)∩ K̃i(sL)) for i ∈ {1, 2}. Hence, the level structure
induced by sM is completely determined and by Proposition 5.1.21 and ΘM only depends on a
symplectic isomorphism ΘM : K(δM) −→ K(M) respecting the symplectic decomposition K(M) =

K1(ΘM)⊕K2(ΘM) withKi(ΘM) := ρM◦αf (Z(K̃)∩K̃i(sL)) for i ∈ {1, 2}. By Proposition 5.1.17.(ii),

ΘM is determined by an isomorphism K1(δM) ≃ K⊥,1/K1
∼−→ K1(ΘM).

5.2.2 The isogeny theorem

Theorem 5.2.5 (isogeny theorem). Let f : (A,L) −→ (B,M) be an isogeny between polarized abelian
varieties of kernel K, ΘM and ΘL be compatible theta-structures on (A,L) and (B,M) respectively,
and σ : K⊥,1/K1

∼−→ K1(δM) the isomorphism induced by ΘM as in Proposition 5.2.4.
Let (θLi)i∈K1(δL) and (θMi)i∈K1(δM) the theta functions associated to ΘL and ΘM respectively.

Then, there exists λ ∈ k∗ such that for all i ∈ K1(δM),

f∗θMi = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .

Proof. By Corollary 5.1.26, two sections of Γ(A,L) differ by a constant if they are stable by the
action of a maximal level subgroup of G(L). We first need to prove that compatibility between
theta-structures ensure the following compatibility between the G(L) and G(M)-action (as defined
in Definition 5.1.27):

∀s ∈ Γ(A,M), x ∈ K⊥, sL(x) · f∗s = f∗(sM(f(x)) · s).

Let s ∈ Γ(A,M), x ∈ K⊥ and y := f(x). By compatibility of ΘL or ΘM, we have αf (sL(x)) = sM(y)
(this is point (ii) of Definition 5.2.1 or a clear consequence of the construction of ΘM in the proof of
Proposition 5.2.4). Let us write sL(x) := (x, ϕL(x)) and sM(y) := (y, ϕM(y)). Then, by the definition
of αf , we have (after identification L = f∗M)

ϕL(x)(f
∗s) = f∗ϕM(y)(f∗s) = f∗(ϕM(y)(s)),

where we used the fact that sL(x) is the unique element of G(L) over x in α−1
f (sM(y)) (see the

definition of αf in the proof of Proposition 5.1.5). Hence, we have

sL(x) · f∗s = t∗−x(ϕL(x)(f
∗s)) = t∗−x(f

∗(ϕM(y)(s))) = f∗(t∗−y(ϕM(y)(s))) = f∗(sM(y) · s).

We have in particular, for all x ∈ K⊥,

sL(x) · f∗θM0 = f∗(sM(f(x)) · θM0) = f∗βM(Θ−1
M (sM(f(x))) · δ0),

δ0 is the Kronecker delta function at 0 on K1(δM) and βM is an isomorphism V (δM)
∼−→ Γ(B,M)

compatible with the actions of G(M) and H(δM) (defined in Section 5.1.5). Besides, by the definition
of ΘM,

Θ−1
M (sM(f(x))) = (idk∗ × σ × σ̂) ◦ Φ−1

L ◦ α
−1
f (sM(f(x))) = (1, σ(x1), σ̂(x2)),

where x := x1 + x2, with xi ∈ K⊥,i for i ∈ {1, 2}. Since δ0 is invariant by the action of sδL(K2(δL))
by Eq. (5.10) and σ annihilates K1, f

∗θM0 is stable by the action of sL(K1 ⊕K⊥,2).
Let x ∈ K1 ⊕K⊥,2, that we write x = ΘL(i0, j0), then we have

sL(x) ·
∑

j∈Θ
−1
L (K1)

θLj =
∑

j∈Θ
−1
L (K1)

j0(j + i0)
−1θLj+i0 =

∑
j∈Θ

−1
L (K1)

j0(j)
−1θLj

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 177

with j0(j) = eδ((j, 1), (0, j0)) = 1 for all j ∈ Θ
−1

L (K1), since K1 and K⊥,2 are orthogonal. Hence,∑
j∈Θ

−1
L (K1)

θLj is stable by the action of sL(K1 ⊕K⊥,2).

We have seen in the proof of Proposition 5.2.4 that K⊥,2/K2 ≃ ̂K⊥,1/K1, so that

#K⊥,2/#K2 = #K⊥,1/#K1 i.e. #K⊥,2 ·#K1 = #K⊥,1 ·#K2.

But we also have #K ·#K⊥ = #K(L) = #K1(L)2 by Lemma 5.1.15.(i), with #K = #K1 ·#K2 and
#K⊥ = #K⊥,1 ·#K⊥,2, so that

#K⊥,2 ·#K1 = #K⊥,1 ·#K2 = #K1(L).

Hence, K1 ⊕K⊥,2 is maximal isotropic, so we can apply Theorem 5.1.25.(ii) and conclude that there
exists λ ∈ k∗ such that

f∗θM0 = λ
∑

j∈Θ
−1
L (K1)

θLj .

To conclude, we get by Eq. (5.10) that for all i ∈ K1(δM), and i0 ∈ Θ
−1

L (σ−1({i})),

f∗θMi = f∗(ΘM(1, i, 1) · θM0) = ΘL(1, i0, 1) · f∗θM0 = λΘL(1, i0, 1) ·
∑

j∈Θ
−1
L (K1)

θLj

= λ
∑

j∈Θ
−1
L (K1)

θLj+i0 = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .

5.3 Symmetric theta structures and arithmetic applications

In this section, we assume that char(k) ̸= 2. We introduce the theory of symmetric theta structures
which are well suited for arithmetic applications. In particular, in Section 5.3.2, we obtain a dupli-
cation formula which yields algorithms not only to double points (as its name indicate) but also to
perform differential addition of points. This formula will also be used to change the level of theta co-
ordinates for isogeny evaluation in Section 6.1.1 and obtain change of theta coordinates in Section 6.2.
Finally, we present formulas to compute level 2 symmetric theta structures on Montgomery curves
and the associated theta coordinates.

5.3.1 The theory of symmetric theta structures

In this section that introduces the theory of symmetric theta structures, we start with the notion of
symmetric and totally symmetric line bundles. We then define and study symmetric theta structures
on theta groups of symmetric line bundles. When L is a totally symmetric line bundle, we introduce
compatibility conditions between symmetric theta structures on G(L) and G(L2). Our main result
is Theorem 5.3.30. In the next section, we shall use these compatibility conditions to obtain the
duplication formula. Finally, we prove that isogenies map symmetric theta structures to symmetric
theta structures and prove compatibility conditions on symmetric theta structures with respect to an
isogeny. These properties will be essential in Chapter 6.

Symmetric line bundles

Definition 5.3.1. A line bundle L on A is symmetric if [−1]∗L ≃ L and antisymmetric if [−1]∗L ≃
L−1.

If L is a line bundle on A, then we immediately obtain that L ⊗ [−1]∗L is symmetric and L ⊗
[−1]∗L−1 is antisymmetric. We recall that being antisymmetric is equivalent to belonging to Pic0(A)
by Lemma 1.4.65.(iv), so that L ⊗ [−1]∗L−1 ∈ Pic0(A).

Proposition 5.3.2. (i) The symmetric line bundles of Pic0(A) correspond to the points of Â[2].

178 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

(ii) Every ample line bundle L on A is algebraically equivalent to a symmetric line bundle: there
exists L0 ∈ Pic0(A) such that L ⊗ L−1

0 is symmetric.

(iii) If L is an ample line bundle on A, then the set of symmetric line bundles algebraically equivalent
to L is

{L′ ⊗ φL(x) | x ∈ φ−1
L (Â[2]) = [2]−1K(L)},

where L′ is any symmetric line bundle algebraically equivalent to L. This set contains 22g

elements (where g := dim(A)).

Proof. Let L0 ∈ Pic0(A). Then L0 is antisymmetric by Lemma 1.4.65.(iv), so it is antisymmetric if

and only if L0 ≃ [−1]∗L0 ≃ L−1
0 i.e. L0 ∈ Â[2]. This proves (i).

Let L be an ample line bundle on A. By Lemma 1.4.65.(iv), L ⊗ [−1]∗L−1 ∈ Pic0(A) so
[−1]∗L ⊗ L−1 ∈ Pic0(A). L being ample, φL : x ∈ A(k) 7−→ t∗xL ⊗ L−1 ∈ Pic0(A) is an isogeny by
Proposition 1.4.46.(iii) so it is surjective and there exists x ∈ A(k) such that [−1]∗L⊗L−1 ≃ t∗xL⊗L−1

i.e. [−1]∗L ≃ t∗xL. Let y ∈ A such that x = 2y. Then t∗yL is symmetric. Indeed

[−1]∗t∗yL = t∗−y[−1]∗L ≃ t∗−yt∗xL = t∗x−yL = t∗yL

and t∗yL ⊗ L−1 = φL(y) ∈ Pic0(A) so L is algebraically equivalent to t∗yL. This proves (ii).
Let L′ be symmetric and algebraically equivalent to L. Then any other symmetric line bundle

equivalent to L is also equivalent to L′ so it is of the form L′⊗L0 with L0 ∈ Pic0(A) symmetric (since

L′ and L′ ⊗ L0 are symmetric). We can then write L0 = φL(x) with x ∈ φ−1
L (Â[2]) = [2]−1K(L) by

(u). Conversely, any element of the form L′⊗φL(x) with x ∈ φ−1
L (Â[2]) is symmetric and algebraically

equivalent to L. This proves that the set of symmetric line bundles algebraically equivalent to L is

{L′ ⊗ φL(x) | x ∈ φ−1
L (Â[2]) = [2]−1K(L)},

Since this set is in bijection with Â[2], its cardinality is #A[2] = 22g by Corollary 1.4.34 since
char(k) ̸= 2.

Normalization

Let L be a symmetric line bundle on A. Then, there exists an isomorphism Φ : L ∼−→ [−1]∗L. For
every closed point x ∈ A(k), Φ induces an isomorphism

Φ(x) : L(x) ∼−→ [−1]∗L(x) = L(−x),

where L(x) := Lx ⊗OA,x
κ(x), as defined in Definition 5.1.31.

Definition 5.3.3. We say that Φ is normalized when Φ(0) : L(0) ∼−→ L(0) is the identity.

Requiring Φ to be normalized uniquely determines Φ. Indeed, the composition

L Φ−→ [−1]∗L [−1]∗Φ−→ [−1]∗[−1]∗L = L

is an automorphism of L so it corresponds to the multiplication by a scalar λ ∈ k∗ (as we have seen in
the proof of Lemma 5.1.2). Since Φ is normalized, we must have λ = 1 so [−1]∗Φ ◦ Φ is the identity.
The equality [−1]∗Φ◦Φ = idL determines Φ up to sign but, again, since Φ is normalised, Φ is actually
uniquely determined.

Definition 5.3.4. Let L be a symmetric line bundle on A and Φ : L ∼−→ [−1]∗L a normalized
isomorphism. If x ∈ A[2], then Φ(x) is an automorphism L(x) ∼−→ L(−x) = L(x), so it corresponds
to the multiplication by a scalar in k∗ (since L(x) ≃ k). We denote by eL∗ (x) this scalar.

Proposition 5.3.5. 1. The map eL∗ : A[2] −→ k∗ takes values in {±1}.

2. If L andM are symmetric line bundles on A, then eL⊗M
∗ = eL∗ · eM∗ .

3. If f : A −→ B is a morphism, and L is a symmetric line bundle on B, then ef
∗L

∗ (x) = eL∗ (f(x))
for all x ∈ A[2].

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 179

4. If L ∈ Pic0(A) is a symmetric line bundle corresponding to y ∈ Â[2], then we have eL∗ (x) =

e2(x, y) for all x ∈ A[2], where e2 : A[2]× Â[2] −→ {±1} is the Weil pairing.

5. eL∗ is the quadratic form associated to the commutator pairing eL2 on A[2] × A[2]. In other
words, we have:

∀x, y ∈ A[2], eL2(x, y) = eL∗ (x+ y)eL∗ (x)
−1eL∗ (y)

−1.

Proof. Since Φ is normalized, [−1]∗Φ ◦ Φ = idL so for all x ∈ A[2], Φ(−x) ◦ Φ(x) = idL(x) i.e.
Φ(x)2 = idL(x) i.e. eL∗ (x)

2 = 1 i.e. eL∗ (x) ∈ {±1}. This proves (i). Points (ii) and (iii) immediately
follow from the definition of eL∗ .

The proof of point (iv) follows [Mum66, p. 305]. Let L ∈ Pic0(A) symmetric corresponding to

y ∈ Â[2]. Then, we have [2]∗L ≃ L2 by Corollary 1.4.18 since L is antisymmetric (as any element of
Pic0(A)) and L2 ≃ OA since L has order 2. Then, we have an isomorphism ψ : [2]∗L ∼−→ OA that

we can construct explicitly. Let Dy ∈ Pic0(A) be the divisor on A representing y ∈ Â(k), so that
we may identify L with L(Dy), and let gy ∈ k(A) such that div(gy) = [2]∗Dy. Then, we may define

ψ : [2]∗L ∼−→ OA as the division by gy. Indeed, for all open subset U ⊆ A, we have

Γ(U, [2]∗L) ≃ Γ(U,L([2]∗Dy)) = {f ∈ k(U) | div(f) + div(gy)|U ≥ 0} = g−1
y|UΓ(U,OA)

It follows that t∗xψ : t∗x[2]
∗L ∼−→ t∗xOA is the multiplication by gy ◦ tx. Besides, t∗x[2]∗L = ([2]◦ tx)∗L =

[2]∗L since x ∈ A[2] so the following diagram commutes

[2]∗L
ψ

// OA

e2(x,y)

��

t∗x[2]
∗L

t∗xψ
// t∗xOA,

since we have e2(x, y) = gy/gy ◦ tx. Now, let z ∈ A(k) such that 2z = x. Then, by localizing the
diagram at −z, we get that ψ(z) = e2(x, y)ψ(−z).

Besides, we have the following diagram

[2]∗L
ψ

//

[2]∗Φ

��

OA

[−2]∗L
[−1]∗ψ

// [−1]∗OA

which is commutative since it commutes at 0 (Φ being normalized). Localizing this diagram at z,
we get that ψ(−z) = Φ(x) ◦ [2]∗Φ(z) where [2]∗Φ(z) = Φ(x) is the multiplication by eL∗ (x). This
proves (iv).

Point (v) requires to introduce more material. This will be proved in Corollary 5.3.24.

Totally symmetric line bundles

Definition 5.3.6. Let L be a symmetric line bundle on A. We say that L is totally symmetric if
eL∗ (x) = 1 for all x ∈ A[2].

Proposition 5.3.7. Let L be a symmetric line bundle on A and π : A −→ KA := A/± be the
projection to the Kummer variety. Then L is totally symmetric if and only if L descends to KA via
π, namely if and only if there exists a line bundleM on KA such that L = π∗M.

Proof. See [Mum66, Proposition 1, p. 305].

Proposition 5.3.8. (i) If L is an ample and separable line bundle on A of type δ with 2|δ, then
there exists a unique totally symmetric line bundle algebraically equivalent to L.

(ii) A line bundle L is totally symmetric if and only if there exists a symmetric line bundleM such
that L =M2.

180 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Proof. Since 2 | δ, we have A[2] ⊆ K(L) so there exists an ample and separable line bundle M
such that L =M2 by Lemma 5.1.32. We may write L = (M⊗ [−1]∗M) ⊗ (M⊗ [−1]∗M−1), with
M⊗ [−1]∗M−1 ∈ Pic0(A) by Lemma 1.4.65. Hence, L is algebraically equivalent to M⊗ [−1]∗M.
Besides,M⊗ [−1]∗M is symmetric and by Proposition 5.3.5, we have:

∀x ∈ A[2], e
M⊗[−1]∗M
∗ (x) = eM∗ (x)eM∗ (−x) = eM∗ (x)2 = 1.

Hence,M⊗ [−1]∗M is totally symmetric.
Now, we prove that such a totally symmetric line bundle is unique in the algebraic class of L.

Without loss of generality, we assume that L is totally symmetric. Then, the other symmetric line
bundles algebraically equivalent to L are the L⊗M, whereM∈ Pic0(A) corresponds to y ∈ Â[2] by
Proposition 5.3.2. We then have by Proposition 5.3.5 and since L is totally symmetric:

∀x ∈ A[2], eL⊗M
∗ (x) = eL∗ (x)e

M
∗ (x) = eM∗ (x) = e2(x, y).

The Weil pairing e2 being non-degenerate, L ⊗ M is totally symmetric if and only if y = 0 i.e.
M≃ OA. This proves (i).

If L is the square of a symmetric line bundle, it is clear by Proposition 5.3.5.(ii) that L is totally
symmetric. Conversely, we assume that L is totally symmetric. Then Proposition 5.3.5.(v) ensures
that eL2 is trivial on A[2] ⊆ K(L2). Let ϵ be the type of L2. Then 2|ϵ (since A[2] ⊆ K(L2)) and we
may identify eL2 with eϵ : K1(ϵ)×K2(ϵ) −→ k∗ defined in Eq. (5.5) by:

∀(x1, χ1), (x2, χ2) ∈ K1(ϵ)×K2(ϵ), eϵ((x1, χ1), (x2, χ2)) = χ2(x1)χ1(x2)
−1.

For all i ∈ J1 ; gK, let xi ∈ K1(ϵ) =
∏g
i=1 Z/ϵiZ be equal to 1 at index i and 0 everywhere else, ζi be

a ϵi-th primitive root of unity and χi ∈ K2(ϵ) be the character given by χi(xi) = ζi and χi(xj) = 1

for all 1 ≤ j ̸= i ≤ g. Then, ϵi/2xi and χϵi/2i have order 2, so we have

ζ
ϵ2i /4
i = χ

ϵi/2
i (ϵi/2xi) = eδ((xi, 1), (0, χi)) = 1.

It follows that ϵi|ϵ2i /4, so that 4|ϵi. Hence, A[4] ⊆ K(L2) and A[2] = [2]A[4] ⊆ [2]K(L2) = K(L) by
Lemma 5.1.7. By Lemma 5.1.32, there exists an ample and separable line bundleM such that L =M2.
Let M0 be a symmetric line bundle algebraically equivalent to M (it does exist by Proposition
5.3.2.(ii)). Then M2

0 is totally symmetric and algebraically equivalent to L. By uniqueness, we get
L =M2

0. This proves (ii).

Symmetric theta structures

Definition 5.3.9. Let L be a symmetric line bundle on A and Φ : L ∼−→ [−1]∗L be a normalized
isomorphism. For all (x, ϕx) ∈ G(L), we consider the composition:

L Φ // [−1]∗L
[−1]∗ϕx

// [−1]∗t∗xL = t∗−x[−1]∗L
(t∗−xΦ)−1

// t∗−xL

and define ∆−1 : G(L) −→ G(L) by:

∀(x, ϕx) ∈ G(L), ∆−1(x, ϕx) := (−x, (t∗−xΦ)−1 ◦ [−1]∗ϕx ◦ Φ).

∆−1 is a group homomorphism and makes the following diagram commute:

1 // k∗ // G(L)

∆−1

��

ρL // K(L)

[−1]

��

// 0

1 // k∗ // G(L)
ρL // K(L) // 0

We say that g ∈ G(L) is symmetric when ∆−1(g) = g−1. We say that a subgroup G ⊆ G(L) is
symmetric if all its elements are symmetric.

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 181

Remark 5.3.10. Since [−1]∗Φ ◦ Φ = idL, we easily check that ∆−1 is an involution.

Lemma 5.3.11. Let L be a symmetric line bundle on A, ΘL be a theta structure on G(L) and

(K̃1(ΘL), K̃2(ΘL)) be the associated level structure. Then ΘL is compatible with itself with respect to

the isogeny [−1] (in the sense of Definition 5.2.1) if and only if K̃1(ΘL) and K̃2(ΘL) are symmetric.

Proof. Since ker([−1]) = {0}, the only level subgroup above {0} is K̃ = {(0, idL)} and Z(K̃) = G(L),
Definition 5.2.1 ensures that ΘL is compatible with itself with respect to [−1] if and only if the map

α[−1] defined by Equation 5.1 maps K̃i(ΘL) to itself for i ∈ {1, 2}. Since α[−1] = ∆−1
−1 by Equation

5.1, this is equivalent to ∆−1(K̃i(ΘL)) = K̃i(ΘL) for i ∈ {1, 2}. This means that for all x ∈ Ki(ΘL)

(i ∈ {1, 2}), the unique element x̃ ∈ K̃i(ΘL) lying above x satisfies ∆−1(x̃) ∈ K̃i(ΘL) so ∆−1(x̃) = x̃−1

since x̃−1 is the only element of K̃i(ΘL) lying above −x. This means that the K̃i(ΘL) (i ∈ {1, 2}) are
symmetric.

Definition 5.3.12. If L has level δ, we define the analogue of ∆−1 on the Heisenberg group H(δ) by:

∀(α, x, χ) ∈ H(δ), D−1(α, x, χ) := (α,−x, χ−1) =
α2

χ(x)
(α, x, χ)−1.

Similarly, we say that h ∈ H(δ) is symmetric if D−1(h) = h−1.

The symmetric elements of H(δ) are of the form (α, x, χ) with α2 = χ(x). It follows in particular

that the canonical level subgroups K̃1(δ) := {(1, x, 1) | x ∈ K1(δ)} and K̃2(δ) := {(1, 0, χ) | χ ∈
K2(δ)} are symmetric.

Proposition 5.3.13. Let ΘL be a theta structure associated to a symmetric line bundle L of level δ.
Then, the following statements are equivalent:

(i) The associated level subgroups K̃1(ΘL) and K̃2(ΘL) are symmetric.

(ii) ΘL ◦D−1 = ∆−1 ◦ΘL.

If these assertions hold, we say that ΘL is a symmetric theta structure.

Proof. (i) =⇒ (ii) Assume K̃1(ΘL) and K̃2(ΘL) are symmetric. Then, for all (α, x, χ) ∈ H(δ), we
have:

ΘL ◦D−1(α, x, χ) = ΘL

(
α2

χ(x)
(α, x, χ)−1

)
=

α2

χ(x)
ΘL(α, x, χ)

−1

=
α2

χ(x)

(
α

χ(x)
·ΘL(1, x, 1) ·ΘL(1, 0, χ)

)−1

= α ·ΘL(1, 0, χ)
−1 ·ΘL(1, x, 1)

−1

= α ·∆−1 ◦ΘL(1, 0, χ) ·∆−1 ◦ΘL(1, x, 1) (since the K̃i(ΘL) are symmetric)

= ∆−1 ◦ΘL(α, x, χ),

so (ii) holds: ΘL ◦D−1 = ∆−1 ◦ΘL.
(ii) =⇒ (i) Assume ΘL ◦D−1 = ∆−1 ◦ΘL. Then, for i ∈ {1, 2}, we have:

∆−1(K̃i(ΘL)) = ∆−1 ◦ΘL(K̃i(δ)) = ΘL ◦D−1(K̃i(δ)) = ΘL(K̃i(δ)) = K̃i(ΘL),

where we used the fact that the canonical level subgroup K̃i(δ) is symmetric. Hence, K̃1(ΘL) and

K̃2(ΘL) are symmetric and (i) holds.

Lemma 5.3.14. Let L be a symmetric line bundle on A and x ∈ K(L). Then, there are only 2
symmetric elements ±x̃ lying above x.

Proof. Let x ∈ K and x̃ ∈ G(L) be a lift of x. Then, ∆−1(x̃) and x̃−1 both lie above −x so there
exists λ ∈ k∗ such that ∆−1(x̃) = λx̃−1. Let α be a square root of λ. Then, ∆−1(±x̃/α) = ±αλx̃−1 =
(±x̃/α)−1, so ±x̃/α are symmetric elements of G(L) lying above x and they are the only ones.

182 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Lemma 5.3.15. Let L be a symmetric line bundle on A and x ∈ K(L) of order 2. Then, for every
x̃ ∈ G(L) lying above x, we have

∆−1(x̃) = eL∗ (x)x̃.

Proof. Let Φ : L ∼−→ [−1]∗L be a normalized isomorphism. Let x ∈ K(L) of order 2 and x̃ :=
(x, ϕx) ∈ G(L) lying above x. Then, ∆−1(x̃) = (x, (t∗−xΦ)

−1 ◦ [−1]∗ϕx ◦Φ) (since −x = x). Localizing
(t∗−xΦ)

−1 ◦ [−1]∗ϕx ◦ Φ and ϕx at 0, we get maps L(0) −→ L(−x) = L(x) that differ by Φ(x)−1 :
L(x) −→ L(−x) = L(x) i.e. by eL∗ (x). The result follows.

If L is symmetric, there does not always exist a symmetric theta structure on G(L). It is the case,
however, when L is totally symmetric by the following proposition. In general, the obstruction is a
consequence of the preceding lemma.

Proposition 5.3.16. Let L be a symmetric line bundle on A and K be an isotropic subgroup in
K(L). Then, the following conditions are equivalent:

(i) There exists a symmetric level subgroup in G(L) above K.

(ii) For all x ∈ K[2], eL∗ (x) = 1.

(iii) If B = A/K and f : A −→ B is the associated isogeny, there exists a symmetric line bundleM
on B such that f∗M≃ L.

In particular, if L is totally symmetric and if K(L) = K1(L)⊕K2(L) is a symplectic decomposition,
then we have a symmetric level structure sL : K(L) −→ G(L) lying above this decomposition. The
other symmetric level structures are given by the action of the character eL(c, ·) on sL, with c ∈ A[2].

Proof. (i) ⇐⇒ (iii) Let f : A −→ B be an isogeny of kernel K, M be a line bundle on B such
that f∗M ≃ L and α be an isomorphism f∗M ∼−→ L. Then, by Grothendieck’s descent theorem
(Theorem 5.1.4), the couple (M, α) corresponds to a level subgroup K̃ on G(L) above K given by:

K̃ := {(x, t∗xα ◦ α−1) | x ∈ K}.

Now, let Φ : L ∼−→ [−1]∗L be a normalized isomorphism and consider the isomorphism:

f∗[−1]∗M = [−1]∗f∗M
[−1]∗α

// [−1]∗L Φ−1
// L.

Then, the couple ([−1]∗M,Φ−1 ◦ [−1]∗α) corresponds to the level subgroup

K̃ ′ := {(x, t∗x(Φ−1 ◦ [−1]∗α) ◦ (Φ−1 ◦ [−1]∗α)) | x ∈ K}
= {(x, (t∗xΦ)−1 ◦ [−1]∗(t∗−xα ◦ α) ◦ Φ) | x ∈ K}

= {(−x, (t∗−xΦ)−1 ◦ [−1]∗(t∗xα ◦ α) ◦ Φ) | x ∈ K} = ∆−1(K̃).

Hence, K̃ is symmetric if and only if K̃ ′ = ∆−1(K̃) = K̃ if and only if M ≃ [−1]∗M (by Theo-
rem 5.1.4) i.e.M is symmetric. This proves the equivalence (i)⇐⇒ (iii).

(i) =⇒ (ii) Let K̃ be a symmetric level subgroup on G(L) above K. Let x ∈ K[2] and x̃ ∈ K̃ the

lift of x in K̃. Then by Lemma 5.3.15, we have ∆−1(x̃) = eL∗ (x)x̃ and ∆−1(x̃) = x̃−1 = x̃ since K̃ is
symmetric and x̃ has order 2. Hence, eL∗ (x) = 1. This proves (ii).

(ii) =⇒ (i) Assume that for all x ∈ K[2], eL∗ (x) = 1. To find a symmetric level subgroup K̃ on
G(L) above K, we proceed as in the proof of Proposition 5.1.12. Since K is isotropic for eL, ρ

−1
L (K)

is abelian by Proposition 5.1.12 so it suffices to lift a basis a basis of K with symmetric elements only.
Let x ∈ K of order n ∈ N∗ and x̃ ∈ G(L) a symmetric lift of x (it does exist by Lemma 5.3.14). If

n is even, write n = 2m with m ∈ N∗. Then, x̃m is a symmetric element above [m]x, which has order
2, so Lemma 5.3.15 ensures that x̃−m = ∆−1(x̃

m) = eL∗ (mx)x̃
m = x̃m, so x̃m has order 2 and x̃ has

order 2m = n. If n is odd, x̃n is a symmetric element above [n]x = 0 which admits only 2 symmetric
lifts ±1 ∈ G(L) by Lemma 5.3.14. Hence, x̃n = ±1, so either x̃ or −x̃ is a symmetric lift of order n
of x. This proves that we can find a symmetric lift of any element of K, which proves (i).

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 183

If L is totally symmetric and if K(L) = K1(L)⊕K2(L) is a symplectic decomposition, then K1(L)
and K2(L) satisfy (ii), so we have a symmetric level structure sL : K(L) −→ G(L) lying above this
decomposition.

Let s′L : K(L) −→ G(L) be another symmetric level structure lying above K(L) = K1(L)⊕K2(L).
Then, by Lemma 5.1.24, s′L = eL(c, ·) · sL for some c ∈ K(L). sL and s′L being symmetric, we must
have eL(c, ·) ∈ {±1}, so c ∈ A[2]. Conversely, since L is totally symmetric, we have A[2] ⊆ K(L)
by Proposition 5.3.8 and Lemma 5.1.7 so all conjugates of sL by c ∈ A[2] define symmetric level
structures.

Maps between theta groups of symmetric line bundles

In this technical paragraph, we introduce some maps relating theta groups G(Ln) when L is a sym-
metric line bundle. These maps will be useful to study the compatibility of theta-structures of G(Ln)
when n varies. We shall also obtain Proposition 5.3.5.(v) as a corollary.

Definition 5.3.17. Let L be a separable line bundle on A and n ∈ N∗ not divisible by char(k). Then
we define the group homomorphism

εn : G(L) −→ G(Ln)
(x, ϕx) 7−→ (x, ϕ⊗nx),

where ϕ⊗nx is the isomorphism Ln ∼−→ t∗xLn induced by ϕx : L ∼−→ t∗xL, for all (x, ϕx) ∈ G(L).
εn makes the following diagram commute:

1 // k∗

λ7→λn

��

// G(L)

εn

��

ρL // K(L)� _

��

// 0

1 // k∗ // G(Ln)
ρLn
// K(Ln) // 0

Now, assume that L is a separable and symmetric line bundle on A and let n ∈ N∗ not divis-
ible by char(k). Then, we can define a map going the other way G(Ln) −→ G(L) as follows. By

Corollary 1.4.18, since L is symmetric, there exists an isomorphism Ψ : [n]∗L ∼−→ Ln2

. For all
(x, ϕx) ∈ G(Ln), consider the isomorphism:

[n]∗L Ψ // Ln2 ϕ⊗n
x // t∗xLn

2 t∗xΨ
−1

// t∗x[n]
∗L = [n]∗t∗nxL

and ρx : L ∼−→ t∗[n]xL, the unique isomorphism such that [n]∗ρx = t∗xΨ
−1 ◦ ϕ⊗nx ◦ Ψ. Note that this

makes sense because [n]x ∈ K(L) for all x ∈ K(Ln) by Lemma 5.1.7.

Definition 5.3.18. We denote ηn(x, ϕx) := ([n]x, ρx). ηn defines a map G(Ln) −→ G(L) that makes
the following diagram commute:

1 // k∗

λ7→λn

��

// G(Ln)

ηn

��

ρLn
// K(Ln)

[n]

��

// 0

1 // k∗ // G(L)
ρL // K(L) // 0

Since Ψ : [n]∗L ∼−→ Ln2

is defined up to multiplication by a scalar, ηn does not depend on it.
Furthermore, it is a surjective homomorphism.

Definition 5.3.19. Let L be a symmetric line bundle on A and n ∈ Z. We define for all g ∈ G(L):

∆n(g) := gn(n+1)/2 ·∆−1(g)
n(n−1)/2,

where ∆−1 has already been defined in Definition 5.3.9.

Lemma 5.3.20. (i) ∆n is a group homomorphism G(L) −→ G(L).

184 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

(ii) ∆n makes the following diagram commute:

1 // k∗

λ 7→λn2

��

// G(L)

∆n

��

ρL // K(L)

[n]

��

// 0

1 // k∗ // G(L)
ρL // K(L) // 0

(iii) For all n,m ∈ Z, ∆n ◦∆m = ∆nm.

Proof. (i) Let g := (x, ϕx), h := (y, ϕy) ∈ G(L). Then, by definition of the commutator pairing, we
have hg = eL(y, x)gh, so that (gh)k = eL(y, x)

k(k−1)/2gkhk for all k ∈ N∗ and:

∆n(gh) = (gh)
n(n+1)

2 (∆−1(gh))
n(n−1)

2

= eL(y, x)
n(n+1)(n2+n−2)

8 g
n(n+1)

2 h
n(n+1)

2 ∆−1

(
(gh)

n(n−1)
2

)
(∆−1 being a group homomorphism)

= eL(y, x)
n(n+1)(n2+n−2)+n(n−1)(n2−n−2)

8 g
n(n+1)

2 h
n(n+1)

2 ∆−1(g)
n(n−1)

2 ∆−1(h)
n(n−1)

2

Besides, since ∆−1(g) is a lift of −x, we have:

h
n(n+1)

2 ∆−1(g)
n(n−1)

2 = eL

(
n(n+ 1)

2
y,−n(n− 1)

2
x

)
∆−1(g)

n(n−1)
2 h

n(n+1)
2

= eL(x, y)
n2(n−1)(n+1)

4 ∆−1(g)
n(n−1)

2 h
n(n+1)

2

Since n(n+ 1)(n2 + n− 2) + n(n− 1)(n2 − n− 2) = 2n2(n− 1)(n+ 1), we conclude that

∆n(gh) = g
n(n+1)

2 ∆−1(g)
n(n−1)

2 h
n(n+1)

2 ∆−1(h)
n(n−1)

2 = ∆n(g)∆n(h).

This proves (i).
(ii) This is trivial by the definition of ∆n and ∆−1.
(iii) Let g ∈ G(L) and n,m ∈ Z. Then, we have

∆n ◦∆m(g) = ∆m(g)
n(n+1)

2 ∆−1 ◦∆m(g)
n(n−1)

2

=
(
g

m(m+1)
2 ∆−1(g)

m(m−1)
2

)n(n+1)
2

(
∆−1(g)

m(m+1)
2 ∆−1 ◦∆−1(g)

m(m−1)
2

)n(n−1)
2

But g and ∆−1(g) commute because eL(ρL(g), ρL(∆−1(g))) = eL(ρL(g),−ρL(g)) = 1 and ∆−1 is an
involution by Remark 5.3.10, so that

∆n ◦∆m(g) = g
nm(n+1)(m+1)

4 ∆−1(g)
nm(n+1)(m−1)

4 ∆−1(g)
nm(n−1)(m+1)

4 g
nm(n−1)(m−1)

4

= g
nm(n+1)(m+1)+nm(n−1)(m−1)

4 +∆−1(g)
nm(n+1)(m−1)+nm(n−1)(m+1)

2

= g
nm(nm+1)

2 ∆−1(g)
nm(nm−1)

2 = ∆nm(g)

This completes the proof.

Proposition 5.3.21. Assume that L is symmetric and that char(k) ∤ n. For all m ∈ Z, we denote by
∆L
m : G(L) −→ G(L) and ∆Ln

m : G(Ln) −→ G(Ln) the morphisms defined in Definition 5.3.19. Then,
we have:

(i) ∆L
−1 ◦ ηn = ηn ◦∆Ln

−1.

(ii) ∆Ln

−1 ◦ εn = εn ◦∆L
−1.

(iii) ηn ◦ εn = ∆L
n .

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 185

(iv) εn ◦ ηn = ∆Ln

n .

Proof. See [Mum66, Proposition 5, p. 311].

Proposition 5.3.22. Let g ∈ G(L2) be an element of order 2 and x := ρL2(g). Then η2(g) ∈
ker(ρL2) ≃ k∗ and η2(g) identifies with eL∗ (x).

Proof. See [Mum66, Proposition 6, p. 312].

Corollary 5.3.23. Let L be a symmetric line bundle on A. Then L is totally symmetric if and only
if

ker(η2) = {g ∈ G(L2) | g2 = 1}.

Proof. ⇐= Assume that L is totally symmetric. Then eL∗ (x) = 1 for all x ∈ A[2], so by Proposi-
tion 5.3.22, ker(η2) contains every element of order 2 of G(L2).

Conversely, if (x, ϕ) ∈ ker(η2), then [2]x = 0 and ϕ⊗2 = t∗xΨ ◦ Ψ−1, where Ψ is an isomorphism
[2]∗L ∼−→ L4. It follows that

t∗xϕ
⊗2 ◦ ϕ⊗2 = t∗2xΨ ◦ t∗xΨ−1 ◦ t∗xΨ ◦Ψ−1 = t∗0Ψ ◦Ψ−1 = idL4 ,

so that t∗xϕ ◦ ϕ = ±idL2 . If t∗xϕ ◦ ϕ = −idL2 , then we may write ϕ := iϕ0 with i2 = −1 and
t∗xϕ0 ◦ ϕ0 = idL2 . Then, (x, ϕ0) has order 2 so η2(x, ϕ0) = (0, idL) and η2(x, ϕ) = (0,−idL) ̸= (0, idL).
It follows that t∗xϕ ◦ ϕ = idL2 , so that (x, ϕ) has order 2.

=⇒ Assume that ker(η2) = {g ∈ G(L2) | g2 = 1}. Then, for all x ∈ A[2] ⊆ K(L2), we can find
x̃ ∈ G(L2) lying above x of order 2 and we have eL∗ (x) = η2(x̃) = 1 by Proposition 5.3.22 (with
canonical identifications). Hence, L is totally symmetric and the proof is complete.

Corollary 5.3.24 (Proposition 5.3.5.(v)). Let L be a symmetric line bundle on A. Then, we have:

∀x, y ∈ A[2], eL∗ (x+ y) = eL∗ (x)e
L
∗ (y)eL2(x, y).

Proof. Let x, y ∈ A[2] and g, h ∈ G(L2) be elements of order 2 lying above x and y respectively. Then
(gh)2 = ghg−1h−1 = eL(x, y). Let β ∈ k∗ be a square root of eL(x, y). Then βgh has order 2 and lies
above x+ y, so we have by Proposition 5.3.22:

eL∗ (x+ y) = η2(βgh) = η2(β)η2(g)η2(h) = β2eL∗ (x)e
L
∗ (y) = eL∗ (x)e

L
∗ (y)eL2(x, y).

The result follows.

Compatible symmetric theta structures

Let L be a totally symmetric line bundle on A. In this section, we study theta structures on G(L)
and G(L2) and their compatibility. The compatibility conditions we shall present are a requirement
for the duplication formula we shall introduce in Section 5.3.2 for arithmetic applications.

Let δ := (d1, · · · , dg) be the type of L. Then, we have a natural embedding K1(δ) ↪−→ K1(2δ)
via the multiplication by 2 map and conversely, we have a natural surjective map K1(2δ) −↠ K1(δ)
mapping x := (x1 mod 2d1, · · · , xg mod 2dg) to x := (x1 mod d1, · · · , xg mod dg). Looking at
the dual, we also have a natural embedding K2(δ) ↪−→ K2(2δ) mapping every χ ∈ K2(δ) to 2 ⋆ χ :
x ∈ K1(2δ) 7−→ χ(x) ∈ k∗ and a surjective map K2(2δ) −↠ K2(δ) mapping every χ ∈ K2(2δ) to
χ : x ∈ K1(δ) 7−→ χ(2x) ∈ k∗.

Definition 5.3.25. We define E2 : H(δ) −→ H(2δ), H2 : H(2δ) −→ H(δ) and for all n ∈ Z,
Dn : H(δ) −→ H(δ) respectively by:

∀(α, x, χ) ∈ H(δ), E2(α, x, χ) := (α2, 2x, 2 ⋆ χ)

∀(α, x, χ) ∈ H(2δ), H2(α, x, χ) := (α2, x, χ)

∀(α, x, χ) ∈ H(δ), Dn(α, x, χ) := (αn
2

, nx, χn)

E2, H2 and Dn are the analogues of ε2, η2 and ∆n in Heisenberg groups. Indeed, we can prove
that:

186 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Lemma 5.3.26. (i) E2, H2 and Dn are group homomorphisms;

(ii) E2 ◦DH(δ)
−1 = D

H(2δ)
−1 ◦ E2 and H2 ◦DH(2δ)

−1 = D
H(δ)
−1 ◦H2;

(iii) E2 ◦H2 = D
H(2δ)
2 and H2 ◦ E2 = D

H(δ)
2 ;

(iv) For all h ∈ H(δ), Dn(h) = hn(n+1)/2D−1(h)
n(n−1)/2;

where the exponents indicate the group of definition when there is an ambiguity.

Lemma 5.3.27. Assume that 2|δ. Then:

ker(H2) = {h ∈ H(2δ) | h2 = 1}

Proof. By the definition of H2,

ker(H2) = {(α, x, χ) ∈ H(2δ) | α2 = 1, x = 0 and χ = 1}.

We prove that these elements are exactly the elements of order 2 of H(2δ). If (α, x, χ) ∈ ker(H2),
then x = 0 so di|xi for all i ∈ J1 ; gK (where δ := (d1, · · · , dg)). But 2|δ so 2|x. Besides, χ = 1
so χ(2y) = 1 for all y ∈ K1(δ). Now, if y ∈ K1(2δ), we may write yi ≡ y′i + ϵidi mod 2di with
0 ≤ y′i ≤ di − 1 and ϵi ∈ {0, 1} for all i ∈ J1 ; gK, so that 2yi ≡ 2y′i mod 2di, so that 2y = 2y′ with
y′ := (y′i)1≤i≤g ∈ K1(δ) and χ(2y) = χ(2y′) = 1. Hence, χ2 = 1 and in particular χ(x) = 1 since
2|x. Hence, (α, x, χ)2 = (α2χ(x), 2x, χ2) = 1. Conversely, if (α, x, χ)2 = 1, then 2x = 0 so di|xi for
all i ∈ J1 ; gK and x = 0 and 2|x. Furthermore, χ(2y) = 1 for all y ∈ K1(2δ) so χ(x) = 1 and finally
α2 = 1. Hence, (α, x, χ) ∈ ker(H2).

Definition 5.3.28. Let L be a totally symmetric line bundle. Let ΘL and ΘL2 be two theta-
structures on G(L) and G(L2) respectively. We say they are compatible if both of the following
diagrams commute:

H(δ)

ΘL

��

E2 // H(2δ)

ΘL2

��

G(L) ε2 // G(L2)

H(2δ)

ΘL2

��

H2 // H(δ)

ΘL

��

G(L2)
η2 // G(L)

We also say that (ΘL,ΘL2) is a pair of compatible theta structures (for (L,L2)).

Lemma 5.3.29. If ΘL and ΘL2 are compatible theta-structures and ΘL2 is symmetric, then ΘL is
symmetric.

Proof. We assume that ΘL2 is symmetric. Then, by the compatibility of ΘL and ΘL2 , Lemma
5.3.26.(ii) and Proposition 5.3.21, we have

∆L
−1 ◦ΘL ◦H2 = ∆L

−1 ◦ η2 ◦ΘL2 = η2 ◦∆L2

−1 ◦ΘL2 = η2 ◦ΘL2 ◦DH(2δ)
−1 = ΘL ◦H2 ◦DH(2δ)

−1

= ΘL ◦DH(δ)
−1 ◦H2

and since H2 is surjective, ∆L
−1 ◦ΘL = ΘL ◦DH(δ)

−1 so ΘL is symmetric.

Theorem 5.3.30. (i) Every symmetric theta-structure ΘL2 on G(L2) induces a unique symmetric
theta-structure ΘL on G(L) that is compatible with ΘL2 .

(ii) The resulting theta-structure ΘL on G(L) only depends on the symplectic isomorphism ΘL2 :
K(2δ)

∼−→ K(L2).

(iii) Every symmetric theta-structure on G(L) is induced by a symmetric theta-structure on G(L2),
or equivalently, by a symplectic isomorphism K(2δ)

∼−→ K(L2).

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 187

Proof. (i) L is totally symmetric so 2|δ by Proposition 5.3.8.(ii) and Lemma 5.1.7. Hence, by
Lemma 5.3.27, we have:

ker(H2) = {h ∈ H(2δ) | h2 = 1}.

Let ΘL2 be a symmetric theta-structure on G(L2). Since L is totally symmetric, ker(η2) = {g ∈
G(L2) | g2 = 1} by Corollary 5.3.23 and ΘL2 is an isomorphism so ker(η2 ◦ΘL2) = ker(H2) so η2 ◦ΘL2

factors through H2 and there exists an isomorphism ΘL : H(δ) ∼−→ G(L) such that η2◦ΘL2 = ΘL◦H2.
We now verify that ΘL is a theta-structure. Since both H2 and η2 coincide with λ 7−→ λ2 on k∗

and ΘL2 is the identity on k∗, ΘL is the identity on k∗. It remains to prove that the isomorphism
ΘL := ρL ◦ΘL ◦sδ : K(δ)

∼−→ K(L) induced by ΘL is symplectic. Let (x1, χ1), (x2, χ2) ∈ K(δ). Then,
for i ∈ {1, 2}, there exists (x′i, χ

′
i) ∈ K(2δ) such that x′i = xi and χ

′
i = χi, so that H2 ◦ s2δ(x′i, χ′

i) =
sδ(xi, χi) and

ΘL(xi, χi) = ρL ◦ΘL ◦ sδ(xi, χi) = ρL ◦ΘL ◦H2 ◦ s2δ(x′i, χ′
i) = ρL ◦ η2 ◦ΘL2 ◦ s2δ(x′i, χ′

i)

= [2]ρL2 ◦ΘL2 ◦ s2δ(x′i, χ′
i) = [2]ΘL2(x′i, χ

′
i).

It follows that

eL(ΘL(x1, χ1),ΘL(x2, χ2)) = eL([2]ΘL2(x′1, χ
′
1), [2]ΘL2(x′2, χ

′
2))

= eL2([2]ΘL2(x′1, χ
′
1),ΘL2(x′2, χ

′
2)) (by Proposition 5.1.6.(v))

= eL2(ΘL2(x′1, χ
′
1),ΘL2(x′2, χ

′
2))

2

= e2δ((x
′
1, χ

′
1), (x

′
2, χ

′
2))

2 = χ′
2(x

′
1)

2χ′
1(x

′
2)

−2

= χ′
2(2x

′
1)χ

′
1(2x

′
2)

−1 = χ′
2(x

′
1)χ

′
1(x

′
2)

−1 = χ2(x1)χ1(x2)
−1

= eδ((x1, χ1), (x2, χ2)),

so ΘL is indeed symplectic and ΘL is a theta-structure.
We finally prove that ΘL2 ◦ E2 = ε2 ◦ΘL. Let h ∈ H(δ). Then, H2 being surjective, there exists

h′ ∈ H(2δ) such that H2(h
′) = h. We then have

ε2 ◦ΘL(h) = ε2 ◦ΘL ◦H2(h
′) = ε2 ◦ η2 ◦ΘL2(h′)

= ∆L2

2 ◦ΘL2(h′) (by Proposition 5.3.21.(iv))

= ΘL2(h′)3∆L2

−1 ◦ΘL2(h′) = ΘL2(h′)3ΘL2 ◦DH(2δ)
−1 (h′) (since ΘL2 is symmetric)

= ΘL2(h′3D
H(2δ)
−1 (h′)) = ΘL2 ◦DH(2δ)

2 (h′) = ΘL2 ◦ E2 ◦H2(h
′) (by Lemma 5.3.26.(iii))

= ΘL2 ◦ E2(h)

We also obtain that ΘL is symmetric by Lemma 5.3.29. The uniqueness of ΘL follows from the
equality η2 ◦ΘL2 = ΘL ◦H2 and the surjectivity of H2. This proves (i).

(ii) Let ΘL2 and Θ′
L2 be two symmetric theta symmetric theta-structures on G(L2) inducing the

same symplectic isomorphism ΘL2 : K(2δ)
∼−→ K(L2) and let ΘL and Θ′

L be the compatible theta-
structures on G(L) they respectively induce. By Lemma 5.1.24, Θ′

L2 = ξ ·ΘL2 , where ξ is a character

ξ : K(2δ) −→ k∗ and since both associated level structures (K̃1(ΘL), K̃2(ΘL)) and (K̃1(Θ
′
L), K̃2(Θ

′
L))

are symmetric, ξ maps to {±1} by Lemma 5.3.14. Then, ξ2 = 1 so that η2 ◦ Θ′
L2 = η2 ◦ ΘL2 i.e.

Θ′
L ◦H2 = ΘL ◦H2 i.e. ΘL = Θ′

L, since H2 is surjective.

(iii) Let ΘL be a symmetric theta-structure on G(L). Let ΘL : K(δ)
∼−→ K(L) be the induced

symplectic isomorphism.
Step 1: First, we lift ΘL to construct a symplectic isomorphism ΘL2 : K(2δ)

∼−→ K(L2) such
that ΘL ◦H2 = [2] ◦ΘL2 and ΘL = ΘL2 ◦ E2, where

E2 : (x, χ) ∈ K(δ) 7−→ (2x, 2 ⋆ χ) ∈ K(2δ) and H2 : (x, χ) ∈ K(2δ) 7−→ (x, χ) ∈ K(δ). (5.13)

Let (x1, · · · , xg, χ1, · · · , χg) be a canonical basis of K(2δ) = K1(2δ) ⊕ K2(2δ), given as follows: for
all i ∈ J1 ; gK, let xi ∈ K1(2δ) =

∏g
i=1 Z/2diZ be equal to 1 at index i and 0 everywhere else and

χi ∈ K2(2δ) be a character such that χi(xi) is a 2di-th primitive root of unity and χi(xj) = 1 for all
1 ≤ j ̸= i ≤ g. Let (y1, · · · , yg, z1, · · · , zg) be a symplectic basis of K(L2) such that [2]yi = ΘL(xi, 1)

188 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

and [2]zi = ΘL(0, χi) for all i ∈ J1 ; gK. By Proposition 5.1.6.(v) and since ΘL is symplectic, we then
have for all i ∈ J1 ; gK:

eL2(yi, zi)
2 = eL2([2]yi, zi) = eL([2]yi, [2]zi) = eδ((xi, 1), (0, χi)) = χi(xi)

2,

so that eL2(yi, zi) = ±χi(xi). But we may change the sign of χi(xi) without affecting χi, so that
eL2(yi, zi) = χi for all i ∈ J1 ; gK. Then, we set ΘL2(xi, 1) := yi and ΘL2(0, χi) := zi for all i ∈ J1 ; gK.
This defines a symplectic isomorphism K(2δ)

∼−→ K(L2) such that ΘL ◦H2 = [2] ◦ΘL2 .
But we still have some liberty on the choice of ΘL2 . Note that we could change yi into yi + dizi

or zi into zi + diyi without changing the values of eL2 on the new symplectic basis basis and without
affecting the formula ΘL ◦H2 = [2] ◦ΘL2 .

Let (x, χ) ∈ K(δ). Then, there exists (x′, χ′) ∈ K(2δ) such that H2(x
′, χ′) = (x, χ). We then

have, as desired:

ΘL(x, χ) = ΘL ◦H2(x
′, χ′) = [2] ◦ΘL2(x′, χ′) = ΘL2(2x′, χ′2) = ΘL2(2x, 2 ⋆ χ)

= ΘL2 ◦ E2(x, χ)

Step 2: Now, we lift the level structure sL : K(L) −→ G(L) induced by ΘL, namely, we define
a level structure sL2 : K(L2) −→ G(L2) such that sL ◦ [2] = η2 ◦ sL2 and sL2 |K(L) = ε2 ◦ sL. Let

i ∈ J1 ; gK. Then, [2]yi = ΘL(xi, 1) ∈ K1(L) by construction. Since ΘL is symmetric, we know by
Proposition 5.3.13 that sL([2]yi) is symmetric. Now, η2 being surjective, there exists ỹi ∈ G(L2) such

that η2(ỹi) = sL([2]yi). Since ỹ−1
i and ∆L2

−1(ỹi) both lift −yi, we may write ∆L2

−1(ỹi) = λỹ−1
i with

λ ∈ k∗. We then have by Proposition 5.3.21.(i):

∆L
−1 ◦ sL([2]yi) = ∆L

−1 ◦ η2(ỹi) = η2(∆
L
−1(ỹi)) = η2(λỹ

−1
i) = λ2η2(ỹi)

−1 = λ2sL([2]yi)
−1,

so λ = ±1. If λ = 1, then ỹi is symmetric and we set sL2(yi) := ỹi. If λ = −1, we may change yi
into yi + dizi as suggested above. Indeed, if gi ∈ G(L2) is a lift of dizi of order 2, it is automatically
symmetric by Lemma 5.3.15 and since L is totally symmetric. We then have

∆L2

−1(ỹigi) = ∆L2

−1(ỹi)∆
L2

−1(gi) = −ỹ−1
i g−1

i = −eL2(yi, dizi)g
−1
i ỹ−1

i = −eL2(yi, zi)
di(ỹigi)

−1,

with eL2(yi, zi)
di = −1 since eL2(yi, zi) = χi(xi) is a primitive 2di-th root of unity, so ỹigi is symmetric

and we may set sL2(yi+dizi) := ỹigi. We proceed similarly to define sL2 on K2(L2) (changing zi into
zi + diyi if necessary).

By construction, sL ◦ [2] = η2 ◦sL2 . Now, we prove that sL2 |K(L) = ε2 ◦sL. Indeed, by Proposition

5.3.21.(iv) and since the level structure sL2 is symmetric, we have for all x ∈ K(L2):

ε2 ◦ sL([2]x) = ε2 ◦ η2 ◦ sL2(x) = ∆2 ◦ sL2(x) = sL2(x)3 ·∆−1 ◦ sL2(x) = sL2(x)3sL2(−x)
= sL2([2]x).

Since K(L) = [2]K(L2), we conclude that sL2 |K(L) = ε2 ◦ sL.
Step 3: We finally verify that the symmetric theta-structure ΘL2 is compatible with ΘL. Let

(α, x, χ) ∈ H(2δ). Then:

ΘL ◦H2(α, x, χ) = ΘL ◦ (α2, H2(x, χ)) = α2 · sL ◦ΘL ◦H2(x, χ) = α2 · sL([2]ΘL2(x, χ))

= α2 · η2 ◦ sL2 ◦ΘL2(x, χ) = η2(α · sL2 ◦ΘL2(x, χ)) = η2 ◦ΘL2(α, x, χ),

so ΘL ◦H2 = η2 ◦ΘL2 . Now, let (α, x, χ) ∈ H(δ). Then:

ΘL2 ◦ E2(α, x, χ) = ΘL2(α2, E2(x, χ)) = α2 · sL2 ◦ΘL2 ◦ E2(x, χ) = α2 · sL2 ◦ΘL(x, χ)

= α2 · ε2 ◦ sL ◦ΘL(x, χ) = ε2(α · sL ◦ΘL(x, χ)) = ε2 ◦ΘL(α, x, χ),

so ΘL2 ◦ E2 = ε2 ◦ΘL and the proof is now complete.

Remark 5.3.31. We have proved in Theorem 5.3.30.(iii) that any symmetric theta structure ΘL on
(A,L) is induced by a symplectic isomorphism K(2δ)

∼−→ K(L2). Equivalently, if δ := (d1, · · · , dg),
and if ζi ∈ k∗ is a primitive 2di-th root of unity for all i ∈ J1 ; gK, then ΘL is also induced by a

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 189

(ζ1, · · · , ζg)-symplectic basis (x1, · · · , xg, y1, · · · , yg) of K(L2) in the sense of Lemma 5.1.9. Indeed, if
we denote by ei ∈ K1(δ) the element with 1 at index i and 0 everywhere else for all i ∈ J1 ; gK, and by

χi ∈ K2(δ) the character given by χi(ej) = ζ
δi,j
i for all i, j ∈ J1 ; gK, then we can set ΘL2(ei, 1) := xi

and ΘL2(0, χi) := yi for all i ∈ J1 ; gK. This defines a symplectic isomorphism K(2δ)
∼−→ K(L2),

hence a symmetric theta structure ΘL on (A,L).

Symmetric theta structures and isogenies

In this paragraph, we relate symmetric theta structures to isogenies. In particular, we prove that an
isogeny maps a symmetric theta structure to a symmetric theta structure compatible with the first
one. We also obtain a partial converse of this result.

Lemma 5.3.32. Let f : (A,L) −→ (B,M) be a polarised isogeny such that f∗M ≃ L and M be

a symmetric line bundle. Let K := ker(f) and K̃ be the level subgroup induced by an isomorphism

α : f∗M ∼−→ L. Then L is symmetric and the canonical morphism αf : Z(K̃) −→ G(M) defined by
5.1 maps symmetric elements to symmetric elements.

Proof. SinceM is symmetric, we have [−1]∗M≃M so [−1]∗L ≃ [−1]∗f∗M = f∗[−1]∗M≃ f ∗M ≃
L and L is symmetric. More precisely, if ΦM :M ∼−→ [−1]M∗ is an isomorphism, then we have an
isomorphism ΦL : L ∼−→ [−1]∗L given by the composition

L α−1
// f∗M

f∗ΦM // f∗[−1]∗M = [−1]∗f∗M
[−1]∗α

// [−1]∗L .

To conclude, we only have to prove that αf ”commutes” with ∆−1 i.e. that αf ◦∆L
−1 = ∆M

−1 ◦αf ,
where ∆L

−1 and ∆M
−1 are the ∆−1 maps defined on G(L) and G(M) respectively. Let g ∈ Z(K̃).

Then, by Proposition 5.1.5, we may write g := (x, t∗xα ◦ f∗ψ ◦ α−1), with (f(x), ψ) = αf (g) ∈ G(M).
We then have:

αf ◦∆L
−1(g) = αf (−x, (t∗−xΦL)

−1 ◦ [−1]∗(t∗xα ◦ f∗ψ ◦ α−1) ◦ ΦL)

= αf
(
− x, ([−1]∗t∗xα ◦ f∗t∗−xΦM ◦ t∗−xα−1)−1 ◦ ([−1]∗t∗xα ◦ f∗[−1]∗ψ ◦ [−1]∗α−1)

◦ ([−1]∗α ◦ f∗ΦM ◦ α−1)
)

= αf
(
− x, t∗−xα ◦ f∗((t∗−xΦM)−1 ◦ [−1]∗ψ ◦ ΦM) ◦ α−1

)
= (−f(x), (t∗−xΦM)−1 ◦ [−1]∗ψ ◦ ΦM) = ∆M

−1(f(x), ψ) = ∆M
−1 ◦ αf (g),

This completes the proof.

Remark 5.3.33. By the previous lemma, if f : (A,L) −→ (B,M) is a polarised isogeny, with L and
M two symmetric line bundles satisfying f∗M≃ L, ΘL and ΘM are compatible theta structures on
G(L) and G(M) respectively (in the sense of Definition 5.2.1) and if ΘL is symmetric, then ΘM is

automatically symmetric. Indeed, αf maps K̃i(ΘL) ∩ Z(K̃) (which is symmetric) to K̃i(ΘM), which
is then symmetric for all i ∈ {1, 2}.

It is natural to wonder when compatible theta structures with respect to an isogeny are symmetric
and the above remark answers this question. Conversely, we can ask when symmetric theta structures
are compatible with respect to isogeny. First, Proposition 5.3.34 below ensures that symmetric theta
structures on the domain (A,L) are automatically compatible with level subgroups K̃ over the isogeny
kernel (point (i) of Definition 5.2.1) when the codomain line bundleM is totally symmetric. Hence,
to ensure that two symmetric theta structures are compatible with respect to an isogeny, we only
have to verify that this isogeny maps the level structure on the domain to the one on the codomain
(point (ii) of Definition 5.2.1). This condition is usually fastidious to verify but using Theorem 5.3.30
we obtain an equivalent condition which is much easier to verify in Proposition 5.3.36.

Proposition 5.3.34. Let f : (A,L) −→ (B,M) be a polarised isogeny of kernel K, with L and

M line bundles satisfying f∗M ≃ L and M totally symmetric. Let K̃ be the level subgroup above
K associated to an isomorphism α : f∗M ∼−→ L. Assume we have a symplectic decomposition
K(L) = K1(L)⊕K2(L) compatible with K: K = (K ∩K1(L))⊕ (K ∩K2(L)). Then any symmetric

level structure on G(L) respecting this decomposition is compatible with K̃.

190 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Proof. Let (K̃1(L), K̃2(L)) be a symmetric level structure above K(L) = K1(L)⊕K2(L). By Lemma

5.2.3, it suffices to prove that αf (K̃i(L)∩ρ−1
L (K)) = {1} for i ∈ {1, 2} to prove that this level structure

is compatible with K̃.
Let i ∈ {1, 2} and x̃ ∈ K̃i(L) ∩ ρ−1

L (K) and x := ρL(x̃). Then x ∈ K ∩ Ki(L). Besides, M
being totally symmetric, we have B[2] ⊆ K(M) by Proposition 5.3.8 and Lemma 5.1.7. It follows
by Proposition 5.1.5.(i) that [2]−1K = f−1(B[2]) ⊆ f−1(K(M)) ⊆ K(L), so there exists y ∈ K(L)
such that 2y = x. Since x ∈ Ki(L) and K1(L) ∩K2(L) = {0}, we can assume that y ∈ Ki(L). Let

ỹ ∈ K̃i(L) be a lift of y. Then ỹ2 and x̃ both are lifts of x in K̃i(L), so ỹ2 = x̃. In addition, αf (ỹ) is
symmetric by Lemma 5.3.32 and is a lift of f(y) in G(M), which has order at most 2 since 2y = x ∈ K.
Since M is totally symmetric, Lemma 5.3.15 ensures that αf (ỹ) = ∆−1(αf (ỹ)) = αf (ỹ)

−1, so has
order at most 2 i.e. that αf (x̃) = αf (ỹ)

2 = 1. This completes the proof.

Lemma 5.3.35. Let f : (A,L) −→ (B,M) be a polarised isogeny, where L and M are symmetric
line bundles satisfying f∗M ≃ L. Let α : f∗M ∼−→ L be an isomorphism and α⊗2 be the induced
isomorphism f∗M2 ∼−→ L2 and αf and α⊗2

f be the associated maps given by Eq. (5.1). Let ηL2 :

G(L2) −→ G(L) and ηM2 : G(M2) −→ G(M) be the maps defined in Definition 5.3.17. Then, we
have

ηM2 ◦ α⊗2
f = αf ◦ ηL2 .

Proof. Let ΨM : [2]∗M ∼−→ M4 be an isomorphism (that does exist since M is symmetric). This
isomorphism induces another isomorphism ΨL : [2]∗L ∼−→ L4 defined as the composition:

[2]∗L [2]∗α−1

−→ [2]∗fM = f∗[2]∗M f∗ΨM−→ f∗M α⊗4

−→ L4

Let K̃L ⊂ G(L) and K̃L2 ⊂ G(L2) be level subgroups lying over K := ker(f). Let g := (x, ϕx) ∈
Z(K̃L2

). Then ηL2 (g) = ([2]x, ρx) with [2]∗ρLx = t∗xΨ
−1
L ◦ ϕ⊗2

x ◦ΨL.

First, we prove that ηL2 (g) ∈ Z(K̃L). Recall that Z(K̃L) = ρ−1
L (K⊥,L) and Z(K̃L2

) = ρ−1
L2 (K

⊥,L2

)

where K⊥,L and K⊥,L2

are orthogonal of K for the commutator pairings eL and eL2 respectively.
Hence, we have x ∈ K⊥,L2

and we only have to prove that [2]x ∈ K⊥,L. But for all y ∈ K, we have
by Proposition 5.1.6.(v),

eL([2]x, y) = eL2(x, y) = 1,

so that [2]x ∈ K⊥,L and ηL2 (g) ∈ Z(K̃L).
Hence, we can compose αf ◦ ηL2 (g) and we have αf ◦ ηL2 (g) = (f([2]x), ψ[2]x) with ρx = t∗[2]xα ◦

f∗ψ[2]x ◦ α−1. We also have

ηM2 ◦ α⊗2
f (g) = ηM2 (f(x), ψx) = ([2]f(x), ρf(x)),

with ϕx = t∗xα
⊗2 ◦ f∗ψx ◦ (α−1)⊗2 and [2]∗ρf(x) = t∗f(x)Ψ

−1
M ◦ ψ⊗2

x ◦ΨM. Moreover, on the one hand

[2]∗ρx = t∗xΨ
−1
L ◦ ϕ

⊗2
x ◦ΨL

= t∗x([2]
∗α ◦ f∗Ψ−1

M ◦ (α
−1)⊗4) ◦ (t∗xα⊗4 ◦ f∗ψ⊗2

x ◦ (α−1)⊗4) ◦ (α⊗4 ◦ f∗ΨM ◦ [2]∗α−1)

= t∗x[2]
∗α ◦ t∗xf∗Ψ−1

M ◦ f
∗ψ⊗2

x ◦ f∗ΨM ◦ [2]∗α−1

= [2]∗t∗[2]xα ◦ (f
∗t∗f(x)Ψ

−1
M ◦ f

∗ψ⊗2
x ◦ f∗ΨM) ◦ [2]∗α−1

= [2]∗t∗[2]xα ◦ f
∗[2]∗ρf(x) ◦ [2]∗α−1.

And on the other hand [2]∗ρx = [2]∗t∗[2]xα ◦ [2]
∗f∗ψ[2]x ◦ [2]∗α−1. It follows that ρf(x) = ψ[2]x, so that

αf ◦ ηL2 (g) = ηM2 ◦ α⊗2
f (g). This completes the proof.

Proposition 5.3.36. Let f : (A,L) −→ (B,M) be a polarised isogeny of kernel K, with L and M
line bundles satisfying f∗M ≃ L and M totally symmetric. Let ΘL and ΘM be symmetric theta
structures on G(L) and G(M) induced by symplectic isomorphisms ΘL2 : K(2δL)

∼−→ K(L2) and
ΘM2 : K(2δM)

∼−→ K(M2) respectively (by Theorem 5.3.30.(iii)). Assume that:

(i) K = (K ∩K1(ΘL2))⊕ (K ∩K2(ΘL2));

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 191

(ii) and f(Ki(ΘL2) ∩ f−1(K(M2))) = Ki(ΘM2) for i ∈ {1, 2}.

Then ΘL and ΘM are compatible with respect to f .

Proof. Let ΘL2 be a symmetric theta structure on G(L2) lifting the symplectic isomorphism ΘL2 .

Then ΘL2 is compatible with a level subgroup K̃L2 ⊂ G(L2) lying over K := ker(f) by Propo-
sition 5.3.34 since K = (K ∩ K1(ΘL2)) ⊕ (K ∩ K2(ΘL2)). A theta structure ΘM2 on G(M2) is

compatible with ΘL2 if and only if α⊗2
f (K̃i(ΘL2) ∩ Z(K̃L2

)) = K̃i(ΘM2) for i ∈ {1, 2}, where α⊗2
f is

associated to an isomorphism α⊗2 : f∗M2 ∼−→ L2. Since f(Ki(ΘL2) ∩ f−1(K(M2))) = K1(ΘM2),

the condition α⊗2
f (K̃i(ΘL2) ∩ Z(K̃L2

)) = K̃i(ΘM2) can be satisfied for i ∈ {1, 2} and defines a theta

structure ΘM2 on G(M2) lifting the symplectic isomorphism ΘM2 : K(2δM)
∼−→ K(M2). Then

ΘM2 is symmetric by Lemma 5.3.32 and ΘM is compatible with ΘM2 in the sense of Definition 5.3.28
by Theorem 5.3.30.(iii).

We now prove that ΘL is compatible with ΘM. By Proposition 5.3.34, ΘL is compatible with a
level subgroup K̃L ⊂ G(L) lying over K := ker(f), since it is a symmetric theta structure. To prove

the compatibility of ΘL and ΘM, it suffices to prove that αf (K̃i(ΘL) ∩ Z(K̃L)) = K̃i(ΘM) for all

i ∈ {1, 2}, where αf is associated to the isomorphism α : f∗M ∼−→ L inducing α⊗2. We actually prove
the equivalent property sM ◦ f = αf ◦ sL on f−1(K(M)), where sL and sM are the level structures
associated to ΘL and ΘM respectively. The compatibility of ΘL2 and ΘM2 already implies that
sM2 ◦ f = α⊗2

f ◦ sL2 on f−1(K(M2)), where sL2 and sM2 are the level structures associated to ΘL2

and ΘM2 respectively. In addition, (ΘL,ΘL2) and (ΘM,ΘM2) being pairs of compatible symmetric
theta structures in the sense of Definition 5.3.28, we have sL ◦ [2] = ηL2 ◦ sL2 and sM ◦ [2] = ηM2 ◦ sM2 .
Let x ∈ f−1(K(M)). Then, we may write x = [2]y with y ∈ f−1(K(M2)) since [2]K(M2) = K(M)
and we have by Lemma 5.3.35 that

sM ◦ f(x) = sM ◦ [2] ◦ f(y) = ηM2 ◦ sM2 ◦ f(y) = ηM2 ◦ α⊗2
f ◦ sL2(y)

= αf ◦ ηL2 ◦ sL2(y) = αf ◦ sL([2]y) = αf ◦ sL(x).

This completes the proof.

5.3.2 The duplication formula

In this section, we prove the duplication formula that relate theta coordinates associated to compatible
symmetric theta structures ΘL and ΘL2 onG(L) andG(L2) respectively, when L is a totally symmetric
line bundle over A. From this formula, we derive a differential addition algorithm to compute x + y
given closed points x, y, x− y ∈ A(k) and also an algorithm to double points.

Product theta structures

The duplication formula involves product theta structures and product theta coordinates that we
need to introduce first. Let (A1,L1), · · · , (Ar,Lr) be polarised abelian varieties, A :=

∏r
i=1Ai and

L :=
⊗r

i=1 π
∗
i Li, where πi : A −→ Ai is the projection for all i ∈ J1 ; rK. Then (A,L) is an abelian

variety equipped with the product polarization φL := Diag(φL1
, · · · , φLr

) : A −→ Â (as defined in
Lemma 2.2.3). We have natural isomorphisms K(L) ≃

⊕r
i=1K(Li) and

G(L) ≃
r∏
i=1

G(Li)/{(λ1, · · · , λr) ∈ k∗ | λ1 · · ·λr = 1}.

Let δ(i) be the type of Li for all i ∈ J1 ; rK and δ := δ(1) ∨ · · · ∨ δ(r) be the concatenation of the δ(i).
Then, we also have:

H(δ) ≃
r∏
i=1

H(δ(i))/{(λ1, · · · , λr) ∈ k∗ | λ1 · · ·λr = 1}.

If ΘL1 , · · · ,ΘLr are theta-structures on G(L1), · · · , G(Lr) respectively, the product theta-
structure ΘL :=

∏r
i=1 ΘLi

is the isomorphism H(δ) ∼−→ G(L) induced by (h1, · · · , hr) 7−→
(ΘL1

(h1), · · · ,ΘLr
(hr)). This theta-structure induces a natural symplectic decomposition of K(L) =

K1(ΘL)⊕K2(ΘL), where Ki(ΘL) :=
∏r
j=1Ki(ΘLj

) for i ∈ {1, 2}.

192 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Lemma 5.3.37. For all i := (i1, · · · , ir) ∈ K1(δ
(1))× · · · ×K1(δ

(r)),

θLi =

r⊗
j=1

π∗
j θ

Lj

ij
.

Proof. With the notations of Section 5.1.5, we have V (δ) ≃
⊕r

j=1 V (δ(j)) and Γ(A,L) =⊗r
j=1 π

∗
jΓ(Aj ,Lj). For all j ∈ J1 ; rK, let βj : V (δ(j))

∼−→ Γ(Aj ,Lj) be an isomorphism of

representations satisfying Eq. (5.6) for ΘLj
. Then, the isomorphism β : V (δ)

∼−→ Γ(A,L),
v1 ⊗ · · · ⊗ vr 7−→ π∗

1β1(v1) ⊗ · · · ⊗ π∗
rβr(vr) is also an isomorphism of representations satisfying

Eq. (5.6) for the product theta-structure ΘL. The result follows.

In concrete terms, Lemma 5.3.37 above ensures that if (x1, · · · , xr) ∈ A and i := (i1, · · · , ir) ∈
K1(δ), then we have:

θLi (x1, · · · , xr) =
r∏
j=1

θ
Lj

ij
(xj). (5.14)

Unsurprisingly, it suffices to multiply theta functions to obtain product theta functions. In the

following, we denote θLi := θL1
i1
⋆ · · · ⋆ θLr

ir
instead of

⊗r
j=1 π

∗
j θ

Lj

ij
to lighten the notations.

The duplication formula

Theorem 5.3.38 (Duplication formula). Let L be a totally symmetric line bundle of type δ on A
and (ΘL,ΘL2) be a pair of compatible and symmetric theta structures for (L,L2). Consider the
endomorphism:

ξ : A2 −→ A2

(x, y) 7−→ (x+ y, x− y)

Then:

(i) ξ∗(π∗
1L ⊗ π∗

2L) ≃ π∗
1L2 ⊗ π∗

2L2.

(ii) The product theta structures ΘL2 ×ΘL2 and ΘL ×ΘL are compatible with respect to ξ.

(iii) There exists λ ∈ k∗ such that for all (i1, i2) ∈ K1(δ)
2, we have

ξ∗
(
θLi1 ⋆ θ

L
i2

)
= λ

∑
(j1,j2)∈K1(2δ)

2

j1+j2=2i1
j1−j2=2i2

θL
2

j1 ⋆ θL
2

j2 .

Proof. (i) By the seesaw principle (Theorem 1.4.14), to prove that ξ∗(π∗
1L ⊗ π∗

2L) and π∗
1L2 ⊗ π∗

2L2

are isomorphic on A2, it suffices to prove that they are isomorphic on A × {a} for all a ∈ A and on
{0} ×A. Let a ∈ A that we see as a morphism Spec(κ(x)) −→ A. Then, on the one hand

ξ∗(π∗
1L ⊗ π∗

2L)|A×{a} = (idA × a)∗ξ∗(π∗
1L ⊗ π∗

2L) = (π1 ◦ ξ ◦ (idA × a))∗L ⊗ (π2 ◦ ξ ◦ (idA × a))∗L
= t∗aL ⊗ t∗−aL ≃ t∗0L ⊗ L (by the theorem of the square, Theorem 1.4.19)

= L2,

and on the other hand

(π∗
1L2 ⊗ π∗

2L2)|A×{a} = (idA × a)∗(π∗
1L2 ⊗ π∗

2L2) = (π1 ◦ (idA × a))∗L2 ⊗ (π2 ◦ (idA × a))∗L2

= id∗AL2 ⊗ a∗L2 ≃ L2,

so that ξ∗(π∗
1L⊗π∗

2L)|A×{a} ≃ (π∗
1L2⊗π∗

2L2)|A×{a}. We obtain similarly that ξ∗(π∗
1L⊗π∗

2L)|{0}×A ≃
(π∗

1L2 ⊗ π∗
2L2)|{0}×A ≃ L2. This proves (i).

(ii) Since ΘL and ΘL2 are symmetric, we easily obtain that their products ΘL×ΘL and ΘL2×ΘL2

are symmetric. Since L is totally symmetric, we also obtain that π∗
1L ⊗ π∗

2L is totally symmetric by

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 193

Proposition 5.3.5 (points (ii) and (iii)). Hence, we can apply Proposition 5.3.36 provided its conditions
(i) and (ii) are satisfied.

Let ΘL4 : K(4δ)
∼−→ K(L4) be a symplectic isomorphism extending ΘL2 : K(2δ)

∼−→ K(L2) and
inducing ΘL2 by Theorem 5.3.30.(iii). The kernel of ξ is K := {(x, x) | x ∈ A[2]} and we easily obtain
that A[2] = (K1(ΘL4) ∩A[2])⊕ (K2(ΘL4) ∩A[2]), so that

K = ((K1(ΘL4)×K1(ΘL4)) ∩K)⊕ ((K2(ΘL4)×K2(ΘL4)) ∩K),

which proves the first condition of Proposition 5.3.36.
For the second condition, we have to prove that for i ∈ {1, 2}, we have:

ξ((Ki(ΘL4)×Ki(ΘL4)) ∩ ξ−1(K(L2)×K(L2))) = Ki(ΘL2)×Ki(ΘL2). (5.15)

⊆ Let i ∈ {1, 2} and (x, y) ∈ (Ki(ΘL4) × Ki(ΘL4)) ∩ ξ−1(K(L2) × K(L2)). Then x + y and x − y
belong to K(L2) ∩Ki(ΘL4) = Ki(ΘL2) so that ξ(x, y) ∈ Ki(ΘL2)×Ki(ΘL2).
⊇ Conversely, let (s, t) ∈ Ki(ΘL2) × Ki(ΘL2). Since Ki(ΘL2) = [2]Ki(ΘL4), there exists x, y ∈

Ki(ΘL4) such that s + t = 2x and s − t = 2y. We then have [2](s, t) − [2]ξ(x, y) = 0 and s −
(x + y) = t − (x − y) so there exists z ∈ A[2] such that (s, t) = ξ(x, y) + (z, z) = ξ(x, y + z).
Since z = s − (x + y), we have z ∈ Ki(ΘL4), so that (x, y + z) ∈ Ki(ΘL4) × Ki(ΘL4). Also,
(s, t) ∈ Ki(ΘL2) × Ki(ΘL2) ⊆ K(L2) × K(L2). This proves Eq. (5.15) and the compatibility of
ΘL2 ×ΘL2 and ΘL ×ΘL by Proposition 5.3.36.

(iii) We apply the isogeny theorem (Theorem 5.2.5). By Proposition 5.2.4, ΘL × ΘL is induced
by ΘL2 ×ΘL2 and an isomorphism σ : K⊥,1/K1

∼−→ K1(δ)×K1(δ), where K
⊥ is the orthogonal of K

for eL2 , K⊥,1 := K⊥ ∩K1(ΘL2) and K1 := K ∩K1(ΘL2). Then Theorem 5.2.5 ensures the existence
of λ ∈ k∗ such that for all i1, i2 ∈ K1(δ),

ξ∗
(
θLi1 ⋆ θ

L
i2

)
= λ

∑
(j1,j2)∈(ΘL2×ΘL2)−1(σ−1({(i1,i2)}))

θL
2

j1 ⋆ θL
2

j2 . (5.16)

By the diagram 5.12, we obtain that

∀(x, y) ∈ K⊥,1, ΘL ×ΘL(σ(x, y), 1) = ξ(x, y).

Besides, we know that ε2 ◦ ΘL = ΘL2 ◦ E2, so that ΘL(i, 1) = ΘL2(2i, 1) for all i ∈ K(δ). It follows
that for all i1, i2 ∈ K1(δ),

(ΘL2 ×ΘL2)−1(σ−1({(i1, i2)})) = {(j1, j2) ∈ K1(2δ)
2 | ∃(x, y) ∈ K⊥,1, σ(x, y) = (i1, i2)

and (ΘL2(j1),ΘL2(j2)) = σ(x, y)}
= {(j1, j2) ∈ K1(2δ)

2 | ∃(x, y) ∈ K⊥,1, σ(x, y) = (i1, i2)

and (ΘL2(j1, 1),ΘL2(j2, 1)) = (x, y)}
= {(j1, j2) ∈ K1(2δ)

2 | ∃(x, y) ∈ K⊥,1, (ΘL(i1, 1),ΘL(i2, 1))

= ξ(x, y) and (ΘL2(j1, 1),ΘL2(j2, 1)) = (x, y)}
= {(j1, j2) ∈ K1(2δ)

2 | (ΘL2(j1 + j2, 1),ΘL2(j1 − j2, 1))
= (ΘL(i1, 1),ΘL(i2, 1))}

= {(j1, j2) ∈ K1(2δ)
2 | (j1 + j2, j1 − j2) = (2i1, 2i2)}

The above equality together with Eq. (5.16) complete the proof.

A first arithmetic application of the duplication formula, is a very simple way to compute the
opposite of a point x 7−→ −x. In particular, in level 2 (δ = (2, · · · , 2)) we obtain that points and their
opposite have the same theta coordinates, as they should on the Kummer variety KA = A/±.

Corollary 5.3.39. Let L be a totally symmetric line bundle of level δ and ΘL be a symmetric theta
structure on G(L). Let (θLi)i∈K1(δ) be the associated basis of theta-functions of Γ(A,L). Then, we
have:

∀i ∈ K1(δ), [−1]∗θLi = θL−i

194 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Proof. Since ΘL is symmetric, it is compatible with itself with respect to [−1] so we can apply the
isogeny theorem 5.2.5 and obtain the existence of λ ∈ k∗ such that [−1]∗θi = λθ−i for all i ∈ K1(δ).
Since [−1]2 = idA, we must have λ2 = 1, so λ ∈ {±1}. We now prove that λ = 1.

Let i ∈ K1(δ). Then, the duplication formula from Theorem 5.3.38 ensures the existence of µ ∈ k∗
such that

ξ∗
(
θLi ⋆ θ

L
i

)
= µ

∑
(j1,j2)∈K1(2δ)

2

j1+j2=2i
j1−j2=2i

θL
2

j1 ⋆ θL
2

j2 = µ
∑

t∈(Z/2Z)g
θL

2

2i+tδ ⋆ θ
L2

tδ ,

and
ξ∗
(
θLi ⋆ θ

L
−i
)
= µ

∑
(j1,j2)∈K1(2δ)

2

j1+j2=2i
j1−j2=−2i

θL
2

j1 ⋆ θL
2

j2 = µ
∑

t∈(Z/2Z)g
θL

2

tδ ⋆ θ
L2

2i+tδ.

Applying these formulas at points (0, x) and (x, 0) for x ∈ A(k) respectively, we get

θLi (x) · θLi (−x) = µ
∑

t∈(Z/2Z)g
θL

2

2i+tδ(0) · θL
2

tδ (x) and θLi (x) · θL−i(x) = µ
∑

t∈(Z/2Z)g
θL

2

tδ (x) · θL
2

2i+tδ(0),

so that θLi (x) · θLi (−x) = θLi (x) · θL−i(x). Hence it suffices to prove that there exists at least one
section non-vanishing at 0 among the θLi to prove that λ = 1 so that [−1]∗θi = θ−i. Since L is totally
symmetric, it is the square of a symmetric line bundle by Proposition 5.3.8 and then Theorem 5.1.34.(i)
ensures that L2 is generated by global sections, which implies the desired result.

Differential addition formulas

In the following, L will always be a totally symmetric line bundle on A. The duplication formula is
not very convenient because it involves a change of level (between theta coordinates for L and L2). A

priori, if we want to compute x+ y knowing x, y and x− y we might not know the θL
2

u (x) and θL
2

v (y)
but only the θLu (x) and θLv (y). We circumvent this difficulty by considering ”Fourier transforms” of
theta coordinates.

Definition 5.3.40. For all χ ∈ ̂(Z/2Z)g and i ∈ K1(2δ), define:

UL2

χ,i =
∑

t∈(Z/2Z)g
χ(t)θL

2

i+tδ.

We call the (Uχ,i)χ,i the dual theta-coordinates of the (θL
2

i)i∈K(2δ).

Theorem 5.3.41. Let x, y ∈ A(k). Then, there exists λ1, λ2 ∈ k∗ such that for all i, j ∈ K1(2δ) such

that i ≡ j mod 2 and χ ∈ ̂(Z/2Z)g, we have

θL(i+j)/2(x+ y)θL(i−j)/2(x− y) =
λ1
2g

∑
χ∈ ̂(Z/2Z)g

UL2

χ,i(x)U
L2

χ,j(y) (5.17)

UL2

χ,i(x)U
L2

χ,j(y) = λ2
∑

t∈(Z/2Z)g
χ(t)θL(i+j+tδ)/2(x+ y)θL(i−j+tδ)/2(x− y) (5.18)

Proof. Since i ≡ j mod 2, we have i+ j ≡ 0 mod 2 and i− j ≡ 0 mod 2 so (i+ j)/2 and (i− j)/2
are well defined in K1(δ). If u, v ∈ K1(2δ) satisfy u + v = i + j and u − v = i − j, then we have
2(u − i) = 0 so u = i + tδ with t ∈ (Z/2Z)g and v = i + j − u = j + tδ. Conversely, u = i + tδ and
v = j+ tδ satisfy u+ v = i+ j and u− v = i− j for all t ∈ (Z/2Z)g. Hence, by Theorem 5.3.38, there
exists λ1 ∈ k∗ such that

θL(i+j)/2(x+ y)θL(i−j)/2(x− y) = λ1
∑

(u,v)∈K1(2δ)
2

u+v=i+j
u−v=i−j

θL
2

u (x)θL
2

v (y) = λ1
∑

t∈(Z/2Z)g
θL

2

i+tδ(x)θ
L2

j+tδ(y)

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 195

Besides

∑
χ∈ ̂(Z/2Z)g

UL2

χ,i(x)U
L2

χ,j(y) =
∑

s,t∈(Z/2Z)g

 ∑
χ∈ ̂(Z/2Z)g

χ(s+ t)

 θL
2

χ,i+sδ(x)θ
L2

χ,j+tδ(y).

And for all s, t ∈ (Z/2Z)g,

∑
χ∈ ̂(Z/2Z)g

χ(s+ t) =
∑

(χ1,··· ,χg)∈ ̂(Z/2Z)
g

g∏
i=1

χi(si + ti) =

g∏
i=1

 ∑
χi∈ ̂(Z/2Z)

χi(si + ti)

=

g∏
i=1

(
1 + (−1)si+ti

)
=

g∏
i=1

2δsi,ti = 2gδs,t.

It follows that ∑
χ∈ ̂(Z/2Z)g

UL2

χ,i(x)U
L2

χ,j(y) = 2g
∑

t∈(Z/2Z)g
θL

2

χ,i+tδ(x)θ
L2

χ,j+tδ(y).

Eq. (5.17) follows.
Now we prove Eq. (5.18):

UL2

χ,i(x)U
L2

χ,j(y) =
∑

r,s∈(Z/2Z)g
χ(r + s)θLi+rδ(x)θ

L
j+sδ(y)

=
∑

t∈(Z/2Z)g
χ(t)

∑
(u,v)∈K1(2δ)

2

u+v=i+j+tδ
u−v=i−j+tδ

θL
2

u (x)θL
2

v (y)

(change of variables t := r + s, u := i+ rδ, v := j + sδ)

= λ2
∑

t∈(Z/2Z)g
χ(t)θL(i+j+tδ)/2(x+ y)θL(i−j+tδ)/2(x− y) (by Theorem 5.3.38),

where λ2 ∈ k∗. This proves Eq. (5.18).

Differential addition and duplication algorithms

We call Eq. (5.17) and Eq. (5.18) differential addition formulas because they yield a differential
addition algorithm. Assume that we want to compute the theta-coordinates (θLi (x + y))i of x + y
knowing those of x, y, x − y and 0 ∈ A(k). Assume that θLi (x − y) ̸= 0 for all i ∈ K1(δ). Then
Eq. (5.17) ensures that for all i ∈ K1(δ),

θLi (x+ y) =
1

θLi (x− y)
∑

χ∈ ̂(Z/2Z)g

UL2

χ,2i(x)U
L2

χ,0(y)

up to a projective constant that we can ignore. To compute the UL2

χ,i(x)U
L2

χ,0(y), we use Eq. (5.18)
twice to obtain:

UL2

χ,2i(x)U
L2

χ,0(y) =
1

UL2

χ,0(0)
2

 ∑
t∈(Z/2Z)g

χ(t)θLi+tδ/2(x)
2

 ∑
t∈(Z/2Z)g

χ(t)θLtδ/2(y)
2

 .

Hence, we can compute the theta-coordinates of x + y provided that UL2

χ,0(0) ̸= 0. The UL2

χ,0(0)
2 can

be precomputed, using Eq. (5.18) again:

UL2

χ,0(0)
2 =

∑
t∈(Z/2Z)g

χ(t)θLtδ/2(0)
2.

This differential addition procedure is summarized in Algorithm 5.1. Note that we also derive easily
a duplication procedure x 7−→ 2x summarized in Algorithm 5.2.

196 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Remark 5.3.42. These algorithms work under the assumption that all dual theta constants UL2

χ,0(0)

do not vanish. Algorithm 5.2 requires in addition non vanishing theta constants θLi (0). These con-
ditions are of course not always respected. In [Mum66, p. 339] and [Rob10, p. 81-82], it has been
proved that when an even integer n ≥ 4 divides δ, there are enough non vanishing dual theta constants
UL2

χ,j(0) to obtain (θLi (x + y))i from the theta-coordinates of x, y, x − y and Eqs. (5.17) and (5.18).
This is unfortunately not the case for level 2 (δ = (2, · · · , 2)). However, we shall see in Chapter 6

that in practice the theta constants θLi (0) and the dual theta constants UL2

χ,0(0) do not vanish when
(A,L) is neither a product of polarised abelian varieties nor 2-isogenous to such a product.

Remark 5.3.43. Algorithms 5.1 and 5.2 use several inversions which are much more costly over
finite fields than multiplications. To reduce this cost, we can use a well known batch inversion
method (Algorithm 5.3) to compute n inverses of field elements at the expense of only 1 inversion
and 3(n− 1) multiplications. Alternatively, since theta-coordinates are projective, we can remove all
inversions from Algorithms 5.1 and 5.2 if we replace them by well chosen multiplications (e.g. by using
Algorithm 5.3 without the inversion on Line 4, see Algorithm 6.3). In Algorithms 5.4 and 5.5, we
propose inversion free fully projective versions of Algorithms 5.1 and 5.2 in dimension 2 with level 2
theta coordinates.

Notation 5.3.44. In the algorithms below, and throughout, we denote by M,S, I and Sqrt the
computational cost of a multiplication, a squaring, an inversion or a square root computation over
the field of definition of input data. The cost of additions and substractions, very low in comparison
to other arithmetic operations, will be neglected.

Algorithm 5.1: Differential addition.

Data: (θLi (x))i∈K1(δ), (θ
L
i (y))i∈K1(δ), (θ

L
i (x − y))i∈K1(δ) and (θLi (0))i∈K1(δ) such that θLi (x −

y) ̸= 0 for all i ∈ K1(δ) and U
L2

χ,0(0) ̸= 0 for all χ ∈ ̂(Z/2Z)g.
Result: (θLi (x+ y))i∈K1(δ).

Precompute: UL2

χ,0(0)
−2 ←−

(∑
t∈(Z/2Z)g χ(t)θ

L
tδ/2(0)

2
)−1

for all χ ∈ ̂(Z/2Z)g.
1 for i ∈ K1(δ) do

2 for χ ∈ ̂(Z/2Z)g do

3 UL2

χ,i(x)U
L2

χ,0(y)←− UL2

χ,0(0)
−2
(∑

t∈(Z/2Z)g χ(t)θ
L
i+tδ/2(x)

2
)(∑

t∈(Z/2Z)g χ(t)θ
L
tδ/2(y)

2
)
;

4 end

5 θLi (x+ y)←− θLi (x− y)−1
∑
χ∈ ̂(Z/2Z)g U

L2

χ,i(x)U
L2

χ,0(y);

6 end

7 return (θLi (x+ y))i∈K1(δ);

Algorithm 5.2: Duplication.

Data: (θLi (x))i∈K1(δ) and (θLi (0))i∈K1(δ) such that θLi (0) ̸= 0 for all i ∈ K1(δ) and U
L2

χ,0(0) ̸= 0

for all χ ∈ ̂(Z/2Z)g.
Result: (θLi (2x))i∈K1(δ).

Precompute: UL2

χ,0(0)
−2 ←−

(∑
t∈(Z/2Z)g χ(t)θ

L
tδ/2(0)

2
)−1

for all χ ∈ ̂(Z/2Z)g.
1 for i ∈ K1(δ) do

2 for χ ∈ ̂(Z/2Z)g do

3 UL2

χ,i(x)U
L2

χ,0(x)←− UL2

χ,0(0)
−2
(∑

t∈(Z/2Z)g χ(t)θ
L
i+tδ/2(x)

2
)(∑

t∈(Z/2Z)g χ(t)θ
L
tδ/2(x)

2
)
;

4 end

5 θLi (2x)←− θLi (0)−1
∑
χ∈ ̂(Z/2Z)g U

L2

χ,i(x)U
L2

χ,0(x);

6 end

7 return (θLi (2x))i∈K1(δ);

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 197

Algorithm 5.3: Batch inversion.

Data: a1, · · · , an ∈ k∗.
Result: 1/a1, · · · , 1/an.

1 b1 ←− a0 for i = 2 to n do
2 bi ←− bi−1 · ai ; // bi = a1 · · · ai
3 end
4 c1 ←− 1/bn;
5 for i = 2 to n do
6 ci ←− ci−1 · an−i+2 ; // ci = 1/(a1 · · · an−i+1)
7 end
8 d1 ←− cn;
9 for i = 2 to n do

10 di ←− bi−1 · cn−i+1; // di = (a1 · · · ai−1) · 1/(a1 · · · ai) = 1/ai
11 end
12 return d1, · · · , dn ; // Total cost: 3(n− 1)M+ I

The case of dimension 2

Algorithms 5.4 and 5.5 below are inversion free fully projective versions of Algorithms 5.1 and 5.2
in dimension 2 with level 2 theta coordinates (δ = (2, 2)). These algorithms introduced in a paper I
coauthored [Gau07] and improved in [LWZ24] optimise the number of multiplications better than the
naive method replacing all inversions by a call to Algorithm 5.3 without inversion on Line 4.

In the algorithms below, we denote by (xP : yP : zP : tP) the level 2 theta coordinates (θ00(P) :
θ10(P) : θ01(P) : θ11(P)) of a point P in a 2-dimensional abelian variety A. We also denote by
(a : b : c : d) the theta null point (θ00(0A) : θ10(0A) : θ01(0A) : θ11(0A)). We denote by H the
Hadamard transform given by the action by multiplication on the left of theta coordinates by the
following matrix

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

We also denote by M and S the cost of field multiplication and squaring respectively.

Algorithm 5.4: Differential addition in dimension 2 and level 2.

Data: The theta coordinates (xP : yP : zP : tP), (xQ : yQ : zQ : tQ) and (xP−Q : yP−Q :
zP−Q : tP−Q) of P , Q and P − Q respectively and the theta null point (a : b : c : d).
We assume that xP−Q · yP−Q · zP−Q · tP−Q ̸= 0 and α2β2γ2δ2 ̸= 0, where (α2 : β2 : γ2 :
δ2) := H(a2 : b2 : c2 : d2).

Result: The theta coordinates (xP+Q : yP+Q : zP+Q : tP+Q) of P +Q.
Precompute: (β2γ2δ2 : α2γ2δ2 : α2β2δ2 : α2β2γ2), where (α2 : β2 : γ2 : δ2) := H(a2 : b2 :

c2 : d2). // Cost: 6M+ 4S
1 (x′P , y

′
P , z

′
P , t

′
P)←− H(x2P , y

2
P , z

2
P , t

2
P);

2 (x′Q, y
′
Q, z

′
Q, t

′
Q)←− H(x2Q, y

2
Q, z

2
Q, t

2
Q);

3 xP+Q ←− β2γ2δ2 · x′P · x′Q;
4 yP+Q ←− α2γ2δ2 · y′P · y′Q;
5 zP+Q ←− α2β2δ2 · z′P · z′Q;
6 tP+Q ←− α2β2γ2 · t′P · t′Q;
7 (xP+Q, yP+Q, zP+Q, tP+Q)←− H(xP+Q, yP+Q, zP+Q, tP+Q);
8 xyP−Q ←− xP−Q · yP−Q;
9 ztP−Q ←− zP−Q · tP−Q;

10 xP+Q ←− xP+Q · yP−Q · ztP−Q;
11 yP+Q ←− yP+Q · xP−Q · ztP−Q;
12 zP+Q ←− zP+Q · xyP−Q · tP−Q;
13 tP+Q ←− tP+Q · xyP−Q · zP−Q;
14 return (xP+Q : yP+Q : zP+Q : tP+Q) ; // Total cost: 18M+ 8S

198 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

Algorithm 5.5: Duplication in dimension 2 and level 2.

Data: The theta coordinates (xP : yP : zP : tP) of P and the theta null point (a : b : c : d). We
assume that abcd ̸= 0 and α2β2γ2δ2 ̸= 0, where (α2 : β2 : γ2 : δ2) := H(a2 : b2 : c2 : d2).

Result: The theta coordinates (x[2]P : y[2]P : z[2]P : t[2]P) of [2]P .
Precompute: (bcd : acd : abd : abc) and (β2γ2δ2 : α2γ2δ2 : α2β2δ2 : α2β2γ2), where (α2 : β2 :

γ2 : δ2) := H(a2 : b2 : c2 : d2). // Cost: 12M+ 4S
1 (x[2]P , y[2]P , z[2]P , t[2]P)←− H(x2P , y

2
P , z

2
P , t

2
P);

2 x[2]P ←− x2[2]P · β
2γ2δ2;

3 y[2]P ←− y2[2]P · α
2γ2δ2;

4 z[2]P ←− z2[2]P · α
2β2δ2;

5 t[2]P ←− t2[2]P · α
2β2γ2;

6 (x[2]P , y[2]P , z[2]P , t[2]P)←− H(x[2]P , y[2]P , z[2]P , t[2]P);
7 x[2]P ←− x[2]P · bcd;
8 y[2]P ←− y[2]P · acd;
9 z[2]P ←− z[2]P · abd;

10 t[2]P ←− t[2]P · abc;
11 return (x[2]P : y[2]P : z[2]P : t[2]P) ; // Total cost: 8M+ 8S

5.3.3 Level 2 symmetric theta structures on Montgomery curves

For cryptographic applications, we mainly work with isogenies defined between products of elliptic
curves. These elliptic curves are usually not given with a level 2 theta model, as we would require to
compute product level 2 theta coordinates using Eq. (5.14), but with a Weierstrass or Montgomery
model instead. In this section, we introduce conversion formulas between theta and Montgomery co-
ordinates. The following presentation owes a lot to [RS24, § 2.2] and [Rob24, Chapter 7, Appendix A].

Definition 5.3.45. If E is an elliptic curve over k, a Kummer line of E is a degree 2 cover π :
E −→ P1

k with 4 ramification points that induces an isomorphism E/± ∼−→ P1
k. In other words, for all

P ∈ E(k), the fibre π−1({π(P)}) = {−P, P} has cardinality 2, except when P is a point of 2-torsion
(a ramification point), in which case it has cardinality 1.

In the following, we consider a Montgomery curve E be over k, whose equation is given by

BY 2Z = X3 +AX2Z +XZ2 = X(X − αZ)(X − 1/αZ),

with A,B, α ∈ k and A = −α− 1/α. The Montgomery Kummer line of E is given by:

πM : E −→ P1
k

P := (X : Y : Z) 7−→
{

(X : Z) if P ̸= (0 : 1 : 0)
(1 : 0) if P = (0 : 1 : 0)

This Kummer line is used to represent points (up to sign) in (X : Z)-arithmetic. Its ramification
points are

(1 : 0), (α : 1), (0 : 1), (1/α : 1),

the first one being the point at infinity.
Similarly, a level 2 theta structure defines a Kummer line on E, πθ : P 7−→ (θ0(P) : θ1(P)) by

Theorem 5.1.34. Its ramification points are given by Eq. (5.11):

(a : b), (b : a), (−a : b), (−b : a),

the first one being the theta null point. To obtain conversion formulas between Montgomery and
theta coordinates, we use the following lemma.

Lemma 5.3.46. Let π1, π2 : E −→ Pk1 be two Kummer lines. Then:

(i) There exists a homography of Pk1 , h : (X : Z) 7−→ (αX + βZ : γX + δZ) such that π2 = h ◦ π1.

5.3. SYMMETRIC THETA STRUCTURES AND ARITHMETIC APPLICATIONS 199

(ii) This homography is fully determined by the ramification points of π1 and π2.

Proof. Let π1, π2 : E/± ∼−→ Pk1 be the isomorphisms induced by π1 and π2 respectively. Then
h := π2 ◦ π−1

1 is an automorphism of P1
k so it is a homography [Lan04, Exercise IV.10]. (i) follows

immediately.
Now, h is determined by 4 coefficients over k so by its images on 4 distinct points, hence by the

ramification points by π1 and π2. This proves (ii).

Lemma 5.3.46 ensures that the change of coordinates map between Montgomery and a level 2 theta
coordinates is a homography determined by the ramification points. This will be a key ingredient in
the proof of our main result (Proposition 5.3.47).

Before, let us state some basic facts. Consider the line bundle L0 := L((0E)). It induces a
principal polarisation as we have seen in Example 1.4.57 so L2

0 ≃ L(2(0E)) is of level 2. Besides, L0

is symmetric so L2
0 is totally symmetric by Proposition 5.3.8. Hence, Remark 5.3.31 ensures that a

level 2 symmetric theta structure ΘL2
0
on (E,L2

0) is determined by a basis of E[4]. With these facts
in mind, we can state and prove the

Proposition 5.3.47. Let E be a Montgomery curve over k of equation

BY 2Z = X(X − αZ)(X − 1/αZ)

Let (P,Q) be a basis of E[4] with πM (P) = (r : s) and πM (Q) = (−1 : 1), where πM is the Montgomery
Kummer line (X : Y : Z) 7−→ (X : Z). Then (P,Q) induces a level 2 symmetric theta structure ΘL2

0

on (E,L2
0) with theta null point (a : b) = (r + s : r − s) satisfying α = (a2 + b2)/(a2 − b2) and the

change of coordinates from Montgomery to theta and theta to Montgomery coordinates are respectively
given by

(X : Z) 7−→ (θ0 : θ1) = (a(X−Z) : b(X+Z)) and (θ0 : θ1) 7−→ (X : Z) := (bθ0+aθ1 : −bθ0+aθ1).

Proof. By [CS17, Eq. (10)], the duplication formula in Montgomery (X,Z) arithmetic is

[2](X : Z) = ((X + Z)2(X − Z)2 : 4XZ((X − Z)2 + (A+ 2)XZ)),

with A := −α − 1/α. It follows that [2](−1 : 1) = (0 : 1) and [2](r : s) ∈ {(α : 1), (1/α : 1)} since P
and Q are linearly independent over Z/4Z. Without loss of generality, we can swap α and 1/α and
assume that [2](r : s) = (α : 1).

Let (a : b) be the theta null point of the level 2 symmetric theta structure ΘL2
0
induced by

(P,Q) and πθ its associated theta Kummer line. Then K1(ΘL2
0
) = ⟨[2]P ⟩ and K2(ΘL2

0
) = ⟨[2]Q⟩ so

πθ([2]P) = (b : a) and πθ([2]Q) = (−a : b) by Eq. (5.11). By Lemma 5.3.46, we then have πθ = h◦πM
where h maps the ramification points (1 : 0), (α : 1), (0 : 1), (1/α : 1) to (a : b), (b : a), (−a : b), (−b : a)
respectively.

Let us write h : (X : Z) 7−→ (α′X + βZ : γX + δZ) with α′, β, γ, δ ∈ k to be determined. Then,
we have (α′ : γ) = h(1 : 0) = (a : b) so we can assume (up to rescaling all coefficients) that α′ = a
and γ = b. Besides,

(β : δ) = h(0 : 1) = (−a : b), (α′α+ β : γα+ δ) = h(α : 1) = (b : a),

and (α′ + βα : γ + δα) = h(1/α : 1) = (−b : a),

so there exists λ, µ, ν ∈ k∗ such that β = −λa, δ = λb, α′α + β = µb, γα + δ = µa, α′ + βα = −νb
and γ + δα = νa. Combining the two first equations with the third and fourth, we obtain:

a× a(α− λ) = µab = b× b(α+ λ),

so that

λ =
a2 − b2

a2 + b2
α,

where the division is legal because a2 ̸= −b2, otherwise all 2-torsion theta points would not be distinct.
Now, combining the two first equations with the two last, we obtain:

a× a(1− λα) = −νab = −b× b(a+ λα),

200 CHAPTER 5. INTRODUCTION TO THE THEORY OF THETA FUNCTIONS

so that

λ =
a2 + b2

α(a2 − b2)
,

where the division is legal because a2 ̸= b2, otherwise all 2-torsion theta points would not be distinct
and α ̸= 0, otherwise E would be a singular curve. Combining both expressions of λ, we obtain that:

α = ±a
2 + b2

a2 − b2
and λ = ±1,

so that h : (X : Z) 7−→ (a(X ∓ Z) : b(X ± Z)).
By Algorithm 5.2, the duplication formula for theta coordinates is:

[2](θ0 : θ1) = (b(a2 − b2)(θ20 + θ21)
2 + b(a2 + b2)(θ20 − θ21)2 :

a(a2 − b2)(θ20 + θ21)
2 − a(a2 + b2)(θ20 − θ21)2)

It follows that [2](±1 : 1) = (b(a2−b2) : a(a2−b2)) = (b : a), [2](1 : 0) = (2ba2 : −2ab2) = (−a : b) and
similarly, [2](0 : 1) = (−a : b). Hence, (1 : 1) and (−1 : 1) are 4-torsion theta points lying above (b : a)
and (1 : 0) and (0 : 1) are 4-torsion theta points lying above (−a : b). Hence, we may impose that h
maps the Montgomery points πM (P) = (r : s) and πM (Q) = (−1 : 1) to (1 : 1) and (1 : 0) respectively.
We then obtain (a(r∓s) : b(r±s)) = h(r : s) = (1 : 1) and (a(−1∓1) : b(−1±1)) = h(−1 : 1) = (1 : 0),
so that ± = + and a(r− s) = b(r+ s) so we may assume (up to rescaling a and b) that a = r+ s and
b = r − s, as desired. We conclude that h : (X : Z) 7−→ (a(X − Z) : b(X + Z)).

Since ± = +, we also have λ = 1 and α = (a2 + b2)/(a2 − b2). Finally, we also easily verify that
(θ0 : θ1) 7−→ (X : Z) := (bθ0 + aθ1 : −bθ0 + aθ1) is the inverse of h. This completes the proof.

Remark 5.3.48. In Proposition 5.3.47, we impose some constraint on the last point Q of the 4-
torsion basis inducing the symmetric level 2 theta structure. The change of coordinates formulas are
not valid for any symmetric level 2 theta structure, hence any 4-torsion basis. Using change of theta
coordinates formulas (related to change of 4-torsion basis), we will be able to convert Montgomery
coordinates to theta coordinates and conversely for any choice of 4-torsion basis (see Lemma 6.5.7).

Remark 5.3.49. So far we have always assumed that we work over an algebraically closed field k.
However, if k′ ⊂ k is a subfield and the 4-torsion of E is defined over k′, the level 2 theta null points
we obtain from Proposition 5.3.47 are k′-rational and every k′-rational Montgomery point is converted
into a k′-rational theta point. This fact is very useful for isogeny computations that take place over
finite fields in practice.

Chapter 6

Computing 2-isogeny chains with
level 2 theta coordinates

The goal of this chapter is to explain in detail how the higher dimensional 2e-isogenies used in the
cryptographic applications presented in Part I are computed. Namely, we prove Theorems 2.2.12
and 2.2.13. In the following, we shall work with level 2 theta coordinates that we introduced in
Chapter 5. Unlike other models, level 2 theta coordinates make it possible to work efficiently in any
dimension g (e.g. g = 4) while restricting the number of coordinates (to 2g).

The following presentation is mainly based on an original publication on 2-dimensional 2e-isogenies
[DMPR25] and on a follow-up single author preprint [Dar24] generalizing the 2-dimensional approach
to any dimension with a special focus on 4-dimensional 2e-isogenies for SQIsignHD verification and
SIDH attacks. Both papers [DMPR25; Dar24] are based on formulas introduced in a note by Damien
Robert [Rob24] without detailed proofs and proved later in [Dar24].

Throughout this chapter, k will be an algebraically closed field of characteristic char(k) ̸= 2. All
formulas will be proved over k but, in practice, computations will take place over subfields of k. All
abelian varieties we shall consider will always be principally polarised with a polarisation induced by a
symmetric line bundle. Fortunately, this is the case of elliptic products in particular. If A is a variety
of dimension g over k and ζ ∈ k∗ is a primitive d-th root of unity, we shall refer to (ζ, · · · , ζ)-symplectic
basis of A[d] in the sense of Lemma 5.1.9 (ζ being repeated g times) as ζ-symplectic basis.

6.1 Computing 2-isogenies

The goal of this section is to describe algorithms using level 2 theta coordinates to compute 2-
isogenies between principally polarised abelian varieties of any dimension, as elementary components
of 2e-isogenies decomposed into chains. In Section 6.1.1, we explain how to evaluate a 2-isogeny given
the theta null point of its codomain. Then, we explain in section Section 6.1.2 how to compute the
codomain theta null point given 8-torsion points lying above the kernel. In Section 6.1.3, we treat the
special case when some theta constants (coordinates of the theta null point) vanish. This case may
happen when we compute a gluing isogeny A1 ×A2 −→ B.

6.1.1 Change of level formula and isogeny evaluation

Consider two principally polarised abelian varieties (A,L0) and (B,M0) of dimension g with L0 and
M0 symmetric. Let f : (A,Ld0) −→ (B,M0) be a polarised isogeny with f∗M0 ≃ Ld0 for some integer

d ∈ N∗. Then f is a d-isogeny in the sense of Definition 2.2.1, i.e. it satisfies f̂◦φM0
◦f = φLd

0
= [d]φL0

.

Now, consider L := L2
0 and M := M2

0. Those are totally symmetric line bundles of level 2 so
theta structures on G(L) and G(M) induce level 2 theta coordinates. We also have f∗M ≃ Ld, so
the isogeny theorem Theorem 5.2.5 relates theta coordinates of level 2d on the domain with theta
coordinates on level 2 on the codomain. More precisely, we have the

201

202 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Theorem 6.1.1. Let ζ ∈ k∗ be a primitive 4d-th root of unity and B := (S1, · · · , Sg, T1, · · · , Tg) be
a ζ-symplectic basis of A[4d] = K(L2d) such that ker(f) = [4]⟨T1, · · · , Tg⟩. Then, by Remark 5.3.31,
B induces a symmetric theta structure ΘLd on (A,Ld) and

(i) C := ([d]f(S1), · · · , [d]f(Sg), f(T1), · · · , f(Tg)) is a ζd-symplectic basis of B[4] that induces a
symmetric theta structure ΘM on (B,M) compatible with ΘLd with respect to f .

(ii) If (θL
d

i)i∈(Z/2dZ)g and (θMi)i∈(Z/2Z)g denote the theta functions induced by ΘLd and ΘM respec-
tively, then we have

∀i ∈ (Z/2Z)g, f∗θMi = θL
d

di .

Definition 6.1.2. We say that the symplectic basis B from Theorem 6.1.1 is adapted to f . We also
say that the level 2d and 2 theta structures induced by B and [d]B respectively are adapted to f ,
along with their associated theta coordinates.

Proof of Theorem 6.1.1. (i) By Theorem 5.3.30.(iii), the symmetric theta structure ΘLd is induced by
a symmetric theta structure ΘL2d on (A,L2d). Then, the isomorphism ΘL2d : (Z/4dZ)g ∼−→ K(L2d) =
A[4d] induced by ΘL2d is the one determined by B that induces ΘLd (as in Remark 5.3.31).

Let K := ker(f). Then K = [4]K2(ΘL2d) so that K = (K ∩K1(ΘL2d))⊕ (K ∩K2(ΘL2d)) and by

Proposition 5.3.34, ΘL2d is compatible with the level subgroup K̃ induced by a choice of isomorphism
f∗M0

∼−→ Ld0 that we fix. We can then apply Proposition 5.2.4 that ensures the existence of a theta
structure ΘM2 on (B,M2) compatible with ΘL2d , which is determined by a choice of isomorphism
σ : K⊥,1/K1

∼−→ (Z/4Z)g, where the orthogonal is defined within K(L2d), so that

K⊥ = {x ∈ K(L2d) | ∀y ∈ K, eL2d(x, y) = 1} = {x ∈ K(L2d) | ∀y ∈ K2(ΘL2d), eL2d(x, [4]y) = 1}
= {x ∈ K(L2d) | [4]x ∈ K2(ΘL2d)} = [d]K1(ΘL2d)⊕K2(ΘL2d)

and K⊥,1 = K⊥ ∩ K1(ΘL2d) = [d]K1(ΘL2d). We also have K1 = K ∩ K1(ΘL2d) = {0}, so σ :
[d]K1(ΘL2d)

∼−→ (Z/4Z)g. Besides, Remark 5.3.33 ensures that ΘM2 is symmetric.
Now, we make a choice of σ and compute the resulting choice of ΘM2 . By the diagram 5.12, we

have
ΘM2 ◦ (σ × σ̂) = f|K⊥ ,

where σ̂ is given by y ∈ K⊥,2 = K2(ΘL2d) 7−→ eL2d(σ−1(.), y) ∈ ̂(Z/4Z)g. In particular, we have for
all i ∈ J1 ; gK, ΘM2(σ([d]Si), 1) = [d]f(Si), so we may naturally set σ([d]Si) := ei where ei ∈ (Z/4Z)g
equals 1 at index i and 0 everywhere else. This ensures that for all i ∈ J1 ; gK,

ΘM2(ei, 1) = [d]f(Si),

as desired. Besides, for all i, j ∈ J1 ; gK, we have

σ̂(Ti)(ej) = eL2d(σ−1(ej), Ti) = eL2d([d]Sj , Ti) = ζdδi,j = χi(ej),

where χi ∈ ̂(Z/4Z)g is the character ej 7−→ ζdδi,j . So we also have for all i ∈ J1 ; gK,

ΘM2(0, χi) = ΘM2(0, σ̂(Ti)) = f(Ti),

as desired. So ΘM2 is determined by C = ([d]f(S1), · · · , [d]f(Sg), f(T1), · · · , f(Tg)).
It remains to prove that the symmetric theta structure ΘM induced by ΘM2 (hence by C) is

compatible with ΘLd . By Proposition 5.3.36, it suffices to prove that K = (K ∩K1(ΘL2d)) ⊕ (K ∩
K2(ΘL2d)) (which already have been proved) and f(Ki(ΘL2d) ∩ f−1(K(M2))) = Ki(ΘM2) for i ∈
{1, 2}. But by construction, we have for all i ∈ {1, 2},

f(Ki(ΘL2d) ∩ f−1(K(M2))) = f(Ki(ΘL2d) ∩ f−1(A[4]))

= f(Ki(ΘL2d) ∩ ([d]K1(ΘL2d)⊕K2(ΘL2d))) = Ki(ΘM2).

This proves (i).

6.1. COMPUTING 2-ISOGENIES 203

(ii) By the isogeny theorem Theorem 5.2.5, we have for all i ∈ (Z/2Z)g,

f∗θMi =
∑

j∈Θ
−1

Ld (τ
−1({i}))

θLj ,

up to a projective constant that we can ignore (rescaling theta functions if necessary), where τ :
K⊥,1/K1 = [d]K1(ΘLd)

∼−→ (Z/2Z)g is the isomorphism associated to ΘM by Proposition 5.2.4 (the
orthogonal of K being taken in K(Ld) = A[2d]). Since ΘM = ΘM2 ◦ [2], by the diagram Eq. (5.12),
we have for all l ∈ J1 ; gK,

ΘM2([2]τ([2d]Sl), 1) = ΘM(τ([2d]Sl), 1) = f([2d]Sl) = ΘM2(σ([2d]Sl), 1),

so that [2]τ([2d]Sl) = σ([2d]Sl) = 2el ∈ (Z/4Z)g and τ([2d]Sl) = el ∈ (Z/2Z)g. It follows that for all
i ∈ (Z/2Z)g,

Θ
−1

Ld (τ−1({i})) = Θ
−1

Ld

({
g∑
l=1

[2dil]Sl

})
= (ΘL2d ◦ [2])−1

({
g∑
l=1

[2dil]Sl

})

=

{
g∑
l=1

dilΘ
−1

L2d(Sl)

}
= {di}

The result follows.

In the following, we assume that d = 2, so that f is a 2-isogeny. Then Theorem 6.1.1 relates theta
coordinates of level 2 on the codomain to theta coordinates on level 4 on the domain as follows:

∀x ∈ A(k),∀i ∈ (Z/2Z)g, θMi (f(x)) = θL
2

2i (x).

This is the simplest possible form of the isogeny theorem obtained by choice of a basis B adapted
to f (hence justifying that choice). However, this is not yet sufficient to evaluate f since we only

know level 2 coordinates (θLi (x))i∈(Z/2Z)g and not level 4 coordinates (θL
2

2i (x))i∈(Z/2Z)g . Hence, we
need a change of level formula to relate these level 2 and level 4 theta coordinates. Fortunately, the
differential addition formulas from Theorem 5.3.41 provide what we are looking for.

Corollary 6.1.3. Under the assumptions of Theorem 6.1.1, for all x ∈ A(k), there exists λ ∈ k∗ such

that for all χ ∈ ̂(Z/2Z)g,

UM
χ (f(x)) · UM

χ (0B) = λ
∑

t∈(Z/2Z)g
χ(t)θLt (x)

2, (6.1)

where the UM
χ are the dual theta coordinates of the θMi as defined in Definition 5.3.40 by:

UM
χ := UM

χ,0 =
∑

t∈(Z/2Z)g
χ(t)θMt ,

where the second index is dropped because unused. The formula relating the UM
χ to the θMi is called

a Hadamard transform.

Proof. Let x ∈ A(k). Then Eq. (5.18) immediately ensures the existence of λ ∈ k∗ such that:

UL2

χ (x) · UL2

χ (0A) = λ
∑

t∈(Z/2Z)g
χ(t)θLt (x)

2,

where by Definition 5.3.40 and Theorem 6.1.1.(ii),

UL2

χ (x) =
∑

t∈(Z/2Z)g
χ(t)θL

2

t (x) =
∑

t∈(Z/2Z)g
χ(t)θMt (f(x)) = UM

χ (f(x)).

Similarly, UL2

χ (0A) = UM
χ (f(0A)) = UM

χ (0B). The result follows.

204 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

When the codomain dual theta null point (UM
χ (0B))χ is known, Corollary 6.1.3 yields an evaluation

formula for f . Indeed, from (θLi (x))i, we obtain the dual theta point (UM
χ (f(x)))χ and a simple

computation ensures that for all i ∈ (Z/2Z)g,∑
χ∈ ̂(Z/2Z)g

χ(i)UM
χ = 2gθMi ,

so we may obtain (θMi (f(x)))i∈(Z/2Z)g , as desired (up to a projective factor that can be ignored).
Algorithm 6.1 follows. In the following section, we shall explain how the codomain theta null point
and its dual can be computed. Note that Algorithm 6.1 only works if none of the dual theta constants
UM
χ (0B) vanish. The vanishing case will be treated in Section 6.1.3.

Algorithm 6.1: Generic 2-isogeny evaluation with level 2 theta coordinates.

Data: Theta coordinates (θLi (x))i and inverse of the codomain dual theta null point
(1/UM

χ (0B))χ.

Result: The theta coordinates (θMi (f(x)))i.

1 for χ ∈ ̂(Z/2Z)g do
2 UM

χ (f(x))←− 1/UM
χ (0B) ·

∑
t∈(Z/2Z)g χ(t)θ

L
t (x)

2;

3 end
4 for i ∈ (Z/2Z)g do
5 θMi (f(x))←−

∑
χ∈ ̂(Z/2Z)g χ(i)U

M
χ (f(x));

6 end

7 return (θMi (f(x)))i ; // Total cost: 2gM+ 2gS

6.1.2 Computation of the codomain theta null point

In this section, we provide an algorithm to compute the codomain level 2 theta null point of a 2-
isogeny f : (A,L2) −→ (B,M) given 8-torsion points over its kernel. Recalling the notations from
Section 6.1.1, we assume that (A,L0) and (B,M0) are principally polarised, that L0 and M0 are
symmetric, that f∗M0 ≃ L2

0 and denote L := L2
0 and M :=M2

0, which are totally symmetric. We
also suppose the assumptions of Theorem 6.1.1 are satisfied, so that:

• We have a pair of compatible symmetric theta structures (ΘL,ΘL2) for (L,L2);

• We have a symmetric theta structure ΘM on (B,M) compatible with ΘL2 with respect to f ;

• ΘL2 is induced by a ζ-symplectic basis B := (S1, · · · , Sg, T1, · · · , Tg) of A[8] adapted to f i.e.
such that ker(f) = [4]⟨T1, · · · , Tg⟩;

• ΘM is induced by the ζ2-symplectic basis C := ([2]f(S1), · · · , [2]f(Sg), f(T1), · · · , f(Tg)) of
B[4].

Then our algorithm returns the dual theta null point (UM
χ (0B))χ given the 8-torsion points

T1, · · · , Tg. Note that 8-torsion points are necessary to determine the theta null point without sign
ambiguity. As we shall see in Section 6.5.2, we can work with 4-torsion or even 2-torsion in dimension 2
(and 3) at the expense of (costly) square root computations. Our dual theta null point computation

algorithm relies on the following formula. For all l ∈ J1 ; gK, let us denote χl ∈ ̂(Z/2Z)g, the character
i ∈ (Z/2Z)g 7−→ (−1)il . Then, we have the

Lemma 6.1.4. For all l ∈ J1 ; gK and χ ∈ ̂(Z/2Z)g,

UM
χ·χl

(0B)

 ∑
t∈(Z/2Z)g

χ(t)θLt (Tl)
2

 = UM
χ (0B)

 ∑
t∈(Z/2Z)g

χ(t)χl(t)θ
L
t (Tl)

2

 .

Proof. Let l ∈ J1 ; gK. Then, by Corollary 6.1.3, there exists λ ∈ k∗ such that for all χ ∈ ̂(Z/2Z)g,

UM
χ (0B) · UM

χ (f(Tl)) = λ
∑

t∈(Z/2Z)g
χ(t)θLt (Tl)

2. (6.2)

6.1. COMPUTING 2-ISOGENIES 205

Since [4]Tl ∈ ker(f), f(Tl) has order 4 so f(Tl) ≡ f(Tl) + [2]f(Tl) in the Kummer variety A/± and
θLi (f(Tl)) = θLi (f(Tl)+[2]f(Tl)) for all i ∈ (Z/2Z)g. Besides, we have [2]f(Tl) = ΘM(0, χl) ∈ K2(ΘM)
since ΘM is induced by the basis C previously introduced. Hence, Eq. (5.10) ensures that:

∀i ∈ (Z/2Z)g, θMi (f(Tl)) = θMi (f(Tl) + [2]f(Tl)) = χl(i)
−1θMi (f(Tl)) = χl(i)θ

M
i (f(Tl)),

since χ−1
l = χl, so that for all χ ∈ ̂(Z/2Z)g,

UM
χ (f(Tl)) =

∑
t∈(Z/2Z)g

χ(t)θMt (f(Tl)) =
∑

t∈(Z/2Z)g
χ(t)χl(t)θ

M
t (f(Tl))

= UM
χ·χl

(f(Tl)), (6.3)

Combining this with Eq. (6.2), we finally obtain that for all χ ∈ ̂(Z/2Z)g,

UM
χ·χl

(0B)

 ∑
t∈(Z/2Z)g

χ(t)θLt (Tl)
2

 = UM
χ·χl

(0B) · λ−1 · UM
χ (0B) · UM

χ (f(Tl))

= UM
χ (0B) · λ−1 · UM

χ·χl
(0B) · UM

χ·χl
(f(Tl))

= UM
χ (0B)

 ∑
t∈(Z/2Z)g

χl(t)χ(t)θ
L
t (Tl)

2

 .

This completes the proof.

Lemma 6.1.4 ensures that we can deduce UM
χ·χl

(0B) from UM
χ (0B) provided the element

Dχ,l :=
∑

t∈(Z/2Z)g
χ(t)θLt (Tl)

2

is non-zero. Since the χl generate ̂(Z/2Z)g, this provides a method to compute the projective dual

theta null point (UM
χ (0B))χ step by step. We start by selecting χ0 ∈ ̂(Z/2Z)g and set UM

χ0
(0B) := 1.

Then we propagate the computation via the formula UM
χ·χl

(0B) = UM
χ (0B)Dχ·χl,l/Dχ,l assuming that

Dχ,l ̸= 0 until we have computed UM
χ (0B) for all χ ∈ ̂(Z/2Z)g. From an algorithmic point of view, we

fill in a computation tree whose vertices are characters of ̂(Z/2Z)g, whose root is χ0 and whose edges
are quotients Dχ·χl,l/Dχ,l relating a parent node χ and a child node χ ·χl. This tree does not contain
duplicate edges and can be seen as a subgraph of the hypercube graph (since ̂(Z/2Z)g ≃ (Z/2Z)g).
To fill in the tree at every step, we iterate on leaves (i.e terminal nodes) χ and on l ∈ J1 ; gK. If χ ·χl
is not a node and Dχ,l ̸= 0 we append χ ·χl as a child of χ with edge the Dχ·χl,l/Dχ,l. Algorithm 6.2
follows.

Note that in plain generality, the choice of root χ0 matters. Indeed, if UM
χ0

(0B) = 0, we cannot

expect the computation tree to cover the whole of ̂(Z/2Z)g, otherwise (UM
χ (0B))χ would be identically

zero and would not be a projective point. For that reason, Algorithm 6.2 tests all roots χ0 ∈ ̂(Z/2Z)g
until the tree is filled in. However, if none of the dual theta constants UM

χ (0B) vanish, then the initial
choice of root χ0 does not matter. If no suitable root is found, we expect f to be a gluing isogeny
and we may apply a modified version of Algorithm 6.2 with additional entry points lying over ker(f)
(see Section 6.1.3).

Lemma 6.1.5. Assume that none of the dual theta constants UM
χ (0B) vanish. Then, if Algorithm 6.2

returns the desired result, namely a computation tree covering the whole of ̂(Z/2Z)g, it does with the
first choice of root χ0.

Proof. Let χ0 = 1 ∈ ̂(Z/2Z)g be the first choice of root. Let T be a tree returned by Algorithm 6.2

with root χ′
0. Then T covers ̂(Z/2Z)g and for every edge of T connecting χ to χ · χl, we have

206 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

101

001 111 100

011 000 110

010

Figure 6.1: Example of tree T with g = 3 and root
101, where an index i ∈ (Z/2Z)3 identifies with the
character χi : j 7−→ (−1)⟨i|j⟩.

000

100 010

110 101

001 111

011

Figure 6.2: Tree T0 obtained from T
with root 000.

UM
χ·χl

(0B)Dχ,l = UM
χ,l(0)Dχ·χl,0 by Lemma 6.1.4, where UM

χ·χl
(0B), U

M
χ,l(0), Dχ,l ̸= 0 by assumption.

It follows that Dχ·χl,l ̸= 0 so we can connect χ · χl to χ.
Exploiting this symmetry, we consider the tree T0 constructed from T as follows. We initialize T0

at χ0. Then, for all leaf χ of T0, we consider all parents and children χ · χl of χ in T that do not
belong to T0 yet and append them as children of χ in T0 (see Figs. 6.1 and 6.2). Such a tree T0 covers

all nodes of T , hence the whole of ̂(Z/2Z)g by construction.

Now, consider the undirected graph with vertex set ̂(Z/2Z)g and edges connecting χ and χ · χl if
and only if Dχ,l ̸= 0 (if and only if Dχ·χl,l ̸= 0). By construction, Algorithm 6.2 explores this graph

from χ0 until it finds a tree covering the whole of ̂(Z/2Z)g if it does exist. Such a tree exists (we may
consider T0 for instance) so Algorithm 6.2 terminates at root χ0. This completes the proof.

To save (costly) inversions in the execution of Algorithm 6.2, we save couples (Dχ·χl,l, Dχ,l) made
of the numerator and denominator instead of quotients Dχ·χl,l/Dχ,l on each edge of the tree. Once we
have completed the computation tree T , we can then inverse all the denominators Dχ,l by batch using
Algorithm 5.3, then compute each quotient Dχ·χl,l/Dχ,l on each edge and compute the theta constants
step by step by descending the tree from the root: UM

χ0
(0B) = 1 and UM

χ·χl
(0B) = UM

χ,l(0)Dχ·χl,0/Dχ,l.
However, this method still requires one inversion (on Line 4 of Algorithm 5.3) and we propose an
inversion free method instead that computes the theta constants projectively.

This method uses Algorithm 6.3, a projective version of Algorithm 5.3 that returns projective
inverses λ/a1 = a2 · · · an, λ/a2 = a1a3 · · · an, ..., λ/an = a1 · · · an−1 and λ = a1 · · · an when a1, · · · , an
are given on entry. We start by a descending route on the computation tree T multiplying every
numerator and denominator on the edges by the numerator and denominator of the parent edge (see

Algorithm 6.4). Then, if χ ∈ ̂(Z/2Z)g is related to the root χ0 by a branch χl1 , · · · , χls in T , so that
χ = χ0

∏s
i=1 χli , then we have by Lemma 6.1.4 and a simple induction:

UM
χ (0B)

s∏
i=1

Dχ0
∏i−1

j=1 χlj
,li

= UM
χ0

(0B)

s∏
i=1

Dχ0

∏i
j=1 χlj

,li
,

where (
∏s
i=1Dχ0

∏i
j=1 χlj

,li
,
∏s
i=1Dχ0

∏i−1
j=1 χlj

,li
) is the new couple (numerator, denominator) stored

on the edge above χ. We can then apply Algorithm 6.3 to all denominators to obtain quotients of the
form λ/

∏s
i=1Dχ0

∏i−1
j=1 χlj

,li
, where λ is the product of all denominators. We then set UM

χ0
(0B) := λ

and compute

UM
χ (0B) =

λ∏s
i=1Dχ0

∏i−1
j=1 χlj

,li

s∏
i=1

Dχ0
∏i

j=1 χlj
,li

for all non root character χ ∈ T . Algorithm 6.5 follows.

6.1. COMPUTING 2-ISOGENIES 207

Algorithm 6.2: Tree filling algorithm for the codomain dual theta-null point computation.

Data: Theta-coordinates θLi of 8-torsion points T1, · · · , Tg such that ker(f) = [4]⟨T1, · · · , Tg⟩.
Result: Full computation tree T as described above.

1 for χ0 ∈ ̂(Z/2Z)g do
2 Initialize T at root χ0;
3 while all terminal nodes of T are not not marked as leaves do
4 for every terminal node χ of T not marked as a leaf do
5 leaf ←− True;
6 for l = 1 to g do
7 if χ · χl ̸∈ T then
8 Dχ,l ←−

∑
t∈(Z/2Z)g χ(t)θ

L
t (Tl)

2;

9 if Dχ,l ̸= 0 then
10 Dχ·χl,l ←−

∑
t∈(Z/2Z)g χl(t)χ(t)θ

L
t (Tl)

2;

11 Add χ · χl as the child of χ in T and store (Dχ·χl,l, Dχ,l) on the edge
from χ to χ · χl;

12 leaf ←− False;

13 end

14 end

15 end
16 if leaf then
17 Mark χ as a leaf;
18 end

19 end

20 end

21 if T covers ̂(Z/2Z)g then
22 return T ;
23 end

24 end
25 return False;

Lemma 6.1.6. Algorithm 6.5 uses 6 · 2g − 9 multiplications and at most g2g(4g − 2g + 1) squarings.

When UM
χ (0B) ̸= 0 for all χ ∈ ̂(Z/2Z)g, Algorithm 6.5 uses as many multiplications than in the

general case but only g4g squarings.

Proof. Let T be a (possibly incomplete) tree obtained at the end of the main loop of Algorithm 6.2

iterating on the root χ0 ∈ ̂(Z/2Z)g. Then to fill in T , we had to compute Dχ,l for every (temporary)
terminal node χ and every l ∈ J1 ; gK such that χ·χl ̸∈ T . This amounts to at most g−1 computations
of Dχ,l if χ ̸= χ0 and g such computations otherwise. Each of these computations costs 2g squarings
so we have at most 2g(#T (g − 1) + 1) squarings for the Dχ,l computations on Line 8 in total. The
variable Dχ·χl,l on Line 10 is computed every time a tree node is found so #T − 1 times in total.
Hence, Line 10 costs 2g(#T −1) squarings in total. On the whole, a main loop of Algorithm 6.2 costs
at most 2gg#T squarings. Besides, we have #T < 2g at the end of each iteration, except when T is
full and the algorithm terminates. Hence, Algorithm 6.2 costs at most in total:

2gg(2g − 1)(2g − 1) + 2gg2g = 2gg(4g − 2g + 1)

squarings. When UM
χ (0B) ̸= 0 for all χ ∈ ̂(Z/2Z)g, Algorithm 6.2 terminates at the first iteration by

Lemma 6.1.5, so it costs at most g4g squarings in that case.
The call to Algorithm 6.4 in Algorithm 6.5 costs 2 multiplications per edge of the computation

tree T returned by Algorithm 6.2, so 2(2g−1) multiplications in total. The projective batch inversion
algorithm (Algorithm 6.3) costs 3(n − 1) multiplications, where n = 2g − 1 is the number of edges
in T . Finally, Line 7 of Algorithm 6.5 costs one multiplication per character χ ̸= χ0, so 2g − 1
multiplications in total. Hence, Algorithm 6.4 costs 6 · 2g − 9 multiplications along with the number
of squarings computed above. This completes the proof.

208 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Algorithm 6.3: Projective batch inversion.

Data: a1, · · · , an ∈ k∗.
Result: Projective inverses a2 · · · an, a1a3 · · · an, ..., a1 · · · an−1 and projective factor a1 · · · an.

1 b1 ←− a0 for i = 2 to n do
2 bi ←− bi−1 · ai ; // bi = a1 · · · ai
3 end
4 c1 ←− 1;
5 for i = 2 to n do
6 ci ←− ci−1 · an−i+2 ; // ci = an−i+2 · · · an
7 end
8 d1 ←− cn;
9 for i = 2 to n do

10 di ←− bi−1 · cn−i+1; // di = (a1 · · · ai−1) · (ai+1 · · · an)
11 end
12 return d1, · · · , dn, bn ; // Total cost: 3(n− 1)M

Algorithm 6.4: Recursive tree edge multiplication.

Data: A computation tree T (possibly non-full) with couples (a, b) ∈ k2 on each edge and a
couple (λ, µ) ∈ k2.

Result: A computation tree T ′ with the same structure as T and couples (a′, b′) on each edge
made of products a′ = λ

∏
ai and b

′ = µ
∏
bi where the (ai, bi) lie on the parent edges

of T .
1 Let χ0 be the root of T ;
2 for every child χ of χ0 do
3 Let (a, b) be the couple stored on the edge from χ0 to χ;
4 (a, b)←− (aλ, bµ);
5 Recurse on subtree Tχ with root χ and initial couple value (a, b);

6 end
7 return T ;

Remark 6.1.7. Once the codomain dual theta null point (UM
χ (0B))χ has been computed, we can

apply Algorithm 6.3 directly to obtain its projective inverse (1/UM
χ (0B))χ with 3(2g − 1) multiplica-

tions. This precomputed result (1/UM
χ (0B))χ can then be used as an entry of the evaluation algorithm

(Algorithm 6.1).

6.1.3 The gluing case

Evaluation of a gluing isogeny

Let us keep all the notations from Section 6.1.2 and the assumptions from Theorem 6.1.1. If f :
A1 × A2 −→ B is a gluing isogeny in the sense of Definition 6.1.8 below, we do not expect the
evaluation algorithm (Algorithm 6.1) to work as expected because dual theta constants UM

χ (0B) may
vanish.

Definition 6.1.8. A gluing isogeny is a an isogeny A1×A2 −→ B, where A1, A2 and B are principally
polarised abelian varieties andA1×A2 is considered with the product polarisation. Similarly, a splitting
isogeny is an isogeny B −→ A1 ×A2.

If f : A1 × A2 −→ B is a gluing isogeny, we may not divide by UM
χ (0B) in Eq. (6.1) as in

Algorithm 6.1 but we may ”twist” this equation to divide by a non-zero theta constant in order
to obtain the coordinate UM

χ (f(x)), x ∈ A(k) being the point we want to evaluate. This twisting
operation is given by translating x by 4-torsion points above ker(f).

Lemma 6.1.9. For all l ∈ J1 ; gK and x ∈ A(k), there exists λl ∈ k∗ such that for all χ ∈ ̂(Z/2Z)g,

6.1. COMPUTING 2-ISOGENIES 209

Algorithm 6.5: Codomain dual theta-null point computation algorithm.

Data: Theta-coordinates θLi of 8-torsion points T1, · · · , Tg such that ker(f) = [4]⟨T1, · · · , Tg⟩.
Result: The projective codomain dual theta-null point (UM

χ (0B))χ∈ ̂(Z/2Z)g .

1 Call Algorithm 6.2 with entries T1, · · · , Tg to get a computation tree T ;
2 Call Algorithm 6.4 on T and initial couple (1, 1) to multiply the numerators and

denominators on every edge recursively, going down the tree from its root;
3 Call Algorithm 6.3 all denominators Dχ lying on the edges of T to obtain projective inverses

λ/Dχ and the projective factor λ;

4 Let χ0 be the root of T . Set UM
χ0

(0B)←− λ;
5 for every χ ∈ ̂(Z/2Z)g \ {χ0} do
6 Let (Nχ, Dχ) lying on the parent edge of χ;

7 UM
χ (0B)←− Nχ · λ/Dχ;

8 end

9 return (UM
χ,0(0B))χ∈ ̂(Z/2Z)g ;

we have:
UM
χ (f(x)) · UM

χ·χl
(0B) = λl

∑
t∈(Z/2Z)g

χ(t)χl(t)θ
L
t (x+ [2]Tl)

2. (6.4)

We also have for all χ ∈ ̂(Z/2Z)g, ∑
t∈(Z/2Z)g

χ(t)χl(t)θ
L
t (x)

2

UM
χ (0B) = λl

 ∑
t∈(Z/2Z)g

χ(t)θLt (x+ [2]Tl)
2

UM
χ·χl

(0B). (6.5)

Proof. Let l ∈ J1 ; gK and x ∈ A(k). Then by Corollary 6.1.3, there exists λl ∈ k∗ such that for all

χ ∈ ̂(Z/2Z)g,
UM
χ (f(x+ [2]Tl)) · UM

χ (0B) = λl
∑

t∈(Z/2Z)g
χ(t)θLt (x+ [2]Tl)

2. (6.6)

Besides, by Theorem 6.1.1, we have ΘM(0, χl) = [2]f(Tl), so by Eq. (5.11), we have for all i ∈ (Z/2Z)g,

θMi (f(x+ [2]Tl)) = θMi (f(x) + [2]f(Tl)) = χl(i)
−1θMi (x) = χl(i)θ

M
i (x),

so that for all χ ∈ ̂(Z/2Z)g,

UM
χ (f(x+ [2]Tl)) =

∑
t∈(Z/2Z)g

χ(t)θMt (f(x+ [2]Tl)) =
∑

t∈(Z/2Z)g
χ(t)χl(t)θ

M
t (f(x))

= UM
χ·χl

(f(x)). (6.7)

It follows that for all χ ∈ ̂(Z/2Z)g,

UM
χ·χl

(f(x)) · UM
χ (0B) = λl

∑
t∈(Z/2Z)g

χ(t)θLt (x+ [2]Tl)
2,

Changing χ into χ · χl, we obtain Eq. (6.4).

Let χ ∈ ̂(Z/2Z)g. Then applying Corollary 6.1.3 with index χ · χl and projective factor set to
λ = 1 and combining with Eq. (6.7) and Eq. (6.6), we finally obtain: ∑

t∈(Z/2Z)g
χ(t)χl(t)θ

L
t (x)

2

UM
χ (0B) = UM

χ·χl
(f(x)) · UM

χ·χl
(0B) · UM

χ (0B)

= UM
χ (f(x+ [2]Tl)) · UM

χ·χl
(0B) · UM

χ (0B)

210 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

= λl

 ∑
t∈(Z/2Z)g

χ(t)θLt (x+ [2]Tl)
2

UM
χ·χl

(0B)

This proves Eq. (6.5) and completes the proof.

To compute (UM
χ (f(x)))χ given (θLi (x))i when f is a gluing isogeny, we use Eq. (6.1) to obtain

UM
χ (f(x)) for all χ ∈ ̂(Z/2Z)g such that Uχ(0B) ̸= 0. When Uχ(0B) = 0, we consider l ∈ J1 ; gK such

that Uχ·χl
(0B) ̸= 0 and compute UM

χ (f(x)) via Eq. (6.4). We use Eq. (6.5) to compute the factor λl
in Eq. (6.4). For each λl we need, we have to compute an inversion. The naive way to do it would be
to apply the batch inversion algorithm (Algorithm 5.3).

Instead, we propose an inversion free method. Applying Algorithm 6.3, we obtain the λλl for some

projective factor λ ∈ k∗. Then, for every χ ∈ ̂(Z/2Z)g such that Uχ(0B) = 0 and Uχ·χl
(0B) ̸= 0 we

apply Eq. (6.4) with λλl instead of λ to obtain λUM
χ (f(x)). For all χ ∈ ̂(Z/2Z)g such that Uχ(0B) ̸= 0,

we apply Eq. (6.1) to obtain UM
χ (f(x)) and multiply it by λ. Algorithm 6.6 follows.

Algorithm 6.6: Gluing isogeny evaluation algorithm.

Data: 4-torsion points [2]T1, · · · , [2]Tg such that ker(f) = [4]⟨T1, · · · , Tg⟩, a subset of indices
L ⊆ J1 ; gK, theta points (θLi (x))i and (θLi (x + [2]Tl))i for all l ∈ L, the codomain
dual theta null point (UM

χ (0B))χ and the inverses of the non-zero dual theta constants

1/UM
χ (0B) (up to a projective factor).

Result: (θMi (f(x)))i.

1 for χ ∈ ̂(Z/2Z)g do
2 HSχ ←−

∑
t∈(Z/2Z)g χ(t)θ

L
t (x)

2;

3 for l ∈ L do
4 HSχ,l ←−

∑
t∈(Z/2Z)g χ(t)θ

L
t (x+ [2]Tl)

2;

5 end

6 end
7 for l ∈ L do

8 Look for χ ∈ ̂(Z/2Z)g such that HSχ,l ̸= 0 and UM
χ·χl

(0B) ̸= 0;

9 Dl ←− HSχ,l · UM
χ·χl

(0B);

10 Nl ←− HSχ·χl
· UM

χ (0B);

11 end
12 Call Algorithm 6.3 on the Dl for all l ∈ L to obtain the λ/Dl for all l ∈ L and λ :=

∏
l∈LDl;

13 for l ∈ L do
14 λλl ←− λ/Dl ·Nl;
15 end

16 for χ ∈ ̂(Z/2Z)g do
17 if UM

χ (0B) ̸= 0 then
18 UM

χ (f(x))←− λ · 1/UM
χ (0B) ·HSχ;

19 else
20 Find l ∈ L such that UM

χ·χl,0
(0B) ̸= 0;

21 UM
χ (f(x))←− λλl · 1/UM

χ·χl
(0B) ·HSχ·χl,l;

22 end

23 end
24 for i ∈ (Z/2Z)g do
25 θMi (f(x))←−

∑
χ∈ ̂(Z/2Z)g χ(i)U

M
χ (f(x))

26 end

27 return (θMi (f(x)))i ; // Total cost: 2g(#L+ 1)S+ (6#L− 3 + 2g+1)M

Remark 6.1.10. In practice, the translates (θLi (x + [2]Tl))i for all l ∈ L are not computed directly
with the theta model using Algorithm 5.1 that requires to know (θLi (x− [2]Tl))i and to divide by some
(possibly zero) theta constants. For instance, if the domain is a product of elliptic curves, we may

6.1. COMPUTING 2-ISOGENIES 211

use Weierstrass coordinates to perform additions and then translate the result into theta coordinates
(using Proposition 5.3.47 for instance). This approach can be generalized to products of Jacobians of
genus 2 curves.

We have no proof that any choice of L (even L = J1 ; gK) ensures the termination of Algorithm 6.6

i.e. that there are enough non-zero codomain dual theta constants for a suitable character χ ∈ ̂(Z/2Z)g
to exist on Line 8. However, from our implementation in dimension 4 (that will be presented in
Section 6.6) we were able to formulate the following conjecture:

Conjecture 6.1.11. If f is a 4-dimensional gluing 2-isogeny A1 × A2 −→ B, where A1 × A2 is
a product of principally polarised abelian surfaces that are not isomorphic to elliptic products (as
polarised abelian varieties) and B is a 4-dimensional principally polarised abelian variety that is not
isomorphic to a product of smaller dimensional abelian varieties (as a polarised abelian variety), then
Algorithm 6.6 always terminates with any input set L such that #L ≥ 2.

Algorithm 6.6 serves its purpose but is much more costly than the generic evaluation algorithm
(Algorithm 6.1). Not only do we have to compute the translates x + Tl for l ∈ J1 ; gK prior to its
application, but also to perform an amount of additional operations compared to Algorithm 6.1. This
overhead is proportional to #L. In the following, we propose an alternate algorithm due to Max Du-
parc and implemented in dimension 2 for the round 2 SQIsign submission [AAA+25, Algorithm 8.40].
This algorithm can be generalised to any dimension and its cost is close to Algorithm 6.1.

Lemma 6.1.12. Let x, T ∈ A(k). Then there exists λ ∈ k∗ such that for all χ ∈ ̂(Z/2Z)g,

UM
χ (f(x)) · UM

χ (f(T)) = λ
∑

t∈(Z/2Z)g
χ(t)θLt (x+ T)θLt (x− T).

Proof. The proof is very similar to Corollary 6.1.3. Let x, T ∈ A(k). Then Eq. (5.18) immediately
ensures the existence of λ ∈ k∗ such that:

UL2

χ (x) · UL2

χ (T) = λ
∑

t∈(Z/2Z)g
χ(t)θLt (x+ T)θLt (x− T),

where UL2

χ (x) = UM
χ (f(x)) and UL2

χ (T) = UM
χ (f(T)). The result follows.

Consider T1 the first point of the 8-torsion basis B lying above ker(f). Unlike the dual theta
constants UM

χ (0B), the dual theta coordinates UM
χ (f(T1)) of the 4-torsion point f(T1) do not vanish

in practice, at least when f is a 2-dimensional gluing whose codomain is not a product or under the
assumptions of Conjecture 6.1.11 in dimension 4. We may then apply Lemma 6.1.12 to x ∈ A(k)
and T1 to obtain (UM

χ (f(x)))χ directly. This requires to have precomputed the projective inverse

(1/UM
χ (f(T1)))χ in the first place along with theta coordinates of x+ T1 and x− T1. Algorithm 6.7

follows.

Algorithm 6.7: Generic 2-isogeny evaluation with level 2 theta coordinates.

Data: Theta coordinates (θLi (x))i, (θ
L
i (x − T1))i, (θLi (x + T1))i and inverse of the codomain

dual theta coordinates (1/UM
χ (f(T1)))χ.

Result: The theta coordinates (θMi (f(x)))i.

1 for χ ∈ ̂(Z/2Z)g do
2 UM

χ (f(x))←− 1/UM
χ (f(T1)) ·

∑
t∈(Z/2Z)g χ(t)θ

L
t (x+ T1) · θLt (x− T1);

3 end
4 for i ∈ (Z/2Z)g do
5 θMi (f(x))←−

∑
χ∈ ̂(Z/2Z)g χ(i)U

M
χ (f(x));

6 end

7 return (θMi (f(x)))i ; // Total cost: 2g+1M

Remark 6.1.13. (UM
χ (f(T1)))χ (and its projective inverse) can be precomputed using Algorithm 6.6,

but we may save some computation time if we take advantage of a symmetry property of this dual theta

212 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

point. Indeed, by Eq. (6.3), we have, for all χ ∈ ̂(Z/2Z)g, UM
χ (f(T1)) = UM

χ·χ1
(f(T1)). Combining

this symmetry with Eq. (6.1), we may be able to evaluate (UM
χ (f(T1)))χ without using Algorithm 6.6,

provided that for all χ ∈ ̂(Z/2Z)g, we either have UM
χ (0B) ̸= 0 or UM

χ·χ1
(0B) ̸= 0. This idea is already

used to compute 2-dimensional isogenies in the SQIsign NIST round 2 implementation [AAA+25,
Algorithm 8.39].

Codomain dual theta null point of a gluing isogeny

When we compute the dual theta null point (UM
χ (0B))χ of the codomain of a gluing isogeny, the tree

filling algorithm (Algorithm 6.2) may not have enough information to find a full computation tree.
Namely, recalling the notation from Section 6.1.2:

Dχ,l :=
∑

t∈(Z/2Z)g
χ(t)θLt (Tl)

2,

there might be too many zero denominators Dχ,l for Algorithm 6.2 to return the desired result. To
circumvent this difficulty, we generalise Lemma 6.1.4 to sums of Tl to add more possible edges to
explore to fill in the computation tree.

Lemma 6.1.14. For all multi-index i ∈ (Z/2Z)g, we denote Ti :=
∑g
l=1[il]Tl and recall that χi :=∏g

l=1 χ
ik
l . Then, for all i ∈ (Z/2Z)g and χ ∈ ̂(Z/2Z)g, we have:

UM
χ·χi(0B)

 ∑
t∈(Z/2Z)g

χ(t)θLt (Ti)
2

 = UM
χ (0B)

 ∑
t∈(Z/2Z)g

χ(t)χi(t)θLt (Ti)
2

 .

Proof. This is very similar to the proof of Lemma 6.1.4.

Now, using Lemma 6.1.14, we are able to consider edges between characters χ and χ · χi for all
i ∈ (Z/2Z)g such that Ti has been given on entry of the tree filling algorithm (Algorithm 6.2). With
this additional freedom, we can adapt Algorithms 6.2 and 6.5 very easily (including sums of points Tl
on entry). With experimental results (see Section 6.6 in particular), we are able to state the following
conjecture.

Conjecture 6.1.15. (i) If f is not a gluing isogeny, the codomain dual theta constants UM
χ (0B)

never vanish and Algorithm 6.2 always returns a full computation tree (in one iteration by
Lemma 6.1.5). Hence, Algorithm 6.5 terminates and computes a correct codomain dual theta
null point (UM

χ (0B))χ and the standard evaluation algorithm (Algorithm 6.1) can be used.

(ii) If f is a 4-dimensional gluing 2-isogeny A1×A2 −→ B, where A1×A2 is a product of principally
polarised abelian surfaces that are not isomorphic to elliptic products (as polarised abelian vari-
eties) and B is a 4-dimensional abelian variety that is not isomorphic to a product of smaller
dimensional abelian varieties (as a polarised abelian variety), then Algorithm 6.2 always returns
a full computation tree so Algorithm 6.5 terminates and computes a correct codomain dual theta
null point when 5 entry 8-torsion points T1, · · · , T4 and T1 + T2 lying above ker(f) are given.

6.2 Change of theta coordinates

In order to compute a 2-isogeny f : A −→ B in the last section, we made a choice of level 2
theta structure ΘL on the domain (A,L) adapted to f that simplified the isogeny computation. In
particular, we imposed the condition K2(ΘL) = ker(f) in Theorem 6.1.1. Unfortunately, the domain
theta structure ΘL obtained at the start (e.g. the product theta structure on an elliptic curve product)
does not always satisfy this condition. For that reason, we need to find a new theta structure Θ′

L
adapted to f , satisfying K2(Θ′L) = ker(f) in particular, and compute the change of theta coordinates
from the former ones to the new ones. The goal of this section is to obtain explicit formulas to change
theta coordinates.

6.2. CHANGE OF THETA COORDINATES 213

In Section 6.2.1, we introduce some theory on the action of Heisenberg group automorphisms
(relating different theta structures) on theta functions due to Faugère, Lubicz and Robert [FLR11,
§ 5.2-5.3] (see also [Rob10, § 3.5]). In Section 6.2.2, we follow the approach of [FLR11] and apply
this theory to symmetric theta structures and obtain an explicit change of theta coordinates formula
in that case (Theorem 6.2.10). This formula is the main contribution of this section. It was already
known to Igusa [Igu72, Theorem V.2] and Cosset [Cos11, Proposition 3.1.24] but proved in the analytic
setting of complex theta functions. Our proof only uses the algebraic setting of Mumford [Mum66]
which is more suitable to isogeny computations over finite fields. Finally, in Section 6.2.3, we apply the
change of theta coordinates formula in a very simple case to compute the polarised dual f̃ : B −→ A
of a 2-isogeny f : A −→ B.

6.2.1 Heisenberg group automorphisms

Let (A,L) be a polarized abelian variety of type δ. Let Autk∗(H(δ)) be the group of automorphisms
of the Heisenberg group H(δ) that are trivial on k∗.

Proposition 6.2.1. Autk∗(H(δ)) acts faithfully and transitively on the set of theta structures on
(A,L) by composition on the right.

Proof. Let ψ ∈ Autk∗(H(δ)). Then ψ induces a symplectic isomorphism ψ ∈ Aut(K(δ)) such that
the following diagram commutes:

1 // k∗ // H(δ) //

ψ

��

K(δ) //

ψ

��

0

1 // k∗ // H(δ) // K(δ) // 0

ψ is given by ψ := ρδ ◦ ψ ◦ sδ where ρδ : H(δ) −→ K(δ) and sδ : K(δ) −→ H(δ) are respectively the
forgetful map and the canonical section. Now we justify that ψ is symplectic. Let (i1, χ1), (i2, χ2) ∈
K(δ). Then

eδ(ψ(i1, χ1), ψ(i2, χ2)) = ψ(1, i1, χ1)ψ(1, i2, χ2)ψ(1, i1, χ1)
−1ψ(1, i2, χ2)

−1

= ψ((1, i1, χ1) · (1, i2, χ2))ψ((1, i2, χ2) · (1, i1, χ1))
−1

= ψ(χ2(i1), i1 + i2, χ1χ2)ψ(χ1(i2), i1 + i2, χ1χ2)
−1

= χ2(i1)χ1(i2)
−1ψ(1, i1 + i2, χ1χ2)ψ(1, i1 + i2, χ1χ2)

−1

= χ2(i1)χ1(i2)
−1 = eδ((i1, χ1), (i2, χ2)),

so ψ is symplectic.
Consequently, if ΘL is a theta structure, then ΘL ◦ ψ is a theta structure so Autk∗(H(δ)) acts on

theta structures. Besides ΘL ◦ ψ = ΘL if and only if ψ = idH(δ), so the action is faithful. Finally, if

ΘL and Θ′
L are theta structures, then ΘL ◦Θ′−1

L ∈ Autk∗(H(δ)) so the action is transitive.

Proposition 6.2.2. Let Sp(K(δ)) be the group of symplectic morphisms of K(δ). Then, we have an
exact sequence

0 −→ K(δ) −→ Autk∗(H(δ)) −→ Sp(K(δ)) −→ 1,

where Autk∗(H(δ)) −→ Sp(K(δ)) is the forgetful map ψ 7−→ ψ.

Proof. Let ψ ∈ Sp(K(δ)). Then, ψ(Ki(δ)) for i ∈ {1, 2} are (maximal) isotropic subgroups of K(δ).
Hence, as we saw in the proof of Proposition Proposition 5.1.12 ((ii) =⇒ (i)), we can lift the ψ(Ki(δ))
to level subgroups of H(δ), i.e. find sections si : ψ(Ki(δ)) −→ H(δ) for i ∈ {1, 2}. We then define
ψ ∈ Autk∗(H(δ)) as follows:

∀(α, i, χ) ∈ H(δ), ψ(α, i, χ) := α · s1(ψ(i, 1)) · s2(ψ(0, χ)).

By construction, ψ reduces to ψ, so the forgetful map Autk∗(H(δ)) −→ Sp(K(δ)) is indeed surjective.

214 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Now, let ψ ∈ Autk∗(H(δ)) mapping to the identity in Sp(K(δ)). Then, there exists a character
χ : K(δ) −→ k∗ such that

∀(α, y) ∈ H(δ), ψ(α, y) = (αχ(y), y).

Since eδ is non-degenerate, there exists c ∈ K(δ) such that χ(y) = eδ(c, y) for all y ∈ K(δ). Hence, ψ
is in the image of

K(δ) −→ Autk∗(H(δ))
c := (c1, c2) 7−→ [ψc : (α, i, χ) 7−→ (αeδ(c, (i, χ)), i, χ) = (αχ(c1)c2(i)

−1, i, χ)]
(6.8)

and conversely, any morphism of the form ψc for some c ∈ K(δ) is trivial in Sp(K(δ)). Finally,
ψc = idH(δ) if and only if c = 0. This completes the proof.

Remark 6.2.3. If ψ ∈ Sp(K(δ)), then we can write a lift ψ ∈ Autk∗(H(δ)) explicitly, as ψ(α, i, χ) :=
(αξ(i, χ), ψ(i, χ)) for all (α, i, χ) ∈ H(δ), where ξ : K(δ) −→ k∗ is a semi-character, satisfying the
following property:

∀(i1, χ1), (i2, χ2) ∈ K(δ), ξ(i1 + i2, χ1 · χ2) =
ξ(i1, χ2)ξ(i2, χ2)ψ2(i2, χ2)(ψ1(i1, χ1))

χ2(i1)
. (6.9)

In the following, we study the action of Autk∗(H(δ)) on the canonical basis of theta functions
(θi)i∈K1(δ). Let ΘL be a theta structure, ψ ∈ Autk∗(H(δ)) and Θ′

L := ΘL ◦ψ another theta structure.
As we saw in Section 5.1.5, the basis of theta functions (θi)i∈K1(δ) associated to ΘL is defined by

θi := β(δi), where the δi are the Kronecker delta functions for i ∈ K1(δ) and β : V (δ)
∼−→ Γ(A,L) is

the unique (up to scalar multiplication) isomorphism respecting the group action of H(δ) and G(L):

∀h ∈ H(δ), v ∈ V (δ), β(h · v) = ΘL(h) · β(v).

Similarly, we have a basis of theta functions (θ′i)i∈K1(δ) associated to Θ′
L, defined by θ′i := β′(δi) with

β′ : V (δ)
∼−→ Γ(A,L) such that:

∀h ∈ H(δ), v ∈ V (δ), β′(h · v) = Θ′
L(h) · β′(v) = ΘL(h) ◦ ψ(h) · β′(v).

We want to relate the θi to the θ′i. By the definition of the representation V (δ) of H(δ), we have
for all i ∈ K1(δ) and j ∈ K2(δ):

δi = (1, i, 1) · δ0 and (1, 0, j) · δ0 = δ0 (6.10)

It follows that the θ′i are fully determined by θ′0 and that θ′0 is invariant under the action of the maximal

level subgroup K̃2(Θ
′
L). By Corollary 5.1.26, a section invariant under the action of a maximal level

subgroup is unique up to scalar multiplication. So we only need to find one section stabilized by
K̃2(Θ

′
L) to determine θ′0 and then (θ′i)i∈K1(δ).

Proposition 6.2.4. (i) There exists i ∈ K1(δ) and λ ∈ k∗ such that:

θ′0 = λ
∑

j∈K2(δ)

ΘL ◦ ψ(1, 0, j) · θi.

(ii) When ψ = ψc : (α, i, χ) 7−→ (αχ(c1)c2(i)
−1, i, χ), for some c := (c1, c2) ∈ K(δ) (ψ is trivial in

Sp(K(δ))), we have θ′0 = λθc1 and θ′i = λc2(i)
−1θi+c1 for all i ∈ K1(δ) and for some λ ∈ k∗.

(iii) When ψ(sδ(K2(δ))) = 1×K1 ×K2 with Ki ⊂ Ki(δ) for i ∈ {1, 2}, then we have:

θ′0 = λ
∑
i∈K1

θi,

with λ ∈ k∗.

6.2. CHANGE OF THETA COORDINATES 215

Proof. (i) For all i ∈ K1(δ), Ti :=
∑
χ∈K2(δ)

ΘL ◦ψ(1, 0, χ) ·θi is invariant under the action of K̃2(Θ
′
L)

by construction. Now we prove that at least one of the Ti is non-zero (so that Ti = θ′0 up to scalar
multiplication). We write ψ(1, 0, χ) := (α(χ), σ(χ), τ(χ)) for all χ ∈ K2(δ). Then

∀i ∈ K1(δ), χ ∈ K2(δ), ψ(1, 0, χ) · δi = α(χ)τ(χ)(i+ σ(χ))−1δi+σ(χ),

with

τ(χ)(σ(χ)) = eδ((σ(χ), 1), (0, τ(χ))) = 1.

Indeed, (σ(χ), 1), (0, τ(χ)) ∈ ψ(K2(δ)) since ψ = (σ, τ) is an isomorphism. And ψ is symplectic so
ψ(K2(δ)) is isotropic.

It follows that for all i ∈ K1(δ),

Ti = β

 ∑
χ∈K2(δ)

ψ(1, 0, χ) · δi

 = β

 ∑
χ∈K2(δ)

α(χ)τ(χ)(i)−1δi+σ(χ)

= β

 ∑
l∈im(σ)

 ∑
χ∈σ−1({l})

α(χ)τ(χ)(i)−1

 δi+l

 =
∑

l∈im(σ)

 ∑
χ∈σ−1({l})

α(χ)τ(χ)(i)−1

 θi+l

Hence, the θi forming a basis, it suffices to find i ∈ K1(δ) such that:∑
χ∈ker(σ)

α(χ)τ(χ)(i)−1 ̸= 0

to get Ti ̸= 0. But ker(σ)∩ker(τ) = {0} since ψ = (σ, τ) is an isomorphism so that # im(σ)·# im(τ) =
#K2(δ) i.e. # im(τ) = #K2(δ)/# im(σ) = #ker(σ) and τ induces an isomorphism ker(σ)

∼−→ im(τ).
Hence, the τ(χ)−1 for χ ∈ ker(σ) are distinct characters so they are linearly independent and the
result follows (the α(χ) being non-zero for all χ ∈ ker(σ)).

(ii) We have, for all χ ∈ K2(δ),

ψc(1, 0, χ) · δc1 = (χ(c1), 0, χ) · δc1 = χ(c1)χ(c1)
−1δc1 = δc1 ,

so θc1 is K̃2(Θ
′
L)-invariant and θ

′
0 = λθc1 for some λ ∈ k∗. We then have

θ′i = λβ(ψc(1, i, 1) · δ0) = λβ((c2(i)
−1, i, 1) · δ0) = λβ(c2(i)

−1δi+c1) = λc2(i)
−1θi+c1 .

(iii) Let T :=
∑
i∈K1

θi and let us write ψ(1, 0, χ) := (1, σ(χ), τ(χ)) for all χ ∈ K2(δ). Then, for
all χ ∈ K2(δ),

Θ′
L(δ)(1, 0, χ) · T = β

(∑
i∈K1

ψ(1, 0, χ) · δi

)
= β

(∑
i∈K1

τ(χ)(i+ σ(χ))−1δi+σ(χ)

)
,

with, for all i ∈ K1

τ(χ)(i+ σ(χ)) = eδ((i+ σ(χ), 1), (0, τ(χ))) = 1

since (i+ σ(χ), 1), (0, τ(χ)) ∈ ψ(K2(δ)). It follows that

Θ′
L(δ)(1, 0, χ) · T = β

(∑
i∈K1

δi+σ(χ)

)
= β

(∑
i∈K1

δi

)
= T,

so that θ′0 = λT for some λ ∈ k∗.

216 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

6.2.2 Action of automorphisms on symmetric and compatible theta struc-
tures

In this section, we adapt the results of the previous section to the case of symmetric theta structures.
We introduce symmetric Heisenberg automorphisms and study their action on symmetric theta struc-
tures. Our goal, achieved in Theorem 6.2.10, is to derive an explicit change of coordinates formula
from Proposition 6.2.4 depending on the symplectic basis associated to the underlying symmetric
theta structures (following Remark 5.3.31).

Definition 6.2.5. An automorphism ψ ∈ Aut(H(δ)) is symmetric if ψ◦D−1 = D−1◦ψ, whereD−1 has
been defined in Definition 5.3.12. We denote Aut0(H(δ)) the subgroup of symmetric automorphisms.

Lemma 6.2.6. Let ψ ∈ Aut(H(δ)). As in Remark 6.2.3, we may write ψ(α, i, χ) := (αξ(i, χ), ψ(i, χ))
for all (α, i, χ) ∈ H(δ), where ψ ∈ Sp(K(δ)) is the symplectic automorphism induced by ψ and
ξ : K(δ) −→ k∗ is a semi-character. Then, ψ is symmetric if and only if

∀(i, χ) ∈ K(δ), ξ(i, χ)2 = χ(i)−1ψ2(i, χ)(ψ1(i, χ)).

Proof. We have, for all (α, i, χ) ∈ H(δ),

ψ ◦D−1(α, i, χ) = ψ

(
α2

χ(i)
(α, i, χ)−1

)
=

α2

χ(i)
ψ(α, i, χ)−1

and D−1 ◦ ψ(α, i, χ) =
α2ξ(i, χ)2

ψ2(i, χ)(ψ1(i, χ))
ψ(α, i, χ)−1

The result follows.

Lemma 6.2.7. The exact sequence of Proposition 6.2.2 yields an exact sequence

0 −→ K(δ)[2] −→ Aut0(H(δ)) −→ Sp(K(δ)) −→ 1.

Proof. Let ψ ∈ Sp(K(δ)) and ψ ∈ Aut(H(δ)) be a lift of ψ. As in Remark 6.2.3, we may write
ψ(α, i, χ) := (αξ(i, χ), ψ(i, χ)) for all (α, i, χ) ∈ H(δ), where ξ : K(δ) −→ k∗ is a semi-character. By
Lemma 6.2.6, ψ is symmetric if and only if

∀(i, χ) ∈ K(δ), ξ(i, χ)2 = χ(i)−1ψ2(i, χ)(ψ1(i, χ)).

It is sufficient that:

∀(i, χ) ∈ K(δ), ξ(i, 1)2 = ψ2(i, 1)(ψ1(i, 1)) and ξ(0, χ)2 = ψ2(0, χ)(ψ1(0, χ)). (6.11)

We can then extend ξ by the semi-character formula (Eq. (6.9)):

∀(i, χ) ∈ K(δ), ξ(i, χ) =
ξ(i, 1)ξ(0, χ)ψ2(0, χ)(ψ1(i, 1))

χ(i)
.

Indeed, this defines a semi-character by construction, and we then have for all (i, χ) ∈ K(δ),

ξ(i, χ)2 =
ξ(i, 1)2 · ξ(0, χ)2 · ψ2(0, χ)(ψ1(i, 1))

2

χ(i)2

=
ψ2(i, 1)(ψ1(i, 1)) · ψ2(0, χ)(ψ1(0, χ)) · ψ2(0, χ)(ψ1(i, 1))

2

χ(i)2

=
ψ2(i, χ)(ψ1(i, 1)) · ψ2(0, χ)(ψ1(i, χ))

χ(i)2

and

χ(i) = eδ((i, χ), (0, χ)) = eδ(ψ(i, χ), ψ(0, χ)) = ψ2(0, χ)(ψ1(i, χ)) · ψ2(i, χ)(ψ1(0, χ))
−1,

6.2. CHANGE OF THETA COORDINATES 217

so that, as expected,
ξ(i, χ)2 = χ(i)−1ψ2(i, χ)(ψ1(i, χ)).

In order to satisfy Eq. (6.11), we define ξ accordingly on basis of K1(δ) and K2(δ) (by taking square
roots of the ψ2(i, 1)(ψ1(i, 1)) and ψ2(0, χ)(ψ1(0, χ))). This defines a symmetric lift ψ ∈ Aut(H(δ)).

Now, if ψ ∈ Aut0(H(δ)) maps to idK(δ), we can write ψ = ψc for some c ∈ K(δ), where ψc(α, y) :=
(αeL(c, y), y) for all (α, y) ∈ H(δ) by Eq. (6.8). We then get that ψc is symmetric if and only if eδ(c, ·)
takes values in {±1}, i.e. c ∈ K(δ)[2]. This completes the proof.

Let L be a totally symmetric line bundle on an abelian variety A of type δ. Let ΘL and ΘL2

be compatible symmetric theta-structures on G(L) and G(L2) respectively. We now explain how the
action of a symmetric automorphism ψ ∈ Aut0(H(2δ)) on ΘL2 transforms ΘL and the associated
theta-functions.

Proposition 6.2.8. Recall the definitions of E2 : H(δ) −→ H(2δ) and H2 : H(2δ) −→ H(δ) from
Definition 5.3.25 and H2 : K(2δ) −→ K(δ) from Eq. (5.13).

(i) For all ψ ∈ Aut0(H(2δ)), there exists a unique ψ′ ∈ Aut0(H(δ)) such that ψ′ ◦ H2 = H2 ◦ ψ.
Then ψ and ψ′ automatically satisfy ψ ◦ E2 = E2 ◦ ψ′.

(ii) Let ψ,ψ
′
, ξ, ξ′ be respectively the symplectic automorphisms and semi-characters associated to ψ

and ψ′. Then, we have ψ
′ ◦H2 = H2 ◦ ψ and

∀(i, χ) ∈ K(2δ), ξ′(i, χ) = χ(i)−1ψ2(i, χ)(ψ1(i, χ)).

(iii) Let (ΘL,ΘL2) and (Θ′
L,Θ

′
L2) be two pairs of compatible symmetric theta structures for (L,L2).

Then, there exists ψ ∈ Aut0(H(2δ)) such that Θ′
L2 = ΘL2 ◦ ψ and Θ′

L = ΘL ◦ ψ′, where

ψ′ ∈ Aut0(H(δ)) is induced by ψ.

Proof. (i) By Lemma 5.3.27, ker(H2) = H(2δ)[2], so for all h ∈ H(2δ), H2 ◦ ψ(h) = 1 if and only if
ψ(h)2 = 1 if and only if h2 = 1 (since ψ is an automorphism). Hence, H2 ◦ ψ factors through H2 and
this defines an automorphism ψ′ : H(δ) ∼−→ H(δ) such that ψ′ ◦H2 = H2 ◦ ψ. This automorphism ψ′

is trivial on k∗ because ψ is and H2 act as λ 7−→ λ2. Besides, ψ′ is symmetric by Lemma 5.3.26.(ii)
and since H2 is surjective, so ψ′ ∈ Aut0(H(2δ)). The uniqueness is a consequence of the surjectivity
of H2.

We now prove that ψ ◦E2 = E2 ◦ψ′. By surjectivity of H2, it suffices to prove that ψ ◦E2 ◦H2 =
E2 ◦ψ′ ◦H2 i.e. that ψ ◦D2 = D2 ◦ψ since ψ′ ◦H2 = H2 ◦ψ and E2 ◦H2 = D2 by Lemma 5.3.26.(iii).
Let h ∈ H(2δ). Then, D2(h) = h3D−1(h) by Lemma 5.3.26.(iv) and:

ψ ◦D2(h) = ψ(h3D−1(h)) = ψ(h)3 · ψ ◦D−1(h) = ψ(h)3 ·D−1 ◦ ψ(h) = D2 ◦ ψ(h)

The result follows.
(ii) Let (α, i, χ) ∈ H(2δ). Then

H2 ◦ ψ(α, i, χ) = H2(αξ(i, χ), ψ(i, χ)) = (α2ξ(i, χ)2, H2 ◦ ψ(i, χ))

and ψ′ ◦H2(α, i, χ) = ψ′(α2, i, χ) = (α2ξ′(i, χ), ψ′ ◦H2(i, χ))

Hence ψ
′ ◦H2 = H2 ◦ ψ and by Lemma 6.2.6:

ξ′(i, χ) = ξ(i, χ)2 = χ(i)−1ψ2(i, χ)(ψ1(i, χ)).

The result follows.
(iii) Let ψ := Θ−1

L2 ◦Θ′
L2 . Then, ΘL2 and Θ′

L2 being symmetric, we have:

ψ ◦D−1 = Θ−1
L2 ◦Θ′

L2 ◦D−1 = Θ−1
L2 ◦∆−1 ◦Θ′

L2 = D−1 ◦Θ−1
L2 ◦Θ′

L2 = D−1 ◦ ψ,

so ψ ∈ Aut0(H(2δ)). Besides by compatibility of the pairs (ΘL,ΘL2) and (Θ′
L,Θ

′
L2):

Θ′
L ◦H2 = η2 ◦Θ′

L2 = η2 ◦ΘL2 ◦ ψ = ΘL ◦H2 ◦ ψ = ΘL ◦ ψ′ ◦H2,

so that Θ′
L = ΘL ◦ ψ′ since H2 is surjective. This completes the proof.

218 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Let δ := (d1, · · · , dg) with d1| · · · |dg and ζ ∈ k∗ be a dg-th primitive root of unity. Let us fix
a canonical symplectic basis of K(δ) as follows. For l ∈ J1 ; gK, let el be the vector of K1(δ) with
1 at index l and 0 everywhere else. For all l ∈ J1 ; gK, let χl ∈ K2(δ) be the character such that
χl(em) = ζdg/dlδl,m for all m ∈ J1 ; gK. Then K1(δ) can be canonically identified with K2(δ) via the
map i ∈ K1(δ) 7−→ χi :=

∏g
l=1 χ

il
i . We then have

∀i, j ∈ K1(δ), χi(j) = ζ⟨i|j⟩ with ⟨i|j⟩ :=
g∑
l=1

dg
dl
iljl.

Such a basis is called a canonical ζ-symplectic basis.

Lemma 6.2.9. Let σ : K(δ)
∼−→ K(δ) be an automorphism of K(δ) and M be its matrix in the

canonical ζ-symplectic basis (e1, · · · , eg, χ1, · · · , χg). Then σ is symplectic if and only if

tM · J∆ ·M ≡ J∆ mod dg, where J∆ :=

(
0 ∆
−∆ 0

)
and ∆ := Diag(dg/d1, · · · , dg/dg−1, 1).

If we write

M :=

(
A C
B D

)
,

this is equivalent to tB∆A ≡ tA∆B, tD∆C ≡ tC∆B and tA∆D − tB∆C ≡ ∆ modulo dg.

Proof. Let l,m ∈ J1 ; gK. Then

eδ(σ(el, 1), σ(em, 1)) = eδ((Ael, χ
Bel), (Aem, χ

Bem)) = χBem(Ael)χ
−Bel(Aem)

= ζ⟨Ael|Bem⟩−⟨Bel|Aem⟩ = ζ
tel(

tA∆B− tB∆A)em

and eδ((el, 1), (em, 1)) = 1. Besides

eδ(σ(0, χl), σ(0, χm)) = eδ((Cel, χ
Del), (Cem, χ

Dem)) = χDem(Cel)χ
−Del(Cem)

= ζ⟨Cel|Dem⟩−⟨Del|Cem⟩ = ζ
tel(

tC∆D− tD∆C)em

and eδ((0, χl), (0, χm)) = 1. Finally

eδ(σ(el, 1), σ(0, χm)) = eδ((Ael, χ
Bel), (Cem, χ

Dem)) = χDem(Ael)χ
−Bel(Cem)

= ζ⟨Ael|Dem⟩−⟨Bel|Cem⟩ = ζ
tel(

tA∆D− tB∆C)em

and eδ((el, 1), (0, χm)) = ζdg/dlδl,m . Hence, σ is symplectic if and only if tB∆A ≡ tA∆B, tD∆C ≡
tC∆B and tA∆D − tB∆C ≡ ∆ modulo dg. The result immediately follows.

Theorem 6.2.10 (Change of theta coordinates). Let ΘL2 be a symmetric theta-structure on G(L2)
and ΘL be the induced compatible theta-structure on G(L). Let ψ ∈ Aut0(H(2δ)) and ψ′ ∈ Aut0(H(δ))
be the induced symmetric automorphism (following Proposition 6.2.8.(i)). Let ζ be a primitive 2dg-th
root of unitiy and

M :=

(
A C
B D

)
be the matrix of ψ ∈ Sp(K(2δ)) in the canonical ζ-symplectic basis. Let (θLi)i∈K1(δ) and (θ′

L
i)i∈K1(δ)

be respectively the basis of theta-functions for ΘL and Θ′
L := ΘL ◦ ψ′. Then, there exists i0 ∈ K1(δ)

and λ ∈ k∗ such that for all i ∈ K1(δ),

θ′
L
i = λ

∑
j∈K1(δ)

ζ⟨i|j⟩−⟨Ai+Cj+2i0|Bi+Dj⟩θLAi+Cj+i0 .

We can choose any value of i0 ∈ K1(δ) such that∑
j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩θLi0+Cj ̸= 0.

6.2. CHANGE OF THETA COORDINATES 219

Proof. By Proposition 6.2.4, there exists i0 ∈ K1(δ) and λ ∈ k∗ such that θ′
L
0 = λTi0 , where

Ti0 :=
∑

j∈K2(δ)

ΘL ◦ ψ′(1, 0, j) · θLi0

is non-zero.
As explained before, we can identify K1(δ) with K2(δ) via the map j 7−→ χj , where χj(i) := ζ2⟨i|j⟩

for all i, j ∈ K1(δ) (ζ2 being a primitive dg-th root of unity). Similarly, we identify K1(2δ) with
K2(2δ) via the map j 7−→ χ̃j , where χ̃j(i) = ζ⟨i|j⟩ for all i, j ∈ K1(2δ). Now, by Proposition 6.2.8, we
can express ψ′ as follows: for all i, j ∈ K1(δ), we have:

ψ′(1, i, χj) =
(
χ̃j

′
(i′)−1ψ2(i

′, χ̃j
′
)(ψ1(i

′, χ̃j
′
)), ψ1(i

′, χ̃j
′
), ψ2(i

′, χ̃j
′
)
)
,

with i′, j′ ∈ K1(2δ) such that i′ = i and j′ = j. It follows that for all (i, j) ∈ K1(δ),

ψ′(1, i, χj) =
(
ζ−⟨i′|j′⟩χ̃Bi

′+Dj′(Ai′ + Cj′), Ai′ + Cj′, χ̃Bi′+Dj′
)

= (ζ−⟨i′|j′⟩+⟨Bi′+Dj′|Ai′+Cj′⟩, Ai+ Cj, χBi+Dj)

= (ζ−⟨i|j⟩+⟨Bi+Dj|Ai+Cj⟩, Ai+ Cj, χBi+Dj)

For the last equality, we can easily check that −⟨i′|j′⟩ + ⟨Bi′ +Dj′|Ai′ + Cj′⟩ only depends on the
values of i′ and j′ modulo dg. Consequently,

Ti0 =
∑

j∈K1(δ)

ζ⟨Dj|Cj⟩χDj(Cj + i0)
−1θLCj+i0

=
∑

j∈K1(δ)

ζ⟨Dj|Cj⟩ζ−2⟨Cj+i0|Dj⟩θLCj+i0

=
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩θLCj+i0

And, if Ti0 ̸= 0, we have for all i ∈ K1(δ),

θ′
L
i = Θ′

L(1, i, 1) · θ′
L
0 = λΘL ◦ ψ(1, i, 1) · Ti0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ΘL ◦ ψ(1, i, 1) · θLCj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ⟨Bi|Ai⟩χBi(Ai+ Cj + i0)
−1θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ⟨Bi|Ai⟩ζ−2⟨Bi|Ai+Cj+i0⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Dj⟩ζ−⟨Bi|Ai+2Cj+2i0⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Cj+2i0|Bi+Dj⟩−⟨Bi|Ai+Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨Ai|Bi+Dj⟩−⟨Bi|Ai+Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨Ai|Dj⟩−⟨Bi|Cj⟩θLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+ ti(tA∆D− tB∆C)jθLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+ ti∆jθLAi+Cj+i0

= λ
∑

j∈K1(δ)

ζ−⟨Ai+Cj+2i0|Bi+Dj⟩+⟨i|j⟩θLAi+Cj+i0

This completes the proof.

220 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

6.2.3 Computing the dual of a 2-isogeny

We keep the notations from Section 6.1.1. Assume we have computed a 2-isogeny f : (A,L2) −→
(B,M) with the techniques from Sections 6.1.2 and 6.1.3, it is then easy to compute its dual

f̃ : (B,M2) −→ (A,L) with the data we already have. By the following lemma, we only have to

precompute the inverse theta-constants (1/θLi (0A))i to be able to evaluate f̃ . Up to Hadamard trans-
forms, the formula is similar to Eq. (6.1). It is obtained via the change of theta coordinates formula
proved in Theorem 6.2.10, which is, in this particular case, a Hadamard transform.

Lemma 6.2.11. Let f : (A,L2) −→ (B,M) be a 2-isogeny, ζ be an 8-th primitive root of
unity and B := (S1, · · · , Sg, T1, · · · , Tg) be a ζ-symplectic basis adapted to f as in Theorem 6.1.1.
Let ΘL2 be the symmetric theta structure on G(L2)induced by B, ΘL its induced compatible
symmetric theta structure on G(L) and ΘM be the theta structure on G(M) induced by C :=
([2]f(S1), · · · , [2]f(Sg), f(T1), · · · , f(Tg)) compatible with ΘL2 with respect to f by Theorem 6.1.1.
Then:

(i) f̃ is a polarised abelian variety (B,M2) −→ (A,L) of kernel ker(f̃) = K1(ΘM).

(ii) Let y ∈ B(k). Then there exists λ ∈ k∗ such that for all i ∈ (Z/2Z)g,

θLi (f̃(y)) · θLi (0A) = λ
∑

χ∈ ̂(Z/2Z)g

χ(i)UM
χ (y)2,

where the theta coordinates above are associated to ΘL and ΘM.

Proof. (i) By assumption f is a 2-isogeny, so f̃ is a 2-isogeny by Lemma 2.2.2.(ii), so f̃ is a polarised

isogeny (A,L2
0) −→ (B,M0) (recall that L = L2

0 and M = M2
0). It follows that f̃ is a polarised

isogeny (A,L2) −→ (B,M).

Besides, f(A[2]) ⊆ ker(f̃) since f̃ ◦ f = [2] and f̃ is separable since char(k) is odd so #ker(f̃) =

deg(f̃) = deg(f) = 2g. We also have f(A[2]) = f(K1(ΘL)) = K1(ΘM) by Theorem 6.1.1.(i) and

#K1(ΘM) = 2g so the inclusion f(A[2]) ⊆ ker(f̃) is an equality, which proves (i).

(ii) Our goal here is to find a well-chosen ζ-symplectic basis adapted to f̃ in order to ap-
ply Theorem 6.1.1 and its corollary (Corollary 6.1.3). Let ζ ′ ∈ k∗ such that ζ ′2 = ζ and
B′ := (S′

1, · · · , S′
g, T

′
1, · · · , T ′

g) be a ζ ′-symplectic basis of A[16] such that [2]B′ = B. Then, by
Theorem 5.3.30 (points (ii) and (ii)), B′ induces a symmetric theta structure ΘL4 that is compat-
ible with ΘL2 . Following the same reasoning as in the proof of Theorem 5.3.30.(i), we obtain that
C ′ := ([2]f(S′

1), · · · , [2]f(S′
g), f(T

′
1), · · · , f(T ′

g)) induces a symmetric theta structure ΘM2 compatible
with ΘM and with ΘL4 with respect to f .

We now apply the Hadamard Heisenberg automorphism to ΘM2 and ΘL to obtain compatible
theta structures with respect to f̃ and apply Theorem 6.1.1. Let ψ ∈ Aut0(H(8, · · · , 8)) such that ψ
has matrix

Mψ :=

(
0 −Ig
Ig 0

)
∈ Sp2g(Z/8Z),

in the canonical ζ-symplectic basis. Let ψ′ ∈ Aut0(H(4, · · · , 4)) be the symmetric Heisenberg au-
tomorphism induced by ψ (Proposition 6.2.8.(i)). Let Θ′

M2 := ΘM2 ◦ ψ, Θ′
M := ΘM ◦ ψ′ and

Θ′
L := ΘL ◦ψ′. Then Θ′

M2 is induced by MT
ψ ·C ′ = (f(T ′

1), · · · , f(T ′
g),−[2]f(S′

1), · · · ,−[2]f(S′
g)) and

Θ′
L is induced by

MT
ψ ·B = ([2]T1, · · · , [2]Tg,−[2]S1, · · · ,−[2]Sg)

= ([2]f̃(f(T ′
1)), · · · , [2]f̃(f(T ′

g)), f̃(−[2]f(S′
1)), · · · , f̃(−[2]f(S′

g))).

By (i), ker(f̃) = K1(ΘM) so MT
ψ · C ′ is adapted to f̃ and Θ′

L is the theta structure compatible

with Θ′
M2 with respect to f̃ defined in Theorem 6.1.1.(i). We can then apply Theorem 6.1.1.(ii) and

then Corollary 6.1.3 to the coordinates (θ′i
M
)i and (θ′i

L
)i respectively associated to Θ′

M and Θ′
L. If

y ∈ B(k) is fixed, we obtain the existence of λ1 ∈ k∗ such that for all χ ∈ ̂(Z/2Z)g,

U ′
χ
L
(f̃(y)) · U ′

χ
L
(0A) = λ1

∑
t∈(Z/2Z)g

χ(t)θ′t
M
(y)2,

6.3. COMPUTING A CHAIN OF 2-ISOGENIES 221

where the U ′
χ
L
are the dual theta coordinates of the θ′i

L
. Applying Theorem 6.2.10, we obtain the

existence of λ2 ∈ k∗ such that for all i ∈ (Z/2Z)g,

θ′i
M

= λ2
∑

j∈(Z/2Z)g
ζ4⟨i|j⟩θ−j = λ2

∑
j∈(Z/2Z)g

(−1)⟨i|j⟩θj = λ2 · UM
χi .

Similarly, there exists λ2 ∈ k∗ such that θLi = λ3 · U ′L
χi . It follows that for all i ∈ (Z/2Z)g,

θLi (f̃(y)) · θLi (0A) = λ
∑

t∈(Z/2Z)g
χi(t)UM

χt (y)2 = λ
∑

t∈(Z/2Z)g
χt(i)UM

χt (y)2 = λ
∑

χ∈ ̂(Z/2Z)g

χ(i)UM
χ (y)2,

with λ := λ1λ
2
2/λ

2
3. This completes the proof.

6.3 Computing a chain of 2-isogenies

The goal of this section is to explain how we compute a 2e-isogeny between principally polarised
abelian varieties f : A −→ B with kernel of rank g := dim(A) i.e. admitting a basis with g elements.
The following lemma ensures that f can be decomposed into a chain of 2-isogenies

A
f1−−−→ A1

f2−−−→ A2 · · · Ae−2
fe−1−−−→ Ae−1

fe−−−→ B. (6.12)

Hence, if we know how to compute each 2-isogeny of the chain (as explained in Section 6.1), we can
apply well known strategies used for elliptic curve isogeny computations [JDF11].

Lemma 6.3.1. Let d1, d2 ∈ N∗ not divisible by char(k) and d := d1d2. Let (A,L0) and (B,M0) be
principally polarised abelian varieties of dimension g and f : A −→ B be a d-isogeny. Assume that
ker(f) has rank g, i.e. admits a basis with g elements. Then:

(i) There exists a principally polarised abelian variety (C,N0), a d1-isogeny f1 : A −→ C and a
d2-isogeny f2 : C −→ B such that f = f2 ◦ f1.

(ii) f1 and f2 are unique up to post or pre composition by an isomorphism respectively, and we have
ker(f1) = ker(f)[d1] = [d2] ker(f) and ker(f2) = f1(ker(f)).

Proof. (i) This is point (i) of Corollary 1.4.44 in the context of polarised isogenies. Consider f1 :
A −→ C of kernel ker(f)[d1] and f2 : C −→ B′ of kernel f1(ker(f)). These isogenies are well defined
by Theorem 1.4.41 and besides ker(f2 ◦ f1) = ker(f) by construction so Theorem 1.4.41 again ensures
that f2 ◦ f1 and f are equal up to post composition by an isomorphism B′ ∼−→ B, so we may assume
that f = f2 ◦ f1.

We now prove that ker(f1) is isotropic for eLd1
0

in order to apply Corollary 5.1.13 and prove the

existence of a principal polarisation of C. Since f is a d-isogeny, we have f̃ ◦ f = [d] so ker(f) ⊆ A[d].
Besides, f is separable since char(k) does not divide d, so that #ker(f) = deg(f) =

√
deg([d]) = dg

by Proposition 1.4.33 and Proposition 1.4.53. Besides, ker(f) has rank g so we may write ker(f) :=
⟨x1⟩ ⊕ · · · ⊕ ⟨xg⟩ with x1, · · · , xg ∈ A[d] of order d. We then have

ker(f1) = ker(f)[d1] = ⟨[d2]x1⟩ ⊕ · · · ⊕ ⟨[d2]xg⟩ = [d2] ker(f). (6.13)

Hence, for all x, y ∈ ker(f)[d1], we may write y = [d2]y
′ with y′ ∈ ker(f) and we then have by

Proposition 5.1.6.(iv),
1 = eLd

0
(x, y′) = eLd1

0
(x, [d2]y

′) = eLd1
0
(x, y),

so that ker(f1) is isotropic for eLd1
0
.

Then, Corollary 5.1.13 ensures the existence of a line bundle N0 on C such that f∗1N0 ≃ Ld10 . We

then have f̂1 ◦ φN0
◦ f1 = φLd1

0
= [d1]φL0

. It follows that deg(f1)
2 deg(φN0

) = d2g1 with deg(f1) =

#ker(f1) = dg1 by separability of f1 and by Eq. (6.13). Hence, deg(φN0
) = 1 so φN0

is a principal
polarisation and f1 is a d1-isogeny with respect to φL0

and φN0
.

222 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Finally, we have on the one hand,

[d]φL0
= f̂ ◦ φM0

◦ f = f̂1 ◦ f̂2 ◦ φM0
◦ f2 ◦ f1

And on the other hand, f̂1 ◦ φN0
◦ f1 = [d1]φL0

, so that

f̂1 ◦ ([d2]φN0
− f̂2 ◦ φM0

◦ f2) ◦ f1 = 0

Since f1 is surjective, as any isogeny, we have f̂1 ◦ ([d2]φN0
− f̂2 ◦ φM0

◦ f2) = 0 so applying the dual

to the last equality and using the surjectivity of f1 again, we obtain that [d2]φN0
− f̂2 ◦φM0

◦ f2 = 0
i.e. that f2 is a d2-isogeny.

(ii) We now prove the uniqueness of f1 and f2 up to post or pre composition by an isomorphism.
Indeed, assume f = f ′2 ◦ f ′1 where f ′i is a di-isogeny for i ∈ {1, 2}. Then ker(f ′1) ⊆ A[d1] since f

′
1 is

a d1-isogeny, so that ker(f ′1) ⊆ ker(f)[d1]. But #ker(f ′1) = deg(f ′1) = dg1 by separability of f (hence
of f ′1) and #ker(f)[d1] = dg1 by Eq. (6.13), so that ker(f ′1) = ker(f)[d1]. By Theorem 1.4.41, there
exists an isomorphism λ such that λ ◦ f1 = f ′1, and we have f = f ′2 ◦ λ ◦ f1 = f2 ◦ f1 so f ′2 ◦ λ = f2 by
surjectivity of f1, which completes the proof.

Remark 6.3.2. Note that the hypothesis ker(f) has rank g in Lemma 6.3.1 may be replaced by
gcd(d1, d2) = 1. Indeed, in that case we have

ker(f) = ker(f)[d1]⊕ ker(f)[d2], (6.14)

which ensures that ker(f1) = ker(f)[d1] = [d2] ker(f), which is the key ingredient to prove that ker(f1)
is isotropic for eLd1

0
in point (i) and obtain the existence of a principal polarisation on the codomain

C of f1. Eq. (6.14) also ensures the uniqueness in point (ii).

Throughout this section, (A,L0) and (B,M0) will be principally polarised abelian varieties and
f : A −→ B will be a 2e-isogeny with kernel of rank g, decomposed as a chain of 2-isogenies, as in
Eq. (6.12). We assume that we are given T1, · · · , Tg ∈ A[2e+2] forming an isotropic subgroup (for
eL2e+2

0
, or equivalently, for the 2e+2-th Weil pairing) and such that ker(f) = ⟨[4]T1, · · · , [4]Tg⟩. As

we have seen in Sections 6.1.2 and 6.1.3, this additional torsion requirement (2e+2-torsion instead
of 2e-torsion) is necessary to compute each 2-isogeny fi of the chain which requires 8-torsion points
above its kernel.

6.3.1 Computing an adapted theta structure on the domain

In practice, when we start the isogeny chain computation, the domain (A,L2
0) is not equipped with a

level 2 theta structure. We need to determine a level 2 theta structure and to compute the associated
theta coordinates. Quite often, (A,L0) is a product of principally polarised abelian varieties of smaller
dimension.

When (A,L0) is a product of elliptic curves E1×· · ·×Eg (equipped with their respective canonical
principal polarisation), we may first convert each Ei to a Montgomery model and then use Propo-
sition 5.3.47 to convert Montgomery (X : Z)-coordinates into level 2 theta coordinates (θEi

0 , θEi
1).

Then, Eq. (5.14) applies to compute the product theta coordinates associated to the product theta
structure on (A,L2

0):

θ
L2

0
i (x1, · · · , xg) =

g∏
j=1

θ
Ej

ij
(xj),

for all i ∈ (Z/2Z)g and (x1, · · · , xg) ∈ A(k).
When (A,L0) is the Jacobian of a hyperelliptic curve of genus 2, we can convert Mumford co-

ordinates into theta coordinates using Thomae’s formulas [Mum84, § III.a.8] (see also [CR15, § 5.1
and A.4]). If (A,L0) is a product of such Jacobians, we can use Thomae’s formulas for each component
and then Eq. (5.14) to compute the product theta coordinates.

Usually, the level 2 theta structure ΘL2
0
on (A,L2

0) (often obtained as a product) is not adapted

to f . We do not expect K2(ΘL2
0
) = ker(f1) which is a necessary condition to apply the algorithms

6.3. COMPUTING A CHAIN OF 2-ISOGENIES 223

from Section 6.1 to compute the first 2-isogeny f1. We need to change the theta structure on (A,L2
0)

and to compute the new theta coordinates with the formulas of Theorem 6.2.10.
Let ζ ∈ k∗ be a 2e+2-th primitive root of unity. Consider S1, · · · , Sg ∈ A[2e+2] such that B :=

(S1, · · · , Sg, T1, · · · , Tg) is a ζ-symplectic basis of A[2e+2] adapted to f in the sense of Definition 6.1.2.
Recall that we already assumed from the start that ker(f) = ⟨[4]T1, · · · , [4]Tg⟩. Then [2e−1]B is
adapted to f1 and we may consider the level 2 theta structure Θ′

L2
0
associated to [2e]B and the

associated theta coordinates (θ′i
L2

0)i. If we know the theta points (θ′i
L2

0([2e−1]Tl))i for l ∈ J1 ; gK,
Theorem 6.1.1 ensures that we can compute the codomain theta null-point of f1 using Algorithm 6.5
and then evaluate f1 using Algorithm 6.1, 6.6 or 6.7. To proceed, we need to apply a change of

coordinates formula from (θi
L2

0)i to (θ′i
L2

0)i associated to ΘL2
0
and Θ′

L2
0
respectively.

We can consider a ζ2
e

-symplectic basis B0 of A[4] associated to ΘL2
0
. For instance, if

(A,L0) = (A1,N1) × (A2,N2) is a product of principally polarised abelian varieties and ΘL2
0
=

ΘN1 × ΘN2 is the product theta structure, where ΘNi is induced by a ζ2
e

-symplectic basis Bi =

(x
(i)
1 , · · · , x(i)gi , y

(i)
1 , · · · , y(i)gi) of Ai[4] for i ∈ {1, 2}, then

B0 := B1 ×B2 = ((x
(1)
1 , 0), · · · , (x(1)g1 , 0), (0, x

(2)
1), · · · , (0, x(2)g2),

(y
(1)
1 , 0), · · · , (y(1)g1 , 0), (0, y

(2)
1), · · · , (0, y(2)g2)). (6.15)

Such a basis is called a product symplectic basis. We can then compute the symplectic change of basis
matrix M ∈ Sp2g(Z/4Z) from B0 to [2e]B and obtain apply Theorem 6.2.10 to obtain the change of

coordinates formula from (θi
L2

0)i to (θ′i
L2

0)i.

Remark 6.3.3. In plain generality, M has 4 blocks of size g × g:

M =

(
A C
B D

)
.

The blocks C and D can be computed directly by expressing the points [2e]T1, · · · , [2e]Tg in the basis
B0 (via multiple discrete logarithms). The blocks A and B giving the expression of [2e]S1, · · · , [2e]Sg
(which are unknown) in B can be found by solving the equations tBA ≡ tAB and tAD− tBC ≡ Ig
mod 4. This is linear algebra over Z/4Z. Note however that in practice when f is obtained via
Kani’s lemma, we can obtain an expression for M directly and avoid the need for discrete logarithm
computations and linear algebra over Z/4Z (see Section 6.4).

6.3.2 How the adapted theta structure propagates along the chain

The change of theta coordinates needed to compute f1 with the Algorithms from Section 6.1 does not
need to be repeated at every step of the chain computation as the choice of adapted theta structure
propagates along the chain.

Lemma 6.3.4. If B = (S1, · · · , Sg, T1, · · · , Tg) is a ζ-symplectic basis of A[2e+2] adapted to f de-
composed into a chain of 2-isogenies f = fe ◦ · · · ◦ f1, then:

(i) [2e−1]B is a ζ2
e−1

-symplectic basis of A[8] adapted to f1.

(ii) For all i ∈ J1 ; e− 1K,

Ci := ([2e−1]fi ◦ · · · ◦ f1(S1), · · · , [2e−1]fi ◦ · · · ◦ f1(Sg),
[2e−1−i]fi ◦ · · · ◦ f1(T1), · · · , [2e−1−i]fi ◦ · · · ◦ f1(Tg))

is a ζ2
e−1

-symplectic basis of Ai[8] adapted to fi+1 : Ai −→ Ai+1.

Proof. (i) This is a trivial consequence of the fact that ker(f1) = [2e−1] ker(f), which follows from
Lemma 6.3.1.(ii).

224 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

(ii) If i ∈ J1 ; e− 1K, Lemma 6.3.1.(ii). implies again that ker(fi+1) = [2e+1−i]fi ◦ · · · ◦ f1(ker(f)).
Using Proposition 5.1.8 and the standard properties of the Weil pairing (Proposition 1.4.70), we see

that Ci is a ζ2
e−1

-symplectic basis of Ai[8] and that:

ker(fi+1) = [2e+1−i]fi ◦ · · · ◦ f1(ker(f)) = [4]⟨[2e−1−i]fi ◦ · · · ◦ f1(T1), · · · , [2e−1−i]fi ◦ · · · ◦ f1(Tg)⟩,

so that Ci is adapted to fi+1. The result follows.

Lemma 6.3.4 above ensures that if we have computed f1 using the theta structure induced by [2e]B
as explained in Section 6.3.1, then for all i ∈ J1 ; e− 1K, Theorem 6.1.1 applies to the level 4 theta
structure induced by Ci. Again by Theorem 6.1.1, the image theta points of fi ◦ · · · ◦ f1 are expressed
in level 2 theta coordinates associated to the theta structure naturally induced by [2]Ci, which is
compatible with the one induced by Ci. Hence, all the algorithms from Section 6.1 apply to compute
fi+1 : Ai −→ Ai+1 from the theta coordinates of [2e−i]fi ◦ · · · ◦ f1(T1), · · · , [2e−i]fi ◦ · · · ◦ f1(Tg).

6.3.3 Quasi-linear computational strategies

Similarly to elliptic curve isogeny chain computations, the computation of the isogeny chain f in
dimension g requires to compute [2e−i]fi ◦ · · · ◦f1(T1), · · · , [2e−i]fi ◦ · · · ◦f1(Tg) in order to obtain fi+1

for all i ∈ J1 ; gK. Hence, theta point duplications (e.g. using Algorithm 5.2) and isogeny evaluations
are involved.

A naive method would consist in evaluating fi ◦ · · · ◦ f1(T1), · · · , fi ◦ · · · ◦ f1(Tg) iteratively and
then multiplying these theta points by 2e−1−i in order to obtain fi+1 and proceed further. This would
require g(e− 1) 2-isogeny evaluations and

g

e−1∑
i=0

(e− 1− i) = ge(e− 1)

2

duplications. Alternatively, we can compute the duplicates Tl, [2]Tl, · · · , [2e−1]Tl for l ∈ J1 ; gK and
then evaluate fi ◦ · · · ◦ f1([2e−i−1]T1), · · · , fi ◦ · · · ◦ f1([2e−i−1]Tg) iteratively to compute fi+1 for all
i ∈ J1 ; e− 1K. This costs g(e− 1) duplications and ge(e− 1)/2 2-isogeny evaluations.

Both of the above naive methods have a quadratic cost in the length e of the chain. As it was done
for elliptic curves isogenies, we can propose alternate computation strategies minimizing the total cost
depending on the relative cost of duplications and 2-isogeny evaluations. These divide and conquer
strategies usually lead to a quasi-linear O(e log(e)) number of duplications and 2-isogeny evaluations.

Strategies to compute a 2-isogeny chain

Computing the 2-isogeny chain f reduces to computing the leaves Ci−1,e−i of the binary computation
tree whose:

• vertices are the basis Ci,j := [2j]fi ◦ · · · ◦ f1(T1, · · · , Tg) for all i, j ∈ N such that i+ j ≤ e− 1;

• left edges are duplications Ci,j−1
[2]−→ Ci,j ;

• right edges are 2-isogeny evaluations Ci−1,j
fi−→ Ci,j .

Such a tree is displayed in Fig. 6.3 for e = 5. The computation tree can only be evaluated depth
first and left first since the leaf Ci−1,e−i has to be computed prior to any evaluation by fi. However,
evaluating all the vertices Ci,j would be a waste of computational resources leading to a quadratic
complexity O(e2). Optimal strategies consist in navigating the computation tree depth first and left
first with a minimal number of duplications and evaluations to evaluate the leaves Ci−1,e−i.

As in [JDF11], we can represent the computation tree as a discrete equilateral triangle Te formed by
points of the unit triangular equilateral lattice delimited by the x axis and the straight lines y =

√
3x

and y =
√
3(e− 1− x):

Te :=

{(
r +

s

2
,
s
√
3

2

)∣∣∣∣∣ r, s ∈ N, r + s ≤ e− 1

}
(6.16)

6.3. COMPUTING A CHAIN OF 2-ISOGENIES 225

C0,0

[2]

C0,1

[2]

C0,2

[2]

C0,3

[2]

C0,4

f1

C1,0

C1,1

C1,2

C1,3

f2

C2,0

C2,1

C2,2

f3

C3,0

C3,1

f4

C4,0

Figure 6.3: Computational structure of the 2e-isogeny f with e = 5.

In Te, edges are unit segments connecting two points of Te. A left edge is a segment of positive slope
and a right edge is a segment of negative slope. Edges are oriented in the direction of decreasing y
coordinates. This defines an oriented graph structure on Te. Vertices on x, y ∈ Te are ordered x→ y
if there exists a path from x to y. On a subgraph of Te, the root is the initial point and leaves are
final points.

Definition 6.3.5. A strategy S of Te is a subgraph of Te having a unique root. In the following, we
only consider strategies that are:

1. full, meaning that S contains all leaves of Te.

2. well-formed, meaning that there is only one path going through any interior point of S and no
leaf in S distinct from the leaves of Te.

Such a (full and well formed) strategy of Te is also called a strategy of depth e− 1. We denote |S| = e
its number of leaves.

Computing an optimal strategy

To compare strategies, we fix a measure µ parametrised by (α, β) ∈ R2
+ on them, where α is the

cost of a left edge (accounting for duplication cost) and β is the cost of a right edge (accounting for
evaluation cost). Given such a measure, an optimal strategy of depth e − 1 is a strategy of Te with
minimal cost.

We define the tree topology of a strategy S of depth e− 1 as the binary tree with e leaves obtained
by forgetting internal vertices of out degree less than two and keeping the same connectivity structure.
Conversely, to any binary tree T with e leaves we associate a canonical strategy ST of depth e − 1
recursively as follows. If e = 1, we take ST := T1. If e ≥ 2, we consider the left and right branches
T ′ and T ′′ of T respectively and consider the canonical strategies S′ := ST ′ and ST ′′ associated to
them. Let S′′ be the translate of ST ′′ by |S′| to the right. Let r′ and r′′ be the roots of S′ and S′′

in Te respectively and r be the root of Te. Then the shortest paths rr′ and rr′′ from r to r′ and r′′

respectively are respectively made of left edges only and right edges only. We can then consider the
strategy ST := rr′ ∪ rr′′ ∪ S′ ∪ S′′.

Figure 6.4: Three strategies of depth 3 sharing the same tree topology.
The middle one is canonical.

Figure 6.5: Tree topol-
ogy of the strategies on
the left.

The following result has been proved in [JDF11]:

226 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Lemma 6.3.6. [JDF11, Lemma 4.3] The canonical strategy is minimal, with respect to any measure,
among all the strategies sharing the same tree topology.

It follows that we can restrict to canonical strategies to find optimal strategies in the following. If
S is a canonical strategy, we can consider its left and right branches S′ and S′′ as follows. If S has i
leaves to the left of its root, we define S′ := S ∩ Ti and S′′ := S ∩ ((i, 0) + T|S|−i).

Lemma 6.3.7. [JDF11, Lemma 4.5] Let S be an optimal (canonical) strategy and let S′ and S′′ be
its left and right branches respectively. Then, S′ and S′′ translated by −|S′| are optimal strategies of
T|S′| and T|S′′| respectively.

Proof. The proof is very natural. By Lemma 6.3.6, we know that S is a canonical strategy, so S′ and
S′′ are well defined. If S′ were not optimal, then by substituting an optimal strategy for S′ inside
S, we obtain a strategy with measure lower than µ(S). Contradiction. The same argument holds for
S′′.

As pointed out in [JDF11], this suggests a dynamic programming approach to compute optimal
strategies. For e = 1, the only optimal strategy is trivially S = T1. Now, if we assume that we have
computed optimal strategies S1, · · · , Se−1 of T1, · · · , Te−1 of respective measures µ(S1), · · · , µ(Se−1),
then the optimal strategy Se will have left branch Si and right branch Se−i where:

i := argmin
1≤j≤e−1

(µ(Sj) + µ(Se−j) + (e− j)α+ jβ).

In practice, we look for optimal strategies taking into account the higher cost of gluing isogenies
that appear in the beginning of the isogeny chain. We refer to Section 6.6.5 for more details on these
special optimal strategies in dimension 4.

Applying a strategy to compute a 2-isogeny chain

As suggested in [JAC+20, § 1.3.8], we can represent any strategy S in a unique way as a sequence
of integers (s1, · · · , st−1) by considering the tree topology TS of S. To establish this sequence
(s1, · · · , st−1), we write down for every internal node of the tree TS the number of leaves to its
right and walk on it depth-first left-first.

4

1

2

1 1

Figure 6.6: Strategy of depth 5 represented by (4, 1, 2, 1, 1).

Given a strategy and a basis of the kernel, it is natural to compute the isogeny chain recursively, as
proposed in [JAC+20, § 1.3.8]. An iterative version of the same algorithm derived from [CDPMR23,
Algorithm 2] is presented in Algorithm 6.8.

Doubling points on domains of splitting isogenies

The computation of the isogeny chain in Algorithm 6.8 may involve point duplications on the domain
Ai of an isogeny fi+1 : Ai −→ Ai+1 where Algorithm 5.2 may not be applied because of zero theta
constants on Ai or zero dual theta constants on Ai+1.

Recall that if (A,L) is a polarised abelian variety with a theta structure ΘL of level 2, and
(θLi (x))i is a theta point, then the computation of the double (θLi ([2]x))i in Algorithm 5.2 requires
the computation of the inverse of the squared dual theta constants

UL2

χ (0A)
2 =

∑
t∈(Z/2Z)g

χ(t)θLt (0A)
2

6.3. COMPUTING A CHAIN OF 2-ISOGENIES 227

Algorithm 6.8: Computing an isogeny chain with a strategy.

Data: The level 2 theta coordinates (adapted to f) of T1, · · · , Tg such that ker(f) =
[4]⟨T1, · · · , Tg⟩ and a strategy S = (s1, · · · , st−1) of depth e− 1.

Result: The 2-isogenies of the chain f1, · · · , fe such that f = fe ◦ · · · ◦ f1.
1 k ←− 1;
2 Llevels ←− [0];
3 Lbasis ←− [(T1, · · · , Tg)];
4 for i = 1 to e do
5 BK ←− last element of Lbasis;
6 while

∑
x∈Llevels

x ̸= e− k do
7 Append sk to Llevels;
8 BK ←− [2sk]BK ;
9 Append BK to Lbasis;

10 k ←− k + 1;

11 end
12 Use Algorithm 6.5 with input BK to compute the isogeny fi of kernel [4]⟨BK⟩;
13 Remove the last elements of Llevels and Lbasis;
14 Lbasis ←− [fi(C) | C ∈ Lbasis] (Algorithm 6.1);

15 end
16 return f1, · · · , fe;

for all χ ∈ ̂(Z/2Z)g. As a consequence of Theorem 6.1.1.(ii), (UL2

χ (0A))χ is the dual theta null point

(UM
χ (0B))χ of the codomain of the 2-isogeny f : (A,L2) −→ (B,M) of kernel ker(f) = K2(ΘL).
If B is a product of abelian varieties i.e. if f is a splitting isogeny, some dual theta constants

UL2

χ (0A) = UM
χ (0B) may be zero and Algorithm 5.2 may not be applied. In this case, to perform point

duplications on A, we may apply a Hadamard transform on ΘL (as in the proof of Lemma 6.2.11) to
obtain a theta structure Θ′

L with associated theta coordinates

θ′
L
i =

∑
j∈(Z/2Z)g

(−1)⟨i|j⟩θLj (6.17)

In that case, to perform point duplications, we need to invert the squared dual theta constants

U ′L2

χ (0A)
2 =

∑
t∈(Z/2Z)g

χ(t)θ′
L
t (0A)

2,

where (U ′L2

χ (0A))χ is the dual theta null point of the codomain of the 2-isogeny f ′ : (A,L2) −→
(B′,M′) of kernel ker(f ′) = K2(Θ

′
L) = K1(ΘL). In an extreme majority of cases, we do not expect

f ′ to be a splitting isogeny so the point duplication may be feasible. Once we have computed dual
theta coordinates (θ′

L
i ([2]x))i, we obtain the desired theta coordinates (θLi ([2]x))i by applying another

Hadamard transform as in Eq. (6.17). Indeed, the Hadamard transform is an involution up to the
projective factor 2g with g = dim(A).

Algorithm 5.2 cannot be applied either when some theta constants θLi (0A) are zero. Then the
Hadamard transform may also be a solution. If Algorithm 5.2 still cannot be applied because some

theta constants θ′
L
i (0A) and U

′L2

χ (0A) are still zero, we may apply a random change of theta coordi-
nates obtained from Theorem 6.2.10.

6.3.4 Assumptions on the base field

So far we always have assumed that our base field k is algebraically closed. This assumption was
meant to simplify the proofs in the formalism of algebraic theta functions. Note that Mumford also
made this assumption in [Mum66]. However, in practice our base field k will be a finite field such that
A[2e+2] ⊆ A(k) and the points T1, · · · , Tg ∈ A[2e+2] will be k-rational, so their theta coordinates will
also be defined over k.

228 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

For instance, if A is a product of elliptic curves E1 × · · · ×Eg, then the components of T1, · · · , Tg
in the Ei will have Weierstrass coordinates (X : Y : Z) defined over k. Using Proposition 5.3.47 and
Eq. (5.14), we shall obtain product theta coordinates defined over k. The change of theta coordinates
from Section 6.3.1 involving a 2e+2-th Weil pairing ζ ∈ k∗ will lead to theta coordinates defined over k
again. Then, duplications and 2-isogeny computations along the chain will take place over k. Hence,
the computation of f will only require arithmetic operations over k. In the following we shall
only assume that k is a field such that the A[2e+2] ⊆ A(k).

6.4 Isogenies obtained from Kani’s lemma

The higher dimensional 2e-isogenies considered in applications studied in Part I were all obtained from
Kani’s lemma. They are defined between products of abelian varieties and their kernel have a very
specific form. For that reason, finding adapted symplectic basis on the domain to start the 2-isogeny
chain computation (as explained in Section 6.3.1) is easier than in the general case.

In Section 6.4.1, we explain how such an adapted symplectic basis can be computed when the
2e+2-torsion on the domain is available (e.g. rational over our base field k) and how we can recover
the product theta structure on the codomain. In Section 6.4.2, we explain how to proceed when the
codomain is known but only the 2f -torsion is available with f ≥ e/2+2. This last case is relevant for
SQIsignHD, as explained in Sections 2.3.2 and 3.3.4.

6.4.1 Change of theta coordinates on the domain and codomain with full
available torsion

Lemma 6.4.1. Let a and b be odd and coprime integers and d := a + b not divisible by char(k).
Consider an (a, b)-isogeny diamond between principally polarised abelian varieties of dimension g:

A′ φ′
// B′

A

ψ

OO

φ
// B

ψ′

OO

and the associated d-isogeny by Kani’s lemma:

F :=

(
φ ψ̃′

−ψ φ̃′

)
: A×B′ −→ B ×A′.

Let ζ ∈ k∗ be a 4d-th primitive root of unity and (x1, · · · , xg, y1, · · · , yg) be a ζ-symplectic basis of
B[4d]. Let α and β be modular inverses of a and b modulo 4d respectively.

(i) For all i ∈ J1 ; gK, we denote:

Si := ([−α]φ̃(yi), 0), Si+g := (0, [β]ψ′(xi)),

Ti := (φ̃(xi), ψ
′(xi)), Ti+g := ([1− αd]φ̃(yi), ψ′(yi)).

Then B := (S1, · · · , S2g, T1, · · · , T2g) is a ζ-symplectic basis of (A × B′)[4d] adapted to F i.e.
such that ker(F) = [4]⟨T1, · · · , T2g⟩.

(ii) For all i ∈ J1 ; gK, we denote:

Ui := ([d]xi, 0), Ui+g := (0, [d]ψ ◦ φ̃(xi)),

Vi := ([d]yi, 0), Vi+g := (0, [dαβ]ψ ◦ φ̃(yi)).

Then C0 := (U1, · · · , U2g, V1, · · · , V2g) is a product ζd-symplectic basis of (B ×A′)[4].

6.4. ISOGENIES OBTAINED FROM KANI’S LEMMA 229

(iii) The ζd-symplectic basis C := ([d]F (S1), · · · , [d]F (S2g), F (T1), · · · , F (T2g)) of (B × A′)[4] nat-
urally induced by F via Theorem 6.1.1 is related to C0 by the following formulas. For all
i ∈ J1 ; gK:

[d]F (Si) = −Vi + [b]Vi+g, [d]F (Si+g) = Ui + [β]Ui+g,

F (Ti) = Ui, F (Ti+g) = [b]Vi+g,

so that:
Ui = F (Ti), Ui+g = [bd]F (Si+g)− [b]F (Ti),

Vi = F (Ti+g)− [d]F (Si), Vi+g = [β]F (Ti+g).

To prove the above lemma, we use the following results on commutator pairings.

Lemma 6.4.2.

(i) Let (A,L) and (B,M) be two polarised abelian varieties and consider L⋆M := π∗
1L⊗π∗

2M, the
product of the line bundles L andM on A×B, where πi is the projection on the i-th component
of A×B (for i ∈ {1, 2}). Then, for all (x, y), (x′, y′) ∈ K(L)×K(M), we have:

eL⋆M((x, y), (x′, y′)) = eL(x, x
′)eM(y, y′).

(ii) Let (A,L0) and (B,M0) be two principally polarised abelian varieties and f : A −→ B be a
d-isogeny. Then, for all n ∈ N∗ not divisible by char(k) and x, y ∈ A[n], we have:

eMn
0
(f(x), f(y)) = eLn

0
(x, y)d

Proof. (i) Let (x, y), (x′, y′) ∈ K(L) ×K(M). Then, by points (i) and (ii) of Proposition 5.1.6, we
have:

eL⋆M((x, y), (x′, y′)) = eπ∗
1L⊗π∗

2M((x, y), (x′, y′))

= eπ∗
1L((x, y), (x

′, y′))eπ∗
2M((x, y), (x′, y′))

= eL(π1(x, y), π1(x
′, y′))eM(π2(x, y), π2(x

′, y′))

= eL(x, x
′)eM(y, y′).

(ii) Let n ∈ N∗ not divisible by char(k) and x, y ∈ A[n]. Since f is a d-isogeny, it is a polarised
isogeny (A,Ld0) −→ (B,M0) so f

∗M0 is algebraically equivalent to Ld0 by Lemma 1.4.60 and ef∗Mn
0
=

eLnd
0

by points (ii) and (iv) of Proposition 5.1.6. Then, by points (i) and (v) of Proposition 5.1.6, we
have:

eMn
0
(f(x), f(y)) = ef∗Mn

0
(x, y) = eLnd

0
(x, y) = eLnd

0
(x, y) = eLn

0
(x, [d]y) = eLn

0
(x, y)d.

This completes the proof.

Proof of Lemma 6.4.1. (i) For all principally polarised abelian varieties C and D, we denote by LC
the line bundle associated to the principal polarisation on C and LC ⋆LD := π∗

1LC⊗π∗
2LD the product

line bundle yielding a product principal polarisation on C × D. Then, since (x1, · · · , xg, y1, · · · , yg)
is a ζ-symplectic basis of A[4d], Proposition 5.1.6 and Lemma 6.4.2 yield the following results for the
commutator pairing associated to the product polarisation L4d

A ⋆ L4d
B′ :

eL4d
A ⋆L4d

B′
(Si, Sj) = eL4d

A
([−α]φ̃(yi), [−α]φ̃(yj)) = eL4d

A
(yi, yj)

aα2

= 1

eL4d
A ⋆L4d

B′
(Si, Sj+g) = eL4d

A
([−α]φ̃(yi), 0)eL4d

B′
(0, [β]ψ′(xj)) = 1

eL4d
A ⋆L4d

B′
(Ti, Tj) = eL4d

A
(φ̃(xi), φ̃(xj))eL4d

B′
(ψ′(xi), ψ

′(xj)) = eL4d
B
(xi, xj)

a+b = 1

eL4d
A ⋆L4d

B′
(Ti, Tj+g) = eL4d

A
(φ̃(xi), [1− αd]φ̃(yj))eL4d

B′
(ψ′(xi), ψ

′(yj))

230 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

= eL4d
B
(xi, yj)

a(1−αd)+b = eL4d
B
(xi, yj)

0 = 1

eL4d
A ⋆L4d

B′
(Si, Tj) = eL4d

A
([−α]φ̃(yi), φ̃(xj))eL4d

B′
(0, ψ′(xj)) = eL4d

B
(xj , yi)

aα = ζδi,j

eL4d
A ⋆L4d

B′
(Si, Tj+g) = eL4d

A
([−α]φ̃(yi), [1− αd]φ̃(yj))eL4d

B′
(0, ψ′(yj))

= eL4d
B
(yi, yj)

−(1−αd)α = 1

eL4d
A ⋆L4d

B′
(Si+g, Tj) = eL4d

A
(0, φ̃(xj))eL4d

B′
([β]ψ′(xi), ψ

′(xj)) = eL4d
B
(xi, xj)

bβ = 1

eL4d
A ⋆L4d

B′
(Si+g, Tj+g) = eL4d

A
(0, [1− αd]φ̃(yj))eL4d

B′
([β]ψ′(xi), ψ

′(yj))

= eL4d
B
(xi, yj)

bβ = eL4d
B
(xi, yj) = ζδi,j ,

for all i, j ∈ J1 ; gK. Hence, B is a ζ-symplectic basis of (A × B′)[4d]. Since
([4]x1, · · · , [4]xg, [4]x1, · · · , [4]yg) generates A[d], we clearly have by Lemma 2.2.6:

[4]⟨T1, · · · , T2g⟩ = {([a]x, ψ′ ◦ φ(x)) | x ∈ A[d]} = ker(F).

This proves (i).
(ii) C0 := (U1, · · · , U2g, V1, · · · , V2g) is the product C1 × C2 (as defined in Eq. (6.15)) with

C1 := ([d]x1, · · · , [d]xg, [d]y1, · · · , [d]yg)

C2 := ([d]ψ ◦ φ̃(x1), · · · , [d]ψ ◦ φ̃(xg), [dαβ]ψ ◦ φ̃(y1), · · · , [dαβ]ψ ◦ φ̃(yg)).

And we have for all i, j ∈ J1 ; gK:

eL4
B
([d]xi, [d]xj) = eL4d

B
(xi, xj)

d = 1

eL4
B
([d]yi, [d]yj) = eL4d

B
(yi, yj)

d = 1

eL4
B
([d]xi, [d]yj) = eL4d

B
(xi, yj)

d = ζdδi,j ,

so C1 is a ζd-symplectic basis of B[4]. Similarly, we verify that C2 is a ζd-symplectic basis of A′[4].
It follows by Lemma 6.4.2.(i) that C = C1 × C2 is a product ζd-symplectic basis of (B × A′)[4], as
desired.

(iii) The fact that ([d]F (S1), · · · , [d]F (S2g), F (T1), · · · , F (T2g)) is a ζd-symplectic basis of (B ×
A′)[4] follows from Theorem 6.1.1. It remains to compute for all i ∈ J1 ; gK:

[d]F (Si) = [d]F ([−α]φ̃(yi), 0) = ([−dα]φ ◦ φ̃(yi), [dα]ψ ◦ φ̃(yi))
= ([−daα]yi, [dα]ψ ◦ φ̃(yi)) = −Vi + [b]Vi+g

[d]F (Si+g) = [d]F ((0, [β]ψ′(xi)) = ([dβ]ψ̃′ ◦ ψ′(xi), [dβ]φ̃′ ◦ ψ′(xi))

= ([dβb]xi, [dβ]ψ ◦ φ̃(xi)) = ([d]xi, [dβ]ψ ◦ φ̃(xi)) = Ui + [β]Ui+g

F (Ti) = F (φ̃(xi), ψ
′(xi)) = (φ ◦ φ̃(xi) + ψ̃′ ◦ ψ′(xi),−ψ ◦ φ̃(xi) + φ̃′ ◦ ψ′(xi))

= ([a+ b]xi,−ψ ◦ φ̃(xi) + ψ ◦ φ̃(xi)) = ([d]xi, 0) = Ui

F (Ti+g) = F ([1− αd]φ̃(yi), ψ′(yi))

6.4. ISOGENIES OBTAINED FROM KANI’S LEMMA 231

= ([1− αd]φ ◦ φ̃(yi) + ψ̃′ ◦ ψ′(yi),−[1− αd]ψ ◦ φ̃(yi) + φ̃′ ◦ ψ′(yi))

= ([a(1− αd) + b]yi, [αd− 1 + 1]ψ ◦ φ̃(yi)) = (0, [d]ψ ◦ φ̃(yi)) = [b]Vi+g,

where we used twice the fact that ψ′ ◦φ = φ′ ◦ψ implies that φ̃′ ◦ψ′ = ψ ◦ φ̃. The inverse equations:

Ui = F (Ti), Ui+g = [bd]F (Si+g)− [b]F (Ti),

Vi = F (Ti+g)− [d]F (Si), Vi+g = [β]F (Ti+g),

follow immediately. This completes the proof.

In some contexts, it is easier to write kernel points of F as ([a]x, ψ′ ◦φ(x)) instead of (φ̃(x), ψ′(x))
as in Lemma 6.4.1. We can adapt the result to this context.

Lemma 6.4.3. Consider an (a, b)-isogeny diamond and an isogeny F : A × B′ −→ B × A′ as in
Lemma 6.4.1. Let ζ ∈ k∗ be a 4d-th primitive root of unity and (x1, · · · , xg, y1, · · · , yg) be a ζ-
symplectic basis of A[4d]. Let α and β be modular inverses of a and b modulo 4d respectively.

(i) For all i ∈ J1 ; gK, we denote:

Si := ([−α]yi, 0), Si+g := (0, [β]ψ′ ◦ φ(xi)),

Ti := ([a]xi, ψ
′ ◦ φ(xi)), Ti+g := ([1− αd]yi, [α]ψ′ ◦ φ(yi)).

Then B := (S1, · · · , S2g, T1, · · · , T2g) is a ζ-symplectic basis of (A × B′)[4d] adapted to F i.e.
such that ker(F) = [4]⟨T1, · · · , T2g⟩.

(ii) For all i ∈ J1 ; gK, we denote:

Ui := ([d]φ(xi), 0), Ui+g := (0, [ad]ψ(xi)),

Vi := ([αd]φ(yi), 0), Vi+g := (0, [dαβ]ψ(yi)).

Then C0 := (U1, · · · , U2g, V1, · · · , V2g) is a product ζd-symplectic basis of (B ×A′)[4].

(iii) The ζd-symplectic basis C := ([d]F (S1), · · · , [d]F (S2g), F (T1), · · · , F (T2g)) of (B × A′)[4] nat-
urally induced by F via Theorem 6.1.1 is related to C0 by the following formulas. For all
i ∈ J1 ; gK:

[d]F (Si) = −Vi + [b]Vi+g, [d]F (Si+g) = Ui + [β]Ui+g,

F (Ti) = Ui, F (Ti+g) = [b]Vi+g,

so that:
Ui = F (Ti), Ui+g = [bd]F (Si+g)− [b]F (Ti),

Vi = F (Ti+g)− [d]F (Si), Vi+g = [β]F (Ti+g).

Proof. We apply Lemma 6.4.1 to the ζ-symplectic basis (φ(x1), · · · , φ(xg), [α]φ(y1), · · · , [α]φ(yg)) of
B[4d].

When d = 2e, Lemmas 6.4.1 and 6.4.3 yield a way to compute the change of theta coordinates on
the domain to obtain level 2 theta coordinates adapted to F . Indeed, using point (i) of this lemma,
we can compute the symplectic change of basis matrix mentioned in Remark 6.3.3 and then apply
Theorem 6.2.10 to compute the adapted level 2 theta coordinates.

In general, once F has been computed as a chain of 2-isogenies, the resulting theta coordinates on
the codomain B×A′ in which image theta points of F are expressed are non-product theta coordinates
of B × A′. The theta null point of B × A′ is also not the product of theta null points of B and A′.
Nonetheless, for applications, it is convenient to:

• Extract the theta null points of A′ and B from the theta null point of B × A′ since they give
(almost) enough information to recover A′ and B. This is in particular useful when A′ and B
are unknown at the start.

232 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

• Express images points of F (P) = (FB(P), FA′(P)) in the product B ×A′.

Fortunately, point (iii) of Lemma 6.4.1 also expresses the symplectic basis of the 4-torsion C naturally
induced by F on its codomain in a product symplectic basis C0 of the 4-torsion. By Theorem 6.2.10,
we obtain change of theta coordinates on the codomain towards product theta coordinates (induced
by C0). After this change of theta coordinates, points (x, y) ∈ B(k)×A′(k) are then expressed as

θB×A′

i,j (x, y) = θBi (x) · θA
′

j (y)

for all (i, j) ∈ (Z/2Z)2g. Hence, we can use Algorithm 6.9 on the product theta null point of B × A′

to extract the theta null points of A′ and B and on an image product theta point F (P) to decompose
it as (FB(P), FA′(P)) in B ×A′.

Algorithm 6.9: Extract components of a product theta point.

Data: Product level 2 theta coordinates (θA×B
i,j (x, y))i∈(Z/2Z)g1

j∈(Z/2Z)g2
of a point (x, y) ∈ A(k)×B(k).

Result: Projective level 2 theta points (θAi (x))i∈(Z/2Z)g1 and (θBj (y))j∈(Z/2Z)g2 in each compo-
nent.

1 Find (i0, j0) ∈ (Z/2Z)g1 × (Z/2Z)g2 such that θA×B
i0,j0

(x, y) ̸= 0;

2 (θAi (x))i∈(Z/2Z)g1 ←− (θA×B
i,j0

(x, y))i∈(Z/2Z)g1 ;

3 (θBj (y))j∈(Z/2Z)g2 ←− (θA×B
i0,j

(x, y))j∈(Z/2Z)g2 ;

4 return (θAi (x))i∈(Z/2Z)g1 and (θBj (y))j∈(Z/2Z)g2 ;

6.4.2 Change of theta coordinates on the domain and codomain with half
available torsion

In this section, we assume that we want to compute a 2e-isogeny F : A −→ B obtained from Kani’s
lemma but we can only access the 2f -torsion of A and B with f ≥ e/2 + 2, as in SQIsignHD. In that
case, we assume that both A and B are known and we decompose F = F2 ◦F1 where F1 : A −→ C and
F2 : C −→ B are respectively a 2e1 and 2e2-isogeny, with e = e1+e2 and e1, e2 ≤ f−2. We compute F1

using 2e1+2-torsion points lying above ker(F1) and F̃2 using 2e2+2-torsion points lying above ker(F̃2).

Then we easily infer
˜̃
F 2 = F2 from Section 6.2.3 and we are able to evaluate F = F2 ◦ F1.

However, to be able to compose F1 with F2, we need the level 2 theta structures on C seen as
the codomain of F1 and as the domain of F2 to be the same. Lemma 6.2.11 and its proof ensure
that the latter theta structure is the dual of the theta structure induced by F̃2. Hence, we need the
level 2 theta structures induced by F1 and F̃2 to be dual of each other i.e. we need their associated
symplectic 4-torsion basis to be related by the symplectic matrix(

0 −Ig
Ig 0

)
∈ Sp2g(Z/4Z),

so the associated theta coordinates are dual of one another in the sense of Corollary 6.1.3. Hence, we
need two symplectic basis on the domain and codomain of F adapted to the decomposition F = F2◦F1

in the sense of the following definition.

Definition 6.4.4. Let d1, d2 ∈ N∗ not divisible by char(k), d := d1d2 and let F : A −→ B be a
d-isogeny between principally polarised abelian varieties of dimension g written as F = F2 ◦F1 where
F1 : A −→ C and F2 : C −→ B are d1 and d2-isogenies respectively. Let ζi ∈ k∗ be a primitive 4di-th
root of unity for i ∈ {1, 2}. We say that a ζ1-symplectic basis B1 := (S1, · · · , Sg, T1, · · · , Tg) of A[4d1]
and a ζ2-symplectic basis B2 := (S′

1, · · · , S′
g, T

′
1, · · · , T ′

g) of B[4d2] are adapted to the decomposition
F = F2 ◦ F1 if:

(i) B1 is adapted to F1 i.e. ker(F1) = ⟨[4]T1, · · · , [4]Tg⟩.

(ii) B2 is adapted to F̃2 i.e. ker(F̃2) = ⟨[4]T ′
1, · · · , [4]T ′

g⟩.

6.4. ISOGENIES OBTAINED FROM KANI’S LEMMA 233

(iii) For all i ∈ J1 ; gK, [d2]F̃2(S
′
i) = F1(Ti) and F̃2(T

′
i) = −[d1]F1(Si).

Lemma 6.4.5. Let us keep the notations from Definition 6.4.4. Let d′, c1, c2 ∈ N∗ such that d′ =
c1d1 = c2d2 and let ζ ∈ k∗ be a primitive 4d′-th root of unity. Consider a ζ-symplectic basis B1 :=
(S1, · · · , Sg, T1, · · · , Tg) of A[4d′] and a ζ-symplectic basis B2 := (S′

1, · · · , S′
g, T

′
1, · · · , T ′

g) of B[4d′]
such that:

(i) [c1]B1 is adapted to F1 i.e. ker(F1) = ⟨[4c1]T1, · · · , [4c1]Tg⟩.

(ii) [c2]B2 is adapted to F̃2 i.e. ker(F̃2) = ⟨[4c2]T ′
1, · · · , [4c2]T ′

g⟩.

(iii) For all i ∈ J1 ; gK, T ′
i = −F (Si) and Ti = F̃ (S′

i).

Then, [c1]B1 and [c2]B2 are adapted to the decomposition F = F2 ◦ F1.

Proof. Point (iii) ensures that for all i ∈ J1 ; gK,

F̃2([c2]T
′
i) = −[c2]F̃2 ◦ F (Si) = −[c2]F̃2 ◦ F2 ◦ F1(Si) = −[c2d2]F1(Si) = −[d1]F1([c1]Si),

and
F1([c1]Ti) = [c1]F1 ◦ F̃ (S′

i) = [c1]F1 ◦ F̃1 ◦ F̃2(S
′
i) = [c1d1]F̃2(S

′
i) = [d2]F̃2([c2]S

′
i).

Hence, [c1]B1 and [c2]B2 satisfy conditions (i), (ii) and (iii) of Definition 6.4.4 so they are compatible
with the decomposition F = F2 ◦ F1.

Lemma 6.4.6. Let us keep the notations from Lemma 6.4.1. We consider the d-isogeny

F :=

(
φ ψ̃′

−ψ φ̃′

)
: A×B′ −→ B ×A′,

obtained from an (a, b)-isogeny diamond with d = a+ b. Let d1, d2 ∈ N∗ not divisible by char(k) such
that d = d1d2 and let d′, c1, c2 ∈ N∗ such that d′ = c1d1 = c2d2. Let α, β ∈ N∗ be modular inverses
of a and b modulo 4d′, ζ ∈ k∗ be a 4d′-th primitive root of unity and (x1, · · · , xg, y1, · · · , yg) be a
ζ-symplectic basis of B[4d′].

Define B1 := (S1, · · · , S2g, T1, · · · , T2g) as

Si := (φ̃(yi), 0), Si+g := (0, ψ′(xi))

Ti := (−[α]φ̃(xi),−[α]ψ′(xi)), Ti+g := (−[α]φ̃(yi), [β]ψ′(yi)),

for all i ∈ J1 ; gK, and B2 := (S′
1, · · · , S′

2g, T
′
1, · · · , T ′

2g) as

S′
i := (−[α]xi, 0), S′

i+g := (0, [αβ]ψ ◦ φ̃(yi))

T ′
i := (−[a]yi, ψ ◦ φ̃(yi)), T ′

i+g := (−[b]xi,−ψ ◦ φ̃(xi)),

for all i ∈ J1 ; gK. Then:

(i) [c1]B1 is a ζc1-symplectic basis of (A×B′)[4d1] compatible with F1.

(ii) [c2]B2 is a ζc2-symplectic basis of (B ×A′)[4d2] compatible with F̃2.

(iii) [c1]B1 and [c2]B2 are compatible with the decomposition F = F2 ◦ F1.

Proof. (i) We can prove that B1 is a ζ-symplectic basis of (A×B′)[4d′] with similar pairing computa-
tions as in the proof of Lemma 6.4.1.(i). It follows that [c1]B1 is a ζ

c1-symplectic basis of (A×B′)[4d1].
Then by Kani’s lemma (Lemma 2.2.6) and Lemma 6.3.1.(ii), we have:

ker(F1) = [d2] ker(F) = {[d2](φ̃(x), ψ′(x)) | x ∈ B[d]} = {(φ̃(x), ψ′(x)) | x ∈ B[d1]}.

Besides, for all i ∈ J1 ; gK,

[4c1]Ti = (φ̃(−[4αc1]xi), ψ′(−[4αc1]xi)) and [4c1]Ti+g := (φ̃(−[4αc1]yi), ψ′([4βc1]yi)).

234 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Since b = d−a ≡ −a mod d1, we also have β ≡ −α mod d1 so for all i ∈ J1 ; gK, we have [4c1]Ti+g :=
(φ̃(−[4αc1]yi), ψ′(−[4αc1]yi)). In addition, −[4αc1]x1, · · · ,−[4αc1]xg,−[4αc1]y1, · · · ,−[4αc1]yg gen-
erate [−4αc1]B[4d′] = B[d1] so that,

ker(F1) = ⟨[4c1]T1, · · · , [4c1]T2g⟩,

and [c1]B1 is adapted to F1.
(ii) We can prove that B2 is a ζ-symplectic basis of (B×A′)[4d′] with similar pairing computations

as in the proof of Lemma 6.4.1.(i). It follows that [c2]B2 is a ζc2-symplectic basis of (B × A′)[4d2].
By Lemma 2.2.9, we have

ker(F̃) = {([a]x,−ψ ◦ φ̃(x)) | x ∈ B[d]},

so that
ker(F̃2) = [d1] ker(F̃) = {([a]x,−ψ ◦ φ̃(x)) | x ∈ B[d2]}.

Since b = d − a ≡ −a mod d2. Since [4c2]x1, · · · , [4c2]xg,−[4c2]y1, · · · ,−[4c2]yg generate
[−4c2]B[4d′] = B[d2], we obtain that

ker(F̃2) = ⟨[4c2]T ′
1, · · · , [4c2]T ′

2g⟩,

and [c2]B2 is adapted to F̃2.
(iii) For all i ∈ J1 ; gK,

F (Si) = F (φ̃(yi), 0) = (φ ◦ φ̃(yi),−ψ ◦ φ̃(yi)) = ([a]yi,−ψ ◦ φ̃(yi)) = −Ti

F (Si+g) = F (0, ψ′(xi)) = (ψ̃′ ◦ ψ′(xi), φ̃′ ◦ ψ′(yi)) = ([b]xi, ψ ◦ φ̃(xi)) = −Ti+g,

where we used that ψ′ ◦φ = φ′ ◦ψ since φ,φ′, ψ, ψ′ form an (a, b)-isogeny diamond, so that φ̃′ ◦ψ′ =
ψ ◦ φ̃. For all i ∈ J1 ; gK, we also have:

F̃ (S′
i) = F̃ (−[α]xi, 0) = (−[α]φ̃(xi),−[α]ψ′(xi)) = Ti

F̃ (S′
i+g) = F̃ (0, [αβ]ψ ◦ φ̃(yi)) = (−[αβ]ψ̃ ◦ ψ ◦ φ̃(yi), [αβ]φ′ ◦ ψ ◦ φ̃(yi))

= (−[bαβ] ◦ φ̃(yi), [aαβ]ψ′(yi)) = (−[α] ◦ φ̃(yi), [β]ψ′(yi)) = Ti+g,

where we use that ψ′ ◦ φ = φ′ ◦ ψ implies φ′ ◦ ψ ◦ φ̃ = [a]ψ′. Hence, by Lemma 6.4.5, [c1]B1 and
[c2]B2 are compatible with the decomposition F = F2 ◦ F1.

6.5 Implementation in dimension 2

In this section, we explain specifically how to compute a 2e-isogeny F : E1×E2 −→ E3×E4 between
elliptic products in dimension 2 as a chain of 2-isogenies:

E1 × E2
f1−−−→ A1

f2−−−→ A2 · · · Ae−2
fe−1−−−→ Ae−1

fe−−−→ E3 × E4.

This presentation follows from two works that I coauthored: a paper [DMPR25] and the NIST round 2
SQIsign specification [AAA+25]. We specialize the algorithms from Sections 6.1 to 6.3 to this case
with several optimisations. In particular, we are able to relax the need to access 2e+2-torsion points
above ker(F). Generators of ker(F) ⊂ (E1 × E2)[2

e] are sufficient, at the expense of square root
computations. We also propose algorithms to compute the codomain theta null point of each 2-
isogeny of the chain and to evaluate them with less arithmetic operations than the fully general
algorithms from Section 6.1. Implementation results are presented in Section 6.5.5.

Assume that we are given T1, T2 ∈ (E1 × E2)[2
e+2] forming an isotropic subgroup such that

ker(F) = ⟨[4]T1, [4]T2⟩. Then, the 2-isogeny chain F can be computed as follows:

1. Convert Montgomery (X : Z)-coordinates of the product E1×E2 into level 2 theta coordinates
adapted to f1, as we shall explain in Section 6.5.1.

6.5. IMPLEMENTATION IN DIMENSION 2 235

2. Compute the gluing isogeny f1 : E1 × E2 −→ A1 from 8-torsion points [2e−1]T1 and [2e−1]T2.
This will be explained in Section 6.5.3.

3. For all i ∈ J1 ; e− 1K, compute fi+1 : Ai −→ Ai+1 from 8-torsion points [2e−i−1]fi ◦ · · · ◦ f1(T1)
and [2e−i−1]fi ◦ · · · ◦ f1(T2) with generic isogeny computation algorithms from Section 6.5.2. As
explained in Section 6.3.3, a divide and conquer strategy can be used to minimize the number
of 2-isogeny evaluations and duplications.

4. Convert codomain level 2 theta coordinates into Montgomery (X : Z)-coordinates of E3 × E4.
This will be explained in Section 6.5.4.

When we are given kernel generators T1, T2 ∈ (E1 × E2)[2
e] only, we proceed as above up to the

following modifications:

• In step 2 above, f1 is obtained from the 8-torsion points [2e−3]T1 and [2e−3]T2.

• In step 3 above, for all i ∈ J1 ; e− 3K, fi+1 is obtained from the 8-torsion points [2e−i−3]fi ◦
· · · ◦ f1(T1) and [2e−i−3]fi ◦ · · · ◦ f1(T2).

• In step 3 above, fe−1 is obtained from 4-torsion points fe−2 ◦ · · · ◦ f1(T1) and fe−2 ◦ · · · ◦ f1(T2)
with one square root computation. This will be explained in Section 6.5.2.

• In step 3 above, fe is obtained from 3 square root computations. This will be explained in
Section 6.5.2.

6.5.1 Computing an adapted theta structure on the domain

The general method

We can apply the general method explained in Section 6.3.1. We choose a 4-th primitive root of
unity ζ4 ∈ k∗ and for i ∈ {1, 2}, we convert Ei into Montgomery form and find a basis (Pi, Qi)
of Ei[4] with x(Qi) = −1 and e4(Pi, Qi) = ζ4. Such a basis will be called (ζ4-)special. We then
use Proposition 5.3.47 to convert Montgomery (X : Z)-coordinates into level 2 theta coordinates
associated to the theta structure induced by (Pi, Qi). We can then compute product level 2 theta
coordinates on E1 × E2 given by:

∀(P,Q) ∈ E1 × E2,∀i, j ∈ Z/2Z, θE1×E2
i,j (P,Q) = θE1

i (P)θE2
j (Q),

associated to the product theta structure induced by the product ζ4-symplectic basis of (E1×E2)[4]:

B0 := ((P1, 0), (0, P2), (Q1, 0), (0, Q2)).

The conversion formula to product theta coordinates (θ00, θ10, θ01, θ11) can be written as a matrix
N0 ∈ M4(k) acting by left multiplication on the product (X1X2, X1Z2, Z1X2, Z1Z2) of Montgomery
(X : Z)-coordinates of E1 × E2. We compute the level 2 theta null points of Ei given by (ai : bi) :=
(Xi(Pi) + Zi(Pi) : Xi(Pi)− Zi(Pi)) for i ∈ {1, 2}. Then, we have:

N0 :=

a1a2 −a1a2 −a1a2 a1a2
b1a2 −b1a2 b1a2 −b1a2
a1b2 a1b2 −a1b2 −a1b2
b1b2 b1b2 b1b2 b1b2

 . (6.18)

To obtain theta coordinates (θ′
E1×E2

i,j)i,j∈Z/2Z adapted to F , we compute the symplectic matrix
M ∈ Sp4(Z/4Z) from B0 to a ζ4-symplectic basis B of (E1 × E2)[4] adapted to F . This matrix
M can be obtained from kernel generators of F and discrete logarithm computations as explained
in Remark 6.3.3. Alternatively, when F is obtained from Kani’s lemma, Lemma 6.4.1 can be used.
From M, ζ4 and Theorem 6.2.10, we then obtain a matrix N1 converting product theta coordinates
(θE1×E2
i,j)i,j∈Z/2Z into theta coordinates (θ′

E1×E2

i,j)i,j∈Z/2Z adapted to F by multiplication on the left.
The conversion formula directly from product (X1X2, X1Z2, Z1X2, Z1Z2) of Montgomery (X : Z)-
coordinates of E1 × E2 is then given by the left multiplication by N := N1 ·N0.

236 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Robert’s method: on an elliptic curve

In [DMPR25, § 2.3], another method due to Damien Robert has been introduced to compute the
conversion matrix N from product of Montgomery (X : Z)-coordinates on E1 × E2 to level 2 theta
coordinates adapted to F . The general idea is to use the properties of the theta group action on
global sections, as in the proof of Proposition 6.2.4.

We first explain how this method works on a Montgomery curve E defined over k. Let (T ′
1, T

′
2)

be a basis of E[4]. This basis determines a symmetric level 2 theta structure on (E,L2
0) (with

L0 := L((0E))) by Remark 5.3.31. Recall how this theta structure is constructed explicitly (specifying
the proof of Theorem 5.3.30). Given a point of 2-torsion T , a 4-torsion point T ′ ∈ E[4] such that
[2]T ′ = T determines a symmetric element (as defined in Definition 5.3.9) gT over T in the theta group
G(L2

0), as follows. By Lemma 5.3.14, there are two symmetic elements ±gT ′ ∈ G(L4
0) over T

′. They
both have the same image gT := η2(±gT ′) ∈ G(L2

0) (where η2 has been defined in Definition 5.3.17),
which is symmetric and lies over T . Let T1 = [2]T ′

1, T2 = [2]T ′
2. Then T ′

1, T
′
2 determine symmetric

elements g1, g2 above T1, T2 respectively. Then g1, g2 form a symmetric level structure and determine
a symmetric theta structure ΘL2

0
on G(L2

0).
As we have seen in the proof of Proposition 6.2.4, the associated theta coordinate θ0 is invariant

under the action of g2, so it is equal to the trace θ0 := 1 · s+ g2 · s, for any global section s ∈ Γ(E,L2
0)

such that the trace is non-zero. We also have θ1 = g1 · θ0. Hence, to determine θ0 we need to study
the action of symmetric elements on the global sections X and Z generating Γ(E,L2

0).

Lemma 6.5.1. Let T ′ := (xT ′ : yT ′ : zT ′) be a point of 4-torsion and T := [2]T ′ := (xT : yT : zT).
Let gT ∈ G(L2

0) be the symmetric element determined by T ′. Then

gT ·X =
xT zT ′ ·X + (zTx

2
T ′/zT ′ − 2xTxT ′) · Z

xT ′zT − zT ′xT
and gT · Z =

zT zT ′ ·X − xT zT ′ · Z
xT ′zT − zT ′xT

.

Proof. We first treat the case when T ′ := (1 : ∗ : 1) and T := (0 : 0 : 1). By Lemma 5.1.41, gT acts on
global sections of Γ(E,L2

0) as the translation by T up to a projective constant i.e. there exists λ ∈ k∗
such that gT · s = λt∗T s = λs ◦ tT for all s ∈ Γ(E,L2

0). Since the translation by T maps (X : Z) to
(Z : X), we have gT ·X = λZ and gT · Z = λX and λ2 = 1 because gT has order 2. Hence, λ = ±1,
gT ·X = ±Z and gT ·Z = ±X. It can be proved that the right sign choice is λ = 1 (see Remark 6.5.2)
but we shall admit this result for now.

In plain generality, we map the Montgomery point (xT ′ : zT ′) to (1 : 1) and (xT : zT) to (0 : 1)
via the homography (X : Z) 7−→ (X ′ : Z ′) := (zT ′zT ·X − zT ′xT ·Z : (xT ′zT − zT ′xT) ·Z). Using this
change of variables, we obtain:{

gT ·X ′ = Z ′ i.e. zT ′zT · gT ·X − zT ′xT · gT · Z = (xT ′zT − zT ′xT) · Z
gT · Z ′ = X ′ i.e. (xT ′zT − zT ′xT) · gT · Z = zT ′zT ·X − zT ′xT · Z

The result follows.

Remark 6.5.2. As in Proposition 5.3.47, consider a special basis (T ′
1, T

′
2) of E[4] with T ′

2 = (−1 : ∗ : 1)
of double T2 = (0 : 0 : 1) and T ′

1 := (a+ b : ∗ : a− b) of double T1 = (a2 + b2 : 0 : a2 − b2). Then the
symmetric element above T2 induced by T ′

2 acts by g2 ·X = −Z and g2 · Z = −X by Lemma 6.5.1.
Taking the trace of X under this action we get θ0 = 1 ·X + g2 ·X = X − Z.

We then compute by Lemma 6.5.1 again:

θ1 = g1 · θ0 = g1 · (X − Z) =
zT ′

1
(xT1

− zT1
)

zT1
xT ′

1
− xT1

zT ′
1

X +
zT1

x2T ′
1
/zT ′

1
− 2xT1

xT ′
1
+ xT1

zT ′
1

zT1
xT ′

1
− xT1

zT ′
1

Z =
b

a
X +

b

a
Z.

We recover the same conversion formula between Montgomery and theta coordinates as in Proposi-
tion 5.3.47. This proves in particular that the sign choice λ = 1 in the proof of Lemma 6.5.1 was the
right one.

Robert’s method: on a product of two elliptic curves

Now, we explain how this method generalizes to an elliptic product E1 × E2. Let Li := L((0Ei
))

be the line bundle inducing the principal polarisation of Ei for i ∈ {1, 2} and consider the product

6.5. IMPLEMENTATION IN DIMENSION 2 237

L1 ⋆ L2 := π∗
1L1 ⊗ π∗

2L2, where πi is the projection on the i-th component of E1 × E2 for i ∈ {1, 2}.
We have seen in Section 5.3.2 that G(L2

1 ⋆L2
2) ≃ G(L2

1)×G(L2
2)/{(λ1, λ2) ∈ (k∗)2 | λ1λ2 = 1} via the

map:
G(L2

1)×G(L2
2) −→ G(L2

1 ⋆ L2
2)

(gP , gQ) = ((P, ϕP), (Q,ϕQ)) 7−→ gP ⋆ gQ = ((P,Q), π∗
1ϕP ⊗ π∗

2ϕQ)

By Definition 5.1.27, we easily see that an element g1 ⋆ g2 ∈ G(L2
1 ⋆L2

2) acts on a product of sections
s1 ⋆ s2 ∈ Γ(E1 × E2,L2

1 ⋆ L2
2) as

(g1 ⋆ g2) · (s1 ⋆ s2) = (g1 · s1) ⋆ (g2 · s2).

Let T ′
1, T

′
2 forming an isotropic subgroup of (E1 × E2)[4] such that ker(f1) = ⟨T1, T2⟩, where

T1 := [2]T ′
1 and T2 := [2]T ′

2. We may write T ′
i := (P ′

i , Q
′
i) and Ti := (Pi, Qi) for i ∈ {1, 2}. Consider

S′
1 := (0, Q′

2) and S
′
1 := (P ′

1, 0).

Lemma 6.5.3. Either one of the following conditions is satisfied:

(i) B := (S′
1, S

′
2, T

′
1, T

′
2) is a ζ4-symplectic basis of (E1×E2)[4] adapted to f1 i.e. such that ker(f1) =

⟨[2]T ′
1, [2]T

′
2⟩, where ζ4 := eL4

1
(P ′

1, P
′
2) = e4(P

′
1, P

′
2).

(ii) f1 is a diagonal isogeny Diag(φ1, φ2) : E1 × E2 −→ E′
1 × E′

2.

Proof. When f1 is not diagonal, we prove that P ′
1, P

′
2, Q

′
1 and Q′

2 have order 4. Assume that P ′
1 does

not have order 4. Then, P1 = [2]P ′
1 = 0 so T1 = (0, Q1) and Q1 has order 2 (as T1). Hence, we may

write E2[2] = ⟨Q1, R⟩ and Q2 = [λ]Q1 + [µ]R with λ, µ ∈ {0, 1}. Since (T1, T2) is isotropic (as the
kernel of f1), we have by Lemma 6.4.2.(i),

1 = eL2
1⋆L2

2
(T1, T2) = eL2

2
(Q1, Q2) = eL2

2
(Q1, R)

µ,

with eL2
2
(Q1, R) = −1 since Q1 and R generate E2[2] so µ = 0. Hence, we may write

ker(f1) = ⟨T1, T2⟩ = ⟨T1, T2 − λT1⟩ = ⟨(P2, 0), (0, Q1)⟩,

so that f1 = Diag(φ1, φ2) with ker(φ1) = ⟨P2⟩ and ker(φ2) = ⟨Q1⟩. Similarly, if P ′
2, Q

′
1 or Q′

2

does not have order 4, we obtain that f1 = Diag(φ1, φ2) with ker(φ1) = ⟨P1⟩, ⟨P1⟩ or ⟨P2⟩ and
ker(φ2) = ⟨Q2⟩, ⟨Q2⟩ or ⟨Q1⟩ respectively.

Now, we assume that f1 is diagonal so that P ′
1, P

′
2, Q

′
1 and Q′

2 have order 4. Besides, we have

1 = eL4
1⋆L4

2
(T ′

1, T
′
2) = eL4

1
(P ′

1, P
′
2)eL4

2
(Q′

1, Q
′
2),

so that eL4
1
(P ′

1, P
′
2) = eL4

2
(Q′

1, Q
′
2)

−1. We prove that ζ4 := eL4
1
(P ′

1, P
′
2) is a square root of −1. Indeed,

if it was not the case, we would have eL2
1
(P1, P2) = eL4

1
(P ′

1, P
′
2)

2 = 1 so that P1 = P2 since both points

have order 2. Similarly, we would have eL2
2
(Q1, Q2) = eL4

2
(Q′

1, Q
′
2)

2 = 1 so Q1 = Q2 and T1 = T2.

Hence, we would have 22 = deg(f1) = #ker(f1) = 2. Contradiction. It follows that ζ24 = −1 and that
B := (S′

1, S
′
2, T

′
1, T

′
2) is a ζ4-symplectic basis of (E1 × E2)[4] adapted to f1.

In the following, we assume that f1 is not diagonal. Otherwise, one dimensional isogenies com-
putations would be sufficient to compute it and f2 would be our starting gluing isogeny. Then,
the above lemma ensures that B := (S′

1, S
′
2, T

′
1, T

′
2) is a ζ4-symplectic basis of (E1 × E2)[4] in-

ducing a level 2 symmetric theta structure ΘL2
1⋆L2

2
. As we have seen in the previous paragraph,

any point T ′ := (P ′, Q′) ∈ (E1 × E2)[4] determines a symmetric element gT ∈ G(L2
1 ⋆ L2

2) above
T := [2]T := (P,Q) given by gT := gP ⋆ gQ, where gP and gQ are symmetric elements above P and
Q determined by P ′ and Q′ respectively. To find the coordinate θ00 associated to ΘL2

1⋆L2
2
, we have to

find a section stable by the action of K̃2(ΘL2
1⋆L2

2
) = ⟨gT1 , gT2⟩. Denoting Xi, Zi ∈ Γ(Ei,L2

i) the usual
Montgomery coordinates for i ∈ {1, 2}, we obtain that θ00 is the trace:

θ00 =
∑

g∈K̃2(ΘL2
1⋆L2

2
)

g · x1 ⋆ x2

= x1 ⋆ x2 + (gP1
· x1) ⋆ (gQ1

· x2) + (gP2
· x1) ⋆ (gQ2

· x2) + (gP1+P2
· x1) ⋆ (gQ1+Q2

· x2).

238 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

We then obtain that θ10 = gS1
· θ00, θ01 = gS2

· θ00 and θ11 = gS1+S2
· θ00. Theta group actions

on global sections of the Γ(Ei,Li) can be computed by Lemma 6.5.1 (see Algorithm 6.10). We then
obtain the matrix N ∈M4(k) whose action by multiplication on the left maps the product coordinates
(X1X2, X1Z2, Z1X2, Z1Z2) to the theta coordinates (θ00, θ10, θ01, θ11) by computing tensor products
of matrices. Algorithm 6.11 details how this computation is done.

Algorithm 6.10: EC action: elliptic curve theta group action.

Data: A point P ′ of order 4 in the Kummer line of an elliptic curve E/k.
Result: The matrixM ∈M2(k) describing the action (X,Z) 7−→ (gP ·X, gP ·Z) by multiplica-

tion on the left, where gP ∈ G(L(2(0E))) is the symmetric element above P := [2]P ′

determined by P ′.
1 P ← [2]P ′ ; // Cost: 2S+ 3M
2 zPxP ′ , zP zP ′ , xPxP ′ , xP zP ′ ← zP · xP ′ , zP · zP ′ , xP · xP ′ , xP · zP ′ ;
3 δ ← zPxP ′ − xP zP ′ ;

4 Compute δ−1, z−1
P ′ via batched inversions (Algorithm 5.3) ; // Cost: 3M+ 1I

5 M00 ← xP zP ′ · δ−1;
6 M10 ← zP zP ′ · δ−1;

7 M01 ← xP ′ · z−1
P ′ − xPxP ′ · δ−1;

8 M11 ← −M00;
9 return M := (Mi,j)i,j∈{0,1} ; // Total cost: 2S+ 14M+ 1I

Remark 6.5.4. Grouping together the batched inversions in all calls of Algorithm 6.10, we can save
3 inversions at the expense of 9 more multiplications, changing the total cost of Algorithm 6.11 to
8S+ 109M+ 1I.

General method vs. Robert’s method: a comparison

To apply the general method, we first need to compute the change of basis matrix M ∈ Sp4(Z/4Z)
from a product symplectic basis B0 of (E1 × E2)[4] to a symplectic basis B of (E1 × E2)[4] adapted
to F . Recall that B0 is of the form ((U1, 0), (0, U2), (V1, 0), (0, V2)), where (Ui, Vi) is a special basis of
Ei[4] with ζ

2
4 = −1 and x(Qi) = −1 for i ∈ {1, 2}. Hence, to compute M , we first have to find such

basis (Ui, Vi) and express B in B0. If the the Ui and Vi are already known, any point P ∈ Ei[4] can
be written as P = [a]Ui + [b]Vi with bi-discrete logarithms a, b ∈ Z/4Z computed with Weil pairings
as follows:

e4(Ui, P) = e4(Ui, Vi)
b and e4(P, Vi) = e4(Ui, Vi)

a.

However, when we need to decompose a basis (P,Q) into a special basis (Ui, Vi) while looking for Ui
at the same time, we rely on the following lemma.

Lemma 6.5.5. Let E/k be an elliptic curve, (P,Q) a basis of E[4], V ∈ E[4] a point of order 4
and ζ4 ∈ k∗ such that ζ24 = −1. Then, we can find U ∈ E[4] such that (U, V) is a basis of E[4]
with e4(U, V) = ζ4 and compute the change of basis matrix from (U, V) to (P,Q) with three 4-th Weil
pairing computations e4 : E[4]× E[4] −→ k∗.

Proof. We compute e4(P, V), e4(Q,V) and e4(P,Q). Assume that e4(P, V) has order 4. Then,
e4(P, V) = ζε4 with ε ∈ {−1, 1} so we may set U := [ε]P . Let b1, b2 ∈ Z/4Z such that e4(Q,V) = ζb14
and e4(P,Q) = ζb24 . Then, Q = [εb1]U + [εb2]V and the change of basis matrix from (U, V) to (P,Q)
is (

ε εb1
0 εb2

)
.

If e4(P, V) does not have order 4, then e4(Q,V) must have order 4, otherwise P and Q would
be linearly dependent in E[4]. Then, e4(Q,V) = ζε4 with ε ∈ {−1, 1} so we may set U := [ε]Q. Let
b1, b2 ∈ Z/4Z such that e4(P, V) = ζb14 and e4(P,Q) = ζb24 . Then, P = [εb1]U − [εb2]V and the change
of basis matrix from (U, V) to (P,Q) is (

εb1 ε
−εb2 0

)
.

6.5. IMPLEMENTATION IN DIMENSION 2 239

Algorithm 6.11: Change of coordinates matrix.

Data: Points T ′
1 = (P ′

1, P
′
2) and T

′
2 = (Q′

1, Q
′
2) forming an isotropic subgroup of (E1 × E2)[4]

such that ker(f1) = ⟨[2]T ′
1, [2]T

′
2⟩.

Result: The matrix N ∈ M4(k) describing the change of coordinates
(X1X2, X1Z2, Z1X2, Z1Z2) 7−→ (θ00, θ01, θ10, θ11) by multiplication on the left.

1 G1 ← EC action(P ′
1) ; // Algorithm 6.10. Cost: 2S+ 14M+ 1I

2 G2 ← EC action(P ′
2);

3 H1 ← EC action(Q′
1);

4 H2 ← EC action(Q′
2);

5 t1,00 ← G1,00 ·H1,00 +G1,01 ·H1,10 ; // Action of gP ′
1+Q

′
1
on x1

6 t1,01 ← G1,00 ·H1,01 +G1,01 ·H1,11;
7 t2,00 ← G2,00 ·H2,00 +G2,01 ·H2,10 ; // Action of gP ′

2+Q
′
2
on x2

8 t2,01 ← G2,00 ·H2,01 +G2,01 ·H2,11;
9 N00 ← G1,00 ·G2,00 +H1,00 ·H2,00 + t1,00 · t2,00 + 1 ; // Trace for the first row (θ00)

10 N01 ← G1,00 ·G2,01 +H1,00 ·H2,01 + t1,00 · t2,01;
11 N02 ← G1,01 ·G2,00 +H1,01 ·H2,00 + t1,01 · t2,00;
12 N03 ← G1,01 ·G2,01 +H1,01 ·H2,01 + t1,01 · t2,01;
13 N10 ← H2,00 ·N00 +H2,10 ·N01 ; // Action of g(0,Q′

2)
for the second row (θ10)

14 N11 ← H2,01 ·N00 +H2,11 ·N01;
15 N12 ← H2,00 ·N02 +H2,10 ·N03;
16 N13 ← H2,01 ·N02 +H2,11 ·N03;
17 N20 ← G1,00 ·N00 +G1,10 ·N02 ; // Action of g(P ′

1,0)
for the third row (θ01)

18 N21 ← G1,00 ·N01 +G1,10 ·N03;
19 N22 ← G1,01 ·N00 +G1,11 ·N02;
20 N23 ← G1,01 ·N01 +G1,11 ·N03;
21 N30 ← G1,00 ·N10 +G1,10 ·N12 ; // Action of g(P ′

1,Q
′
2)

for the fourth row (θ11)

22 N31 ← G1,00 ·N11 +G1,10 ·N13;
23 N32 ← G1,01 ·N10 +G1,11 ·N12;
24 N33 ← G1,01 ·N11 +G1,11 ·N13;
25 return N := (Ni,j)0≤i,j≤3 ; // Total cost: 8S+ 100M+ 4I

Note that discrete logarithms computations within the group of 4-th roots of unity is essentially free.
We only have to compute ζ34 = −ζ4 and look up in the set {1, ζ4,−1,−ζ4}. This completes the
proof.

Now, using the notations from Lemma 6.5.3, if the basis adapted to F is of the form B :=
(S′

1, S
′
2, T

′
1, T

′
2) with T ′

1 := (P ′
1, Q

′
1), T

′
2 := (P ′

2, Q
′
2), S

′
1 := (0, Q′

2) and S′
1 := (P ′

1, 0), we may use the
basis (P ′

1, P
′
2) of E1[4] and (Q′

1, Q
′
2) of E2[4] and Lemma 6.5.5 to obtain ζ4-special basis (Ui, Vi) of

Ei[4] for i ∈ {1, 2} (where ζ4 = e4(P
′
1, P

′
2)) along with the related change of basis matrices. Obtaining

the product ζ4-symplectic basis B0 and the change of basis matrix M ∈ Sp4(Z/4Z) from B0 to B
is then immediate. By Lemma 6.5.5, this costs 6 Weil pairing computations in total and two square
roots 2Sqrt for the computation of the y-coordinate of V1 and V2.

Remark 6.5.6 (On the cost of Weil pairings). The standard technique to compute a Weil pairing is
via Miller’s algorithm. We use the formula from [Mil04, Proposition 8]:

en(P,Q) = (−1)n fn,P (Q)

fn,Q(P)
,

where Miller’s function fn,P can be computed iteratively via the formula

fn+m,P = fn,P · fn,P ·
L[m]P,[n]P

L[m+n]P,−[n+m]P
,

where div(LP,Q) = (P) + (Q) + (−(P + Q)) − 3(0). The computation of the 4-th Weil pairing
requires 4 Miller’s iterations (corresponding to point duplication) and each one costs 14M + 10S by

240 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

[CJL+17, § 4.1]. It follows that the computation of M ∈ Sp4(Z/4Z) costs 24(14M+ 10S) + 2Sqrt =
336M+240S+2Sqrt in total. As suggested in [CJL+17] when E1 and E2 are supersingular, we can
save some computations by using Tate pairings instead of Weil pairings. Formulas for pairings can
also be optimised depending on the curves E1 and E2 and the base field.

Then, computing the matrix N0 from Eq. (6.18) only costs 4 multiplications. Besides, computing
the change of coordinates matrix N1 from product theta coordinates to theta coordinates adapted to
F has a negligible cost. Indeed, powers of a 4-th primitive root of unity ζ4 ∈ k∗ can be computed
without any multiplication, using the fact that ζ2 = −1. Hence, the computation of N1 with the
formulas from Theorem 6.2.10 only costs 16 additions or subtractions over the base field k and some
(negligible) operations over Z/4Z. Finally, using the redundancies in N0, the product N = N1 · N0

can be computed with 16 multiplications only. Hence, computing N once the change of basis matrix
M ∈ Sp4(Z/4Z) is known only costs 20M and the total computation cost is 356M + 240S + 2Sqrt
by Remark 6.5.6, to be compared with the cost of Robert’s method (8S+109M+1I), which is much
cheaper. Even improvements suggested in Remark 6.5.6 would make it hard for the general method to
beat Robert’s method. However, we shall see in Section 6.5.4 that when the 2e+2-torsion is accessible
and F is obtained from Kani’s lemma, Lemma 6.4.1 ensures that the general method simplifies the
splitting of the codomain of F into E3 × E4.

An efficient combination of the two methods

The general method can be dramatically improved if combined with Robert’s method over elliptic
curves to convert Montgomery coordinates into theta coordinates associated to a non-special basis
of the 4-torsion, and hence, relaxing the specialness condition to form the basis B0. This would
essentially avoid any costly discrete logarithm computation.

Lemma 6.5.7. Let E/k be an elliptic curve in Montgomery form, (P ′, Q′) be a basis of E[4], P :=
[2]P ′ and Q := [2]Q′. Let X and Z be the usual Montgomery coordinates on E. Then, the level 2
theta coordinates associated to the symmetric theta structure induced by (P ′, Q′) are given by θ0 =
δP ′(λX + µZ) and θ1 = δQ′(λ′X + µ′Z), with:

λ := zQ′xQ′zQ, µ := xQ′(xQ′zQ − 2xQzQ′),

λ′ := z2P ′(λxP + µzP), µ′ := λxP ′(zPxP ′ − 2xP zP ′)− µz2P ′xP ,

δP ′ := zP ′(xP ′zP − zP ′xP) and δQ′ := zQ′(xQ′zQ − zQ′xQ).

Proof. Let gP , gQ ∈ G(L(2(0E))) be symmetric elements determined by P ′, Q′ respectively. Then,
θ0 is invariant under the action of gQ so it can be defined as the trace θ0 := ν(x + gQ · x) for any
projective constant ν ∈ k∗, provided this trace is non-zero. By Lemma 6.5.1, we have

θ0 = ν

(
x+

xQzQ′ ·X + (zQx
2
Q′/zQ′ − 2xQxQ′) · Z

xQ′zQ − zQ′xQ

)

= ν
zQ′(xQ′zQ − zQ′xQ) ·X + xQz

2
Q′ ·X + (zQx

2
Q′ − 2xQxQ′zQ′) · Z

zQ′(xQ′zQ − zQ′xQ)

= ν
zQ′xQ′zQ ·X + (zQx

2
Q′ − 2xQxQ′zQ′) · Z

zQ′(xQ′zQ − zQ′xQ)

= ν
λ ·X + µ · Z

δQ′
,

and

θ1 = gP · θ0 = ν
λgP ·X + µgP · Z

δQ′

=
νλ(xP zP ′ ·X + (zPx

2
P ′/zP ′ − 2xPxP ′) · Z)

δQ′(xP ′zP − zP ′xP)
+
νµ(zP zP ′ ·X − xP zP ′ · Z)

δQ′(xP ′zP − zP ′xP)

=
νλ(xP z

2
P ′ ·X + xP ′(zPxP ′ − 2xP zP ′) · Z)

δQ′δP ′
+
νµzP ′(zP zP ′ ·X − xP zP ′ · Z)

δQ′δP ′

6.5. IMPLEMENTATION IN DIMENSION 2 241

=
νz2P ′(λxP + µzP) ·X + ν(λxP ′(zPxP ′ − 2xP zP ′)− µz2P ′xP) · Z

δQ′δP ′

Taking ν := δQ′δP ′ , we obtain the desired result. Note that λ ̸= 0 since zQ′zQ ̸= 0, otherwise Q or Q′

would be zero and xQ′ ̸= 0, otherwise Q′ would be of order 2. This completes the proof.

Now, we explain how to adapt the general method. Given an adapted symplectic basis B :=
(S′

1, S
′
2, T

′
1, T

′
2) of (E1 × E2)[4] with T

′
1 := (P ′

1, Q
′
1), T

′
2 := (P ′

2, Q
′
2), S

′
1 := (0, Q′

2) and S′
1 := (P ′

1, 0),
we consider the level 2 theta structures ΘL2

1
and ΘL2

2
on (E1,L2

1) and (E2,L2
2) induced by (P ′

1, P
′
2)

and (Q′
2, Q

′
1) respectively. The associated theta coordinates are given by

(θ
L2

i
0 , θ

L2
i

1) = (mi,00Xi +mi,01Zi,mi,10Xi +mi,11Zi),

for i ∈ {1, 2}, where the matrix mi := (mi,r,s)r,s∈{0,1} ∈ M2(k) is obtained from Lemma 6.5.7.
Without any clever optimisation, computing each matrix costs 20M + 1S. Then, the conversion
matrix N0 ∈ M4(k) to product theta coordinates (θ00, θ10, θ01, θ11) acting by left multiplication on
the product (X1X2, X1Z2, Z1X2, Z1Z2) can be written as:

N0 :=

m1,00m2,00 m1,00m2,01 m1,01m2,00 m1,01m2,01

m1,10m2,00 m1,10m2,01 m1,11m2,00 m1,11m2,01

m1,00m2,10 m1,00m2,11 m1,01m2,10 m1,01m2,11

m1,10m2,10 m1,10m2,11 m1,11m2,10 m1,11m2,11

 . (6.19)

Then, as explained previously, the computation of the change of theta coordinate matrix N1 ∈
M4(k) from the product theta coordinates induced by B0 := ((P ′

1, 0), (0, Q
′
2), (P

′
2, 0), (Q

′
1, 0)) to theta

coordinates induced by B adapted to F can be computed in negligible time. The product N := N1 ·N0

costs 64M. It follows that the total cost with this new method is 2S + 104M, which is significantly
less than Robert’s method (8S+ 109M+ 1I), given the absence of inversion.

6.5.2 Computing and evaluating a generic 2-isogeny

In this section, we adapt the algorithms from Sections 6.1.1 and 6.1.2 to compute a generic (i.e. non-
gluing) 2-dimensional 2-isogeny f : A −→ B in order to minimise arithmetic operations. We begin
with the point evaluation algorithm taking as input the inverse of the dual codomain theta null point
of f . We then explain how to compute this data when 8-torsion points above ker(f) are given, but also
when 4-torsion points or only 2-torsion points are given, at the expense of square root computations.
The possibility of relaxing 8-torsion point requirements is specific to dimension 2 and is not a general
fact (as we shall see in Remark 6.5.13).

Evaluation

Let (A,L0) and (B,M0) be principally polarised abelian surfaces, L := L2
0 and M := M2

0 and
f : (A,L2) −→ (B,M) be a 2-isogeny. We assume we are given a level 2 theta structure ΘL on G(L)
adapted to f , a level 4 theta structure ΘL2 on G(L2) compatible with ΘL and a level 2 theta structure
ΘM on G(M) induced by f and ΘL2 , as in Theorem 6.1.1.

For all χ ∈ ̂(Z/2Z)2 and i ∈ (Z/4Z)2, recall the definition of UL2

χ,i from Definition 5.3.40:

UL2

χ,i =
∑

t∈(Z/2Z)2
χ(t)θL

2

i+2t.

Recall that for all i ∈ (Z/2Z)2, we denote by χi the character j ∈ (Z/2Z)2 7−→ (−1)⟨i|j⟩. We can then

define for all i, j ∈ (Z/2Z)2, UL2

i,j := Uχi,j , where the second index j is identified with an element of

{0, 1}2 ⊆ (Z/4Z)2.

Definition 6.5.8. We say that a dual theta coordinate UL2

i,j is even (respectively odd) if ⟨i|j⟩ = 0
mod 2 (respectively ⟨i|j⟩ = 1 mod 2).

242 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

As a consequence of Theorem 6.1.1.(iii), we have seen that the dual theta null point of B satisfies:

(UM
χ (0B))χ∈ ̂(Z/2Z)2 = (UM

χ,0(0B))χ∈ ̂(Z/2Z)2 = (UL2

χ,0(0A))χ∈ ̂(Z/2Z)2 .

In particular, the dual theta null point is made of even theta constants. It has been proved that odd
theta constants are always zero [Dup06, Proposition 5.1]. Fortunately, this is not the case for even
theta constants. We assume that f is not a gluing isogeny, i.e. that A is not a product of elliptic
curves. Then, the following result ensures that all even dual theta constants of B are non-zero, so
that Algorithm 6.12 can be applied.

Proposition 6.5.9. [Dup06, Proposition 6.5 & Corollary 6.1]

(i) If (A,L0) is not a product, then all even dual theta constants are non-zero.

(ii) If (A,L0) is a product, then only one even dual theta constant UL2

i,j (0A) is zero and the underlying

theta structure ΘL2 is a product if and only if UL2

11,11(0A) = 0.

Proof. In [Dup06], Dupont proved this result over C in the framework of analytic theta functions. To
extend it to finite fields (our main case of interest), we would need to lift the abelian surface to a
number field and then reduce it modulo some prime ideal lying above the characteristic.

We denote by (xP : yP : zP : tP) the associated level 2 theta coordinates (θL00(P) : θ
L
10(P) : θ

L
01(P) :

θL11(P)) of a point P ∈ A and similarly for a point in B. We denote by H the Hadamard transform
given by the action by multiplication on the left of theta coordinates by the matrix

H :=

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

We denote by (α : β : γ : δ) the dual theta null point of B and by (α−1 : β−1 : γ−1 : δ−1) its projective
inverse.

Algorithm 6.12: Generic 2-dimensional 2-isogeny evaluation.

Data: Theta coordinates (xP : yP : zP : tP) of P and the projective inverse of the dual
codomain theta null point (α−1 : β−1 : γ−1 : δ−1) on B.

Result: The image theta coordinates (xf(P) : yf(P) : zf(P) : tf(P)) of f(P).
1 (x′, y′, z′, t′)← H(x2P , y

2
P , z

2
P , t

2
P);

2 x′ ← α−1 · x′;
3 y′ ← β−1 · y′;
4 z′ ← γ−1 · z′;
5 t′ ← δ−1 · t′;
6 xf(P), yf(P), zf(P), tf(P) ← H(x′, y′, z′, t′);
7 return (xf(P) : yf(P) : zf(P) : tf(P)) ; // Total cost: 4M+ 4S

Computation from 8-torsion lying above the kernel

Algorithm 6.13 explains how to compute the codomain theta null point (a′ : b′ : c′ : d′) of f ,
its dual (α : β : γ : δ) and the projective inverse of this dual from points T1, T2 ∈ A[8] forming
a maximal isotropic subgroup and such that ker(f) = ⟨[4]T1, [4]T2⟩. Even though the theta null
point (a′ : b′ : c′ : d′) is not directly used in isogeny computations, it is still useful to perform point
duplications on B (see Algorithm 5.5), as required in an isogeny chain computation. Algorithm 6.13 is
much simpler than Algorithm 6.5 working in any dimension, while optimising the number of arithmetic
operations. In particular, unlike the latter, it does not require computation trees.

As in Algorithm 6.5, the dual theta null point computation relies on Lemma 6.1.4.

Lemma 6.5.10. There exists x, y, z, t ∈ k such that

H(x2T1
, y2T1

, z2T1
, t2T1

) = (xα, xβ, yγ, yδ) and H(x2T2
, y2T2

, z2T2
, t2T2

) = (zα, tβ, zγ, tδ).

6.5. IMPLEMENTATION IN DIMENSION 2 243

Proof. Let us write H(x2T1
, y2T1

, z2T1
, t2T1

) := (x′1, y
′
1, z

′
1, t

′
1), H(x2T2

, y2T2
, z2T2

, t2T2
) := (x′2, y

′
2, z

′
2, t

′
2), χ

i :

j ∈ (Z/2Z)2 7−→ (−1)⟨i|j⟩ for all i ∈ (Z/2Z)2, χ1 = χ10 and χ2 = χ01. Then, applying Lemma 6.1.4
to (χ, l) = (χ00, 1), (χ01, 1), (χ00, 2) and (χ10, 2) respectively, we obtain:

β · x′1 = UM
χ10(0B) · x′1 = UM

χ00(0B) · y′1 = α · y′1, δ · z′1 = UM
χ11(0B) · z′1 = UM

χ01(0B) · t′1 = γ · t′1

γ · x′2 = UM
χ01(0B) · x′2 = UM

χ00(0B) · z′2 = α · z′2, δ · y′2 = UM
χ11(0B) · y′2 = UM

χ10(0B) · t′2 = β · t′2
Hence, we may write x′1 = αx, y′1 = βx, z′1 = γy, t′1 = δy, x′2 = αz, y′2 = βt, z′2 = γz, t′2 = δt with
x := x′1/α = y′1/β, y := z′1/γ = t′1/δ, z := x′2/α = z′2/γ and t := y′2/β = t′2/δ. This completes the
proof.

Algorithm 6.13 follows from Lemma 6.5.10 and returns a correct result under the following as-
sumption.

Conjecture 6.5.11. If f is not a gluing isogeny, then the values x, y, z, t from Lemma 6.5.10 are all
non-zero.

Algorithm 6.13: Generic 2-dimensional 2-isogeny codomain computation from 8-torsion
points.

Data: Theta coordinates of T1, T2 ∈ A[8] forming a maximal isotropic subgroup, such that
ker(f) = ⟨[4]T1, [4]T2⟩.

Result: Codomain theta null point (a′ : b′ : c′ : d′) of f , its dual (α : β : γ : δ) and the
projective inverse (α−1 : β−1 : γ−1 : δ−1).

1 (xα, xβ, yγ, yδ)← H(x2T1
, y2T1

, z2T1
, t2T1

);

2 (zα, tβ, zγ, tδ)← H(x2T2
, y2T2

, z2T2
, t2T2

);

3 xαtβ ← xα · tβ;
4 zαxβ ← zα · xβ;
5 α← zα · xαtβ;
6 β ← tβ · zαxβ;
7 γ ← zγ · xαtβ;
8 δ ← tδ · zαxβ;
9 zγtδ ← zγ · tδ;

10 α−1 ← xβ · zγtδ;
11 β−1 ← xα · zγtδ;
12 γ−1 ← δ;
13 δ−1 ← γ;
14 (a′, b′, c′, d′)← H(α, β, γ, δ);
15 return (a′ : b′ : c′ : d′), (α : β : γ : δ), (α−1 : β−1 : γ−1 : δ−1) ; // Total cost: 9M+ 8S

Computation from 4-torsion lying above the kernel

Now, we assume we are given 4-torsion points T1, T2 ∈ A[4] such that ker(f) = ⟨[2]T1, [2]T2⟩. Then,
we are still able to compute the codomain theta null point, its dual and the projective inverse of its
dual at the expense of 2 square root computations. Actually, only T1 is needed and T2 is not used.
The computation relies on the following fact.

Lemma 6.5.12. There exists x ∈ k∗ such that H(x2T1
, y2T1

, z2T1
, t2T1

) = (αβx, αβx, γδx, γδx).

Proof. Corollary 6.1.3 ensures the existence of λ ∈ k∗ such that for all χ ∈ ̂(Z/2Z)2,

UM
χ (f(T1)) · UM

χ (0B) = λ
∑

t∈(Z/2Z)2
χ(t)θLt (T1)

2. (6.20)

But as we have seen in the proof of Lemma 6.2.11.(ii), the dual theta coordinates UM
χ are associated

to a level 2 theta structure Θ′
M related to the theta structure ΘM induced by f by the symplectic

change of basis matrix (
0 −I2
I2 0

)
∈ Sp4(Z/4Z),

244 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

so that Θ
′
M((1, 0), 1) = f(T1). It follows by Eq. (5.11) that

(UM
χ00(f(T1)) : U

M
χ10(f(T1)) : U

M
χ01(f(T1)) : U

M
χ11(f(T1)))

= (UM
χ10(0B) : U

M
χ00(0B) : U

M
χ11(0B) : U

M
χ01(0B)) = (β : α : δ : γ),

so there exists µ ∈ k∗ such that

(UM
χ00(f(T1)), U

M
χ10(f(T1)), U

M
χ01(f(T1)), U

M
χ11(f(T1))) = µ(β, α, δ, γ)

It follows by Eq. (6.20) that

H(x2T1
, y2T1

, z2T1
, t2T1

) = λ−1µ(αβ, αβ, γδ, γδ).

This completes the proof.

Besides, if (a : b : c : d) is the theta null point of A, Corollary 6.1.3 also ensures that
(α2, β2, γ2, δ2) = H(a2, b2, c2, d2), up to a projective factor that we can ignore. From this formula, we

can extract αβ = ±
√
α2 · β2, αγ = ±

√
α2 · γ2 and finally (α : β : γ : δ) from Lemma 6.5.12. As we

shall see in Remark 6.5.13, the sign indetermination in square root computations does not impact the
correctness of the result. Algorithm 6.14 follows.

Algorithm 6.14: Generic 2-dimensional 2-isogeny codomain computation from 4-torsion
points.

Data: Theta coordinates of T1 of order 4 such that [2]T1 ∈ ker(f) and the theta null point
(a : b : c : d) of A.

Result: Codomain theta null point (a′ : b′ : c′ : d′) of f , its dual (α : β : γ : δ) and the
projective inverse (α−1 : β−1 : γ−1 : δ−1).

1 (xαβ, , xγδ,)← H(x2T1
, y2T1

, z2T1
, t2T1

);

2 (α2, β2, γ2, δ2)← H(a2, b2, c2, d2) ;

3 αβ ←
√
α2 · β2;

4 αγ ←
√
α2 · γ2;

5 β ← αβ · αγ;
6 δ−1 ← β · xγδ;
7 β ← β · xαβ;
8 δ ← xγδ · αβ · α2;
9 α← xαβ · α2;

10 γ ← α · γ2;
11 α← α · αγ;
12 α−1 ← xαβ · δ2;
13 γ−1 ← α−1 · β2;
14 α−1 ← α−1 · γ2;
15 β−1 ← α−1 · αβ;
16 α−1 ← α−1 · β2;
17 γ−1 ← γ−1 · αγ;
18 δ−1 ← δ−1 · β2;
19 (a′, b′, c′, d′)← H(α, β, γ, δ);
20 return (a′ : b′ : c′ : d′), (α : β : γ : δ), (α−1 : β−1 : γ−1 : δ−1) ;

// Total cost: 8S+ 17M+ 2Sqrt

Computation from the domain theta null point

If (a : b : c : d) is the theta null point of A, we have seen that

(α2, β2, γ2, δ2) = H(a2, b2, c2, d2), (6.21)

up to a projective factor that we can ignore. When only kernel generators T1, T2 ∈ A[2] are available,
we rely on this formula to obtain the codomain dual theta null points (α : β : γ : δ) with 3 square

6.5. IMPLEMENTATION IN DIMENSION 2 245

Algorithm 6.15: Generic 2-dimensional 2-isogeny codomain computation from the domain
theta null point.

Data: Theta coordinates of the theta null point (a : b : c : d) of A.
Result: Codomain theta null point (a′ : b′ : c′ : d′) of f , its dual (α : β : γ : δ) and the

projective inverse (α−1 : β−1 : γ−1 : δ−1).
1 (α2, β2, γ2, δ2)← H(a2, b2, c2, d2);
2 α← α2;
3 β ← α2 · β2;
4 γ ← α2 · γ2;
5 δ ← α2 · δ2;
6 β ←

√
β;

7 γ ← √γ;
8 δ ←

√
δ;

9 α−1 ← γ2 · δ2;
10 β−1 ← α−1 · β;
11 α−1 ← α−1 · β2;
12 γ−1 ← δ2 · β2 · γ;
13 δ−1 ← γ2 · β2 · δ;
14 (a′, b′, c′, d′)← H(α, β, γ, δ);
15 return (a′ : b′ : c′ : d′), (α : β : γ : δ), (α−1 : β−1 : γ−1 : δ−1) ;

// Total cost: 4S+ 10M+ 3Sqrt

root computations. Algorithm 6.15 follows. The kernel generators T1 and T2 are not directly used,
but the correctness of Eq. (6.21) follows from the fact that the domain theta structure ΘL is adapted
to f i.e. that K2(ΘL) = ⟨T1, T2⟩ = ker(f).

Remark 6.5.13 (On the (im)possibility to generalise this approach to higher dimensions). Unlike in
the rest of this section, we assume that A and B can be of any dimension g. We assume that 8-torsion
points T1, · · · , Tg ∈ A[8] above ker(f) are not known. We then use the analogue of Eq. (6.21) in
dimension g:

∀χ ∈ ̂(Z/2Z)g, UM
χ (0B)

2 =
∑

t∈(Z/2Z)g
χ(t)θLi (0A)

2,

up to a projective factor that we can ignore. Hence, we can compute the codomain dual theta null-
point (UM

χ (0B))χ with 2g − 1 square root computations and sign choices. Unfortunately, this method

is not sufficient to determine (UM
χ (0B))χ in general because all sign choices may not be valid.

As Robert did in [Rob24, Chapter 7, Appendix B.2], we can prove that we can make at least
g(g + 1)/2 arbitrary sign choices among 2g − 1. Indeed, we may act on a symplectic basis of B[4]
inducing the theta-structure ΘM via the symplectic matrix:

M :=

(
Ig 0
B Ig

)
∈ Sp2g(Z/4Z),

which fixes the g last elements of the basis. By Theorem 6.2.10, the new resulting theta-coordinates

are θ′
M
i = ζ

−⟨i|Bi⟩
4 θMi for all i ∈ (Z/2Z)g (up to a projective factor), where ζ24 = −1. Since M is

symplectic, we have tB = B by Lemma 6.2.9 so we have g(g + 1)/2 values to choose. We have:

∀i ∈ (Z/2Z)g, ⟨i|Bi⟩ =
g∑
l=1

i2kBl,l + 2
∑

1≤l<m≤g

ilimBl,m,

so the ⟨i|Bi⟩ are determined by the Bl,l and the Bl,m mod 2. For all l ∈ J1 ; gK and m ∈ Jl + 1 ; gK,
we may fix Bl,l ∈ {0, 2} and Bl,m ∈ {0, 1} which fixes ⟨i|Bi⟩ ∈ 2Z/4Z so that θ′

M
i = (−1)⟨i|Bi⟩/2θMi for

all i ∈ (Z/2Z)g, and in particular θ′
M
el

= (−1)−Bl,l/2θMel , θ
′M
el+em

= (−1)−(Bl,l+Bm,m+2Bl,m)/2θMel+em ,
where el is the vector of (Z/2Z)g with 1 at index l and 0 everywhere else. This amounts to choosing
g(g + 2)/2 signs among 2g − 1 and fixing the others.

246 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

In dimension g = 2, all g(g + 1)/2 = 3 = 2g − 1 arbitrary sign choices are valid, which proves the
correctness of Algorithms 6.14 and 6.15. This is no longer true in dimension g > 2. In dimension g = 3,
only 6 among 7 sign choices determine the last one with an explicit formula [KMM+24, Theorem 8].
In dimension g ≥ 4, we have no such explicit formulas so the theta null-point is harder to guess.

6.5.3 Computing and evaluating a gluing 2-isogeny

In this section, we explain how to compute a non-diagonal gluing 2-isogeny f : E1 ×E2 −→ B. With
the usual notations, let ζ8 ∈ k∗ be an 8-th primitive square root of unity and B := (S1, S2, T1, T2) be
a ζ8-symplectic basis of (E1 × E2)[8] adapted to f . By Lemma 6.5.3, we may write T1 := (P1, Q1),
T2 := (P2, Q2), S1 := (0, Q2) and S2 := (P1, 0), where P1, P2 ∈ E1[8] and Q1, Q2 ∈ E2[8] have order 8.
We may consider the product ζ8-symplectic basis of (E1 × E2)[8]:

B0 := ((P1, 0), (0, Q2), (P2, 0), (0, Q1)).

Let Li := L((0Ei
)) for i ∈ {1, 2} and ΘL2

1⋆L2
2
, Θ′

L2
1⋆L2

2
, Θ′

L4
1⋆L4

2
be the symmetric theta structure

induced by [2]B0, [2]B and B respectively. As in Theorem 6.1.1, let ΘM be the level 2 theta
structure on (B,M) induced by C := ([2]f(S1), [2]f(S2), f(T1), f(T2)) and let (α : β : γ : δ) be the
dual of the theta null point for this theta structure.

Lemma 6.5.14. We have αβγ ̸= 0 and δ = 0.

Proof. The symplectic change of basis matrix from [2]B0 to [2]B is
0 1 1 0
1 0 0 1
0 0 0 1
0 0 1 0

 .

Then, by Theorem 6.2.10, the change of coordinates matrix from product theta coordinates associated
to ΘL2

1⋆L2
2
to non-product theta coordinates associated to Θ′

L2
1⋆L2

2
acting by left multiplication

(θ
L2

1⋆L
2
2

00 , θ
L2

1⋆L
2
2

10 , θ
L2

1⋆L
2
2

01 , θ
L2

1⋆L
2
2

11)
N7−→ (θ′

L2
1⋆L

2
2

00 , θ′
L2

1⋆L
2
2

10 , θ′
L2

1⋆L
2
2

01 , θ′
L2

1⋆L
2
2

11)

is given by:

N :=

1 1 1 −1
1 −1 1 1
1 1 −1 1
−1 1 1 1

 .

The product theta null point associated to ΘL2
1⋆L2

2
is of the form (a1a2 : b1a2 : a1b2 : b1b2) and by

Corollary 6.1.3, there exists λ ∈ k∗ such that

(α2, β2, γ2, δ2) = λ ·H(S(N(a1a2, b1a2, a1b2, b1b2))),

where S : (x, y, z, t) 7−→ (x2, y2, z2, t2). The computation then shows that δ = 0, and that αβγ ̸= 0
since only one dual theta constant can be zero by Proposition 6.5.9.

Evaluation

Assume we have computed the codomain dual theta null point (α : β : γ : 0) and its projective
inverse (α−1 : β−1 : γ−1 : 0). Then, if P ∈ E1 × E2, we can evaluate the dual theta coordinates
(x′f(P) : y′f(P) : z′f(P) : t′f(P)) of f(P), as follows. We use translates by 4-torsion points above the

kernel as in Section 6.1.3. For the first three coordinates, we use Eq. (6.1), as for a generic evaluation:

H(x2P , y
2
P , z

2
P , t

2
P) = λ · (αx′f(P), βy

′
f(P), γz

′
f(P), 0),

with λ ∈ k∗. For the last coordinate, we use Eq. (6.4) with l = 1:

H(x2P+[2]T1
, y2P+[2]T1

, z2P+[2]T1
, t2P+[2]T1

) = µ · (αy′f(P), βx
′
f(P), γt

′
f(P), 0),

6.5. IMPLEMENTATION IN DIMENSION 2 247

with µ ∈ k∗. Let us denote by (x′P , y
′
P , z

′
P , t

′
P) and (x′′P , y

′′
P , z

′′
P , t

′′
P) the values of H(x2P , y

2
P , z

2
P , t

2
P)

and H(x2P+[2]T1
, y2P+[2]T1

, z2P+[2]T1
, t2P+[2]T1

) respectively. Then, if x′P ̸= 0, we have

(x′P · y′′P : β−1 · y′P · α · y′′P : γ−1 · z′P · α · y′′P : γ−1 · z′′P · β · x′P)

= (λµαβx′
2
f(P) : λµαβx

′
f(P)y

′
f(P) : λµαβx

′
f(P)z

′
f(P) : λµαβx

′
f(P)t

′
f(P))

= (x′f(P) : y
′
f(P) : z

′
f(P) : t

′
f(P)).

Alternatively, if y′P ̸= 0, we also have

(α−1 · x′P · β · x′′P : y′P · x′′P : γ−1 · z′P · β · x′′P : γ−1 · z′′P · α · y′P) = (x′f(P) : y
′
f(P) : z

′
f(P) : t

′
f(P)).

If both x′P = 0 and y′P = 0, we translate P by [2]T2 instead and use Eq. (6.4) with l = 2. Algo-
rithm 6.16 follows.

Remark 6.5.15. As explained in Section 6.1.3, another method has been introduced by Max Duparc
for 2-dimensional gluing 2-isogeny computations in [AAA+25, Algorithm 8.40]. In plain generality,
this method will require to compute both translates P + [2]T1 and P − [2]T1 (see Algorithm 6.7) but
only P + [2]T1 is actually necessary. This enables to save 4 multiplications. Another method has also
been introduced in [AAA+25, Algorithm 8.41] to evaluate points of the form (P1, 0) and (0, P2) at a
much lower cost.

Codomain

The codomain theta null point (a′ : b′ : c′ : d′), its dual (α : β : γ : 0) and the projective inverse (α−1 :
β−1 : γ−1 : 0) of the gluing isogeny f : E1 × E2 −→ A can be computed from T1, T2 ∈ (E1 × E2)[8]
such that ker(f) = ⟨[4]T1, [4]T2⟩, as in the generic case. Hence, we can simply adapt Algorithm 6.13
to the gluing case. Algorithm 6.17 follows.

6.5.4 Computing product (theta) coordinates on the codomain

In this section, we explain how to obtain a product theta structure on the codomain of the 2e-isogeny
F : E1×E2 −→ E3×E4 computed as we previously explained. We are then able to split the codomain
into a product E3×E4 and express image points F (P) as (F3(P), F4(P)) into systems of coordinates
on the Kummer lines associated to E3 and E4 (e.g. Montgomery (X : Z)-coordinates).

With Kani’s lemma

We assume that the 2e-isogeny F : E1 × E2 −→ E3 × E4 is obtained from Kani’s lemma. By the
converse of Kani’s lemma (Lemma 2.2.7), we can actually always assume this is the case in dimension 2.
Then, using the notations from Lemma 6.4.1, we may assume that

F :=

(
φ ψ̂′

−ψ φ̂′

)
: E1 × E2 −→ E3 × E4.

is obtained from the (a, b)-isogeny diamond:

E4
φ′
// E2

E1

ψ

OO

φ
// E3

ψ′

OO

Assume that we used Lemma 6.4.1 to find an adapted theta structure on the domain of F . Then,
we can keep track of the theta structure on the codomain. Indeed, by Theorem 6.1.1, the level 2
theta structure we obtain on E3 × E4 from the computation of F is induced by the symplectic basis
C := ([2e]F (S1), [2

e]F (S2), F (T1), F (T2)) of (E3 × E4)[4], where B := (S1, S2, T1, T2) is a symplectic
basis of (E1 × E2)[2

e+2] adpated to F , where B is given by Lemma 6.4.1.(i). Points (ii) and (iii)

248 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Algorithm 6.16: Gluing 2-dimensional 2-isogeny evaluation.

Data: Points expressed in Jacobian coordinates P := (R1, R2) ∈ E1 × E2, [2]T1 :=
(P ′

1, Q
′
1), [2]T2 := (P ′

2, Q
′
2) ∈ (E1 × E2)[4] such that ker(f) = ⟨[4]T1, [4]T2⟩, a change

of coordinates matrix N obtained in Section 6.5.1 (e.g. from Algorithm 6.11), the
codomain dual theta null point (α : β : γ : 0) and its projective inverse (α−1 : β−1 :
γ−1 : 0).

Result: The image theta coordinates (xf(P) : yf(P) : zf(P) : tf(P)) of f(P).
1 x′P , y

′
P , z

′
P , t

′
P ← N(X(R1) ·X(R2), X(R1) · Z(R2), Z(R1) ·X(R2), Z(R1) · Z(R2));

2 x′P , y
′
P , z

′
P , t

′
P ← H(x′

2
P , y

′2
P , z

′2
P , t

′2
P);

3 if x′P ̸= 0 then
4 R′

1 ← R1 + P ′
1 ; // Jacobian addition cost: 11M+ 5S

5 R′
2 ← R2 +Q′

1;
6 x′′P , y

′′
P , z

′′
P , t

′′
P ← N(X(R′

1) ·X(R′
2), X(R′

1) · Z(R′
2), Z(R

′
1) ·X(R′

2), Z(R
′
1) · Z(R′

2));

7 x′′P , y
′′
P , z

′′
P , t

′′
P ← H(x′′

2
P , y

′′2
P , z

′′2
P , t

′′2
P);

8 αy′′P ← α · y′′P ;
9 βx′P ← β · x′P ;

10 x′f(P) ← x′P · y′′P ;
11 y′f(P) ← β−1 · y′P · αy′′P ;
12 z′f(P) ← γ−1 · z′P · αy′′P ;
13 t′f(P) ← γ−1 · z′′P · βx′P ;
14 else if y′P ̸= 0 then
15 R′

1 ← R1 + P ′
1;

16 R′
2 ← R2 +Q′

1;
17 x′′P , y

′′
P , z

′′
P , t

′′
P ← N(X(R′

1) ·X(R′
2), X(R′

1) · Z(R′
2), Z(R

′
1) ·X(R′

2), Z(R
′
1) · Z(R′

2));

18 x′′P , y
′′
P , z

′′
P , t

′′
P ← H(x′′

2
P , y

′′2
P , z

′′2
P , t

′′2
P);

19 βx′′P ← β · x′′P ;
20 αy′P ← α · y′P ;
21 x′P ← α−1 · x′P · βx′′P ;
22 y′f(P) ← y′P · x′′P ;
23 z′f(P) ← γ−1 · z′P · βx′′P ;
24 t′f(P) ← γ−1 · z′′P · αy′P ;
25 else
26 R′

1 ← R1 + P ′
2;

27 R′
2 ← R2 +Q′

2;
28 x′′P , y

′′
P , z

′′
P , t

′′
P ← N(X(R′

1) ·X(R′
2), X(R′

1) · Z(R′
2), Z(R

′
1) ·X(R′

2), Z(R
′
1) · Z(R′

2));

29 x′′P , y
′′
P , z

′′
P , t

′′
P ← H(x′′

2
P , y

′′2
P , z

′′2
P , t

′′2
P);

30 γx′′P ← γ · x′′P ;
31 αz′P ← α · z′P ;
32 x′P ← α−1 · x′P · γx′′P ;
33 y′f(P) ← β−1 · y′P · γx′′P ;
34 z′f(P) ← z′P · x′′P ;
35 t′f(P) ← β−1 · y′′P · αz′P ;
36 end
37 xf(P), yf(P), zf(P), tf(P) ← H(x′f(P), y

′
f(P), z

′
f(P), t

′
f(P));

38 return (xf(P) : yf(P) : zf(P) : tf(P)) ; // Total cost: 71M+ 18S

6.5. IMPLEMENTATION IN DIMENSION 2 249

Algorithm 6.17: Gluing 2-dimensional 2-isogeny codomain computation from 8-torsion
points.

Data: Theta coordinates of T1, T2 ∈ (E1×E2)[8] forming a maximal isotropic subgroup, such
that ker(f) = ⟨[4]T1, [4]T2⟩.

Result: Codomain theta null point (a′ : b′ : c′ : d′) of f , its dual (α : β : γ : 0) and the
projective inverse (α−1 : β−1 : γ−1 : 0).

1 (xα, xβ, yγ, 0)← H(x2T1
, y2T1

, z2T1
, t2T1

);

2 (zα, tβ, zγ, 0)← H(x2T2
, y2T2

, z2T2
, t2T2

);

3 α← xα · zα;
4 β ← xβ · zα;
5 γ ← xα · zγ;
6 α−1 ← xβ · zγ;
7 β−1 ← γ;
8 γ−1 ← β;
9 (a′, b′, c′, d′)← H(α, β, γ, 0);

10 return (a′ : b′ : c′ : d′), (α : β : γ : 0), (α−1 : β−1 : γ−1 : 0) ; // Total cost: 4M+ 8S

of Lemma 6.4.1 ensure the existence of a product symplectic basis C0 of (E3 × E4)[4] such that the
symplectic change of basis matrix from C to C0 is given by:

M :=

0 0 −1 0
0 b 0 0
1 −b 0 0
0 0 1 β

 ,

with βb ≡ 1 mod 4. From M and Theorem 6.2.10, we obtain a change of theta coordinates matrix
N to product theta coordinates

(θ′00(P,Q), θ′10(P,Q), θ′01(P,Q), θ′11(P,Q))

N7−→ (θE3
0 (P) · θE4

0 (Q), θE3
1 (P) · θE4

0 (Q), θE3
0 (P) · θE4

1 (Q), θE3
1 (P) · θE4

1 (Q))

and we can obtain theta coordinates (θEi
0 : θEi

1) on Ei for i ∈ {3, 4} with Algorithm 6.9. In particular,
we are able to extract the theta null points (ai : bi) of Ei for i ∈ {3, 4} and the Montgomery equations
up to quadratic twist:

Ei : BY 2Z = X(X − αiZ)(Z − 1/αiZ),

with αi := (a2i + b2i)/(a
2
i − b2i) for i ∈ {3, 4} by Proposition 5.3.47.

Without Kani’s lemma

When we do not use Kani’s lemma, we no longer keep track of the codomain theta structure. Con-
sequently, to find a product theta structure on the codomain E3 × E4, we can enumerate change of
theta via symmetric Heisenberg automorphisms until we find a product theta structure. In practice,
we can consider symplectic matrices inM ∈ Sp4(Z/4Z) and the associated change of theta coordinate
matrices N ∈ M4(k) computed with Theorem 6.2.10. By Proposition 6.5.9.(ii) one of the even theta

constants always UL2

i,j (0A) vanishes and we know that we have found a product theta structure when

the associated dual theta constant UL2

11,11(0A) vanishes. Hence, we do not have to try each of the
979200 symplectic matrices M ∈ Sp4(Z/4Z), we can stop when we have found the right associated

change of theta coordinates N so that UL2

11,11(0A) = 0. Actually, we can even predict in advance which
change of theta coordinate N to choose depending on the even index (i, j) of the vanishing even dual

theta constant UL2

i,j (0A) for the original theta structure. Only 10 different matrices N cover all cases.
Algorithm 6.18 follows.

250 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Algorithm 6.18: Finding the product theta structure on the codomain.

Data: The codomain (non-product) theta null point (a : b : c : d) of E3 × E4 obtained at the
end of the 2-isogeny chain computation F .

Result: A change of theta coordinates matrix N from the original (non-product) theta
coordinates to product theta coordinates.

1 x0, x1, x2, x3 ← a, b, c, d;
2 S ← {(00, 00), (00, 10), (00, 10), (00, 11), (10, 00), (10, 01), (01, 00), (01, 10), (11, 0), (11, 11)};
3 for (i, j) ∈ S do
4 Compute Ui,j ←

∑
t∈(Z/2Z)2(−1)⟨i|t⟩xi+txt;

5 end
6 Let (i, j) ∈ S such that Ui,j = 0;
7 if (i, j) = (00, 00) then

8 N ←

1

√
−1 1

√
−1

1 −
√
−1 −1

√
−1

1
√
−1 −1 −

√
−1

−1
√
−1 −1

√
−1

;

9 else if (i, j) = (01, 00) then

10 N ←

1 1 1 1
1 −1 −1 1
1 1 −1 −1
−1 1 −1 1

;

11 else if (i, j) = (10, 00) then

12 N ←

1 1 1 1
1 −1 1 −1
1 −1 −1 1
−1 −1 1 1

;

13 else if (i, j) = (11, 00) then

14 N ←

1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1

;

15 else if (i, j) = (00, 01) then

16 N ←

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

;

17 else if (i, j) = (10, 01) then

18 N ←

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

;

19 else if (i, j) = (00, 10) then

20 N ←

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

;

21 else if (i, j) = (01, 10) then

22 N ←

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

;

23 else if (i, j) = (00, 11) then

24 N ←

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

;

25 else if (i, j) = (11, 11) then
26 N ← I4;
27 return N ; // Total cost: 40M

6.5. IMPLEMENTATION IN DIMENSION 2 251

6.5.5 Performance results

The algorithms described in this section have been implemented in SageMath and Rust and the
code1 has been published with the paper [DMPR25]. In Tables 6.1 and 6.2, we compare our timings
with algorithms based on Jacobian or Kummer models to compute and evaluate a 2e-isogeny over
the base field k = Fp2 for different field sizes log2(p) and isogeny chain lengths e. We improve
timings by a factor ∼ 5 at least for both computation and evaluation. This efficient implementation
significantly contributed to the dynamic of isogeny based cryptography following the SIDH attacks.
It has been used in various isogeny based protocols using Kani’s lemma, and recently, a variant of
this implementation in C has been used in SQIsign2D-West [BDF+25] and the subsequent round 2
SQIsign NIST submission [AAA+25].

Field size Length Theta Rust Theta Sage Richelot Sage Richelot Sage Kummer Sage
log2(p) e [DMPR25] [DMPR25] [OP22] [Kun22] [Kun22]

254 126 2.13 108 1028 760 467
381 208 9.05 201 1998 1478 858
1293 632 463 1225 12840 9196 5150

Table 6.1: Execution times in ms for a 2-dimensional 2e-isogeny (intermediate codomains) computa-
tion over the base field Fp2 in Rust and SageMath on an Intel Core i7-9750H (2.6 GHz) CPU. Source:
[DMPR25, Tables 2 & 3].

Field size Length Theta Rust Theta Sage Richelot Sage Richelot Sage Kummer Sage
log2(p) e [DMPR25] [DMPR25] [OP22] [Kun22] [Kun22]

254 126 0.161 5.43 114 66.7 18.4
381 208 0.411 8.68 208 119 31.4
1293 632 17.8 40.8 1203 593 170

Table 6.2: Execution times in msfor a 2-dimensional 2e-isogeny point evaluation over the base field
Fp2 in Rust and SageMath on an Intel Core i7-9750H (2.6 GHz) CPU. Source: [DMPR25, Table 2].

1Available at https://github.com/ThetaIsogenies/two-isogenies.

https://github.com/ThetaIsogenies/two-isogenies

252 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

6.6 Implementation in dimension 4

In this section, we apply the general algorithms from Sections 6.1 to 6.3 to the computation of a
4-dimensional 2e-isogeny F ∈ End(E2

1 × E2
2) obtained from Kani’s lemma with applications to SIDH

attacks (Section 2.2.4) and ideal-to-isogeny translations in the context of SQIsignHD (Section 2.3).
Let σ : E1 −→ E2 be an isogeny of odd degree q that we want to interpolate. We assume we are given
a basis (P1, P2) of E1[2

f] (where f ≥ e/2 + 2) and its image (σ(P1), σ(P2)) and a1, a2 ∈ Z such that
a21 + a22 + q = 2e. We compute the 2e-isogeny:

F :=

(
α1 Σ̃
−Σ α̃2

)
∈ End(E2

1 × E2
2), (6.22)

where Σ := Diag(σ, σ) : E2
1 −→ E2

2 and for i ∈ {1, 2},

αi :=

(
a1 a2
−a2 a1

)
∈ End(E2

i).

We keep these notations in the following.

6.6.1 Locating gluings

As we have seen in Section 6.1.3, gluing isogenies are computed differently and may be more costly
than generic ones to compute. Hence, for practicality and efficiency reasons, gluing isogenies (including
diagonal isogenies) should be located in advance in the 2-isogeny chain. The following lemma ensures
that gluing and diagonal isogenies in dimension 2 appear in the first steps of the 2-isogeny chain F .

Lemma 6.6.1. Assume that 2|a2 and let m := v2(a2) be its 2-adic valuation. Then F := fe ◦ · · · ◦ f1,
with

E2
1 × E2

2
f1−−−→ A2

1 · · · A2
m−1

fm−−−→ A2
m

fm+1−−−→ B−−−→ · · · ,
a chain of 2-isogenies, where the Ai are abelian surfaces and B is an abelian variety of dimension 4.
We have:

(i) f1 = Diag(φ1, φ1)◦S, with S : (R1, S1, R2, S2) ∈ E2
1 ×E2

2 7−→ (R1, R2, S1, S2) ∈ (E1×E2)
2 and

φ1 : E1 × E2 −→ A1 a gluing isogeny.

(ii) For all i ∈ J2 ; mK, fi is a diagonal isogeny Diag(φi, φi), with φi : Ai−1 −→ Ai.

(iii) fm+1 is a gluing isogeny.

(iv) ker(φm ◦ · · · ◦ φ1) = {([a1]P, σ(P)) | P ∈ E1[2
m]}.

Proof. Kani’s lemma ensures that:

ker(F) = {(α̃1(P,Q),Σ(P,Q)) | P,Q ∈ E1[2
e]}

= {([a1]P − [a2]Q, [a2]P + [a1]Q, σ(P), σ(Q)) | P,Q ∈ E1[2
e]}.

Let f1, · · · , fm+1 be the m+ 1 first elements of the 2-isogeny chain F . Then, since a2 ≡ 0 mod 2m,
we have

ker(fm ◦ · · · ◦ f1) = [2e−m] ker(F) = K1 ⊕K2,

where K1 := {([a1]P, 0, σ(P), 0) | P ∈ E1[2
m]} and K2 := {(0, [a1]P, 0, σ(P)) | P ∈ E1[2

m]}. This
proves the chain fm ◦ · · · ◦ f1 has the desired form. This completes the proof.

6.6.2 An overview of the isogeny chain computation

To compute the 2e-isogeny F ∈ End(E2
1 × E2

2) defined in Eq. (6.22), we assume that we are given a
basis (P,Q) of E1[2

e+2] and its image (σ(P), σ(Q)) by σ. We also assume that a2 is even (swapping
a1 and a2 if necessary) in order to apply Lemma 6.6.1. We can decompose F as a 2-isogeny chain:

E2
1 × E2

2
f1−−−→ A2

1 · · · A2
m−1

fm−−−→ A2
m

fm+1−−−→ Bm+1 · · ·Be−2
fe−1−−−→ Be−1

fe−−−→ E2
1 × E2

2 ,

where f1, · · · , fm+1 have been described in Lemma 6.6.1. To compute this 2-isogeny chain, we proceed
as follows:

6.6. IMPLEMENTATION IN DIMENSION 4 253

• We compute the chain of 2-dimensional 2-isogenies Φ := φm ◦· · ·◦φ1 introduced in Lemma 6.6.1
with the algorithms from Section 6.5, as we shall explain in Section 6.6.3.

• We compute the 4-dimensional gluing isogeny of abelian surfaces fm+1 : A2
m −→ Bm+1 intro-

duced in Lemma 6.6.1 with the algorithms from Section 6.1.3, as we shall see in Section 6.6.4.

• For all i ∈ Jm+ 2 ; eK, we compute the 4-dimensional 2-isogeny fi : Bi−1 −→ Bi as a generic
isogeny, using the algorithms from Sections 6.1.1 and 6.1.2 and a computational strategy (that we
shall introduce in Section 6.6.5) avoiding point duplications on the domain of splitting isogenies.

• We recover a product theta structure on Be = E2
1 ×E2

2 in order to express point images by F in
(X : Z)-Montgomery coordinates in the product E2

1×E2
2 . This will be explained in Section 6.6.6.

In Section 6.6.7, we explain how to adapt this method when a basis of the 2e+2-torsion of E1 and
its image by σ is not available, but only the a basis of the 2f -torsion and its image, with f ≥ e/2+ 2.

In this case, we have to decompose F into F = F2 ◦ F1 and compute F1 and F̃2, as explained in
Section 6.4.2.

6.6.3 The first gluing in dimension 2

In this section, we explain how to compute the 2-dimensional 2m-isogeny Φ := φm◦· · ·◦φ1 : E1×E2 −→
Am from Lemma 6.6.1. We start by finding a symplectic basis of (E1×E2)[2

m+2] adapted to Φ, in the
sense of Theorem 6.1.1. Recall that we are given a basis (P,Q) of E1[2

e+2] and its image (σ(P), σ(Q)).
Let us denote ζ := e2e+2(P,Q).

Lemma 6.6.2. Let r and b1 be a modular inverses of q and a1 modulo 2m+2 respectively. Consider
B1 := (J1, J2,K1,K2) with:

J1 := (−[2e−mb1]Q, 0), J2 := (0, [2e−mr]σ(P)),

K1 := ([2e−ma1]P, [2
e−m]σ(P)), K2 := ([2e−ma1(1 + a22b

2
1)]Q, [2

e−m]σ(Q)).

Then B1 is a ζ2
e−m

-symplectic basis of (E1 × E2)[2
m+2] adapted to Φ.

Proof. As in Section 6.5, we consider the canonical line bundle Li := L((0Ei)) inducing the principal
polarisation on Ei for all i ∈ {1, 2} and the product principal polarisation induced by L1 × L2 on
E1 × E2. Then, Proposition 5.1.8 ensures that we can identify the commutator pairing eLn

1 ⋆Ln
2
with

the Weil pairing en for all n ∈ N \ pN. Hence, we have to prove that B1 is ζ2
e−m

-symplectic with
respect to e2m+2 in the following. By Lemma 6.4.2 and the usual properties of the Weil pairing (see
Section 1.4.6), we have:

e2m+2(J1, J2) = e2m+2((−[2e−mb1]Q, 0), (0, [2e−mr]σ(P))) = e2e+2((−[b1]Q, 0), (0, [r]σ(P)))2
e−m

= e2e+2(−[b1]Q, 0)2
e−m

eee+2(0, [r]σ(P))2
e−m

= 1

By similar computations, we obtain that:

e2m+2(K1,K2) = e2e+2([a1]P, [a1(1 + a22b
2
1)]Q)2

e−m

e2e+2(σ(P), σ(Q))2
e−m

= e2e+2(P,Q)2
e−m(a21(1+a

2
2b

2
1)+q) = e2e+2(P,Q)2

e−m(a21+a
2
2+q) = e2e+2(P,Q)2

2e−m

= 1,

where we used the fact that 2e−m ≥ e+ 2 i.e. e ≥ m+ 2, and that:

e2m+2(J1,K1) = e2e+2(Q,P)−2e−ma1b1 = e2e+2(P,Q)2
e−m

= ζ2
e−m

e2m+2(J2,K2) = e2e+2(σ(P), σ(Q))2
e−mr = e2e+2(P,Q)2

e−mqr = ζ2
e−m

e2m+2(J1,K2) = e2e+2(Q,Q)2
e−mb1a1(1+a

2
2b

2
1) = 1

e2m+2(J2,K1) = e2e+2(σ(P), σ(P))2
e−mra1 = 1

This proves that B1 is indeed a ζ2
e−m

-symplectic basis of (E1 × E2)[2
m+2].

254 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Now, since 2m|a2, we have 2e+2−ma22 ≡ 0 mod 2e+2, so that

⟨[4]K1, [4]K2⟩ = ⟨([2e+2−ma1]P, [2
e+2−m]σ(P)), ([2e+2−ma1]Q, [2

e+2−m]σ(Q))⟩
= {([a1]R, σ(R)) | R ∈ E1[2

m]} = ker(Φ)

by Lemma 6.6.1 and B1 is adapted to Φ. This completes the proof.

Using Lemma 6.6.2, we can obtain level 2 theta coordinates on E1 × E2 adapted to Φ from
Montgomery (X : Z)-coordinates on E1 and E2, as explained in Section 6.5.1. We can compute Φ as
a chain of 2-isogenies from the knowledge of J1, J2 (derived from the knowledge of (σ(P), σ(Q))) with
the general approach introduced in the beginning of Section 6.5 for 2-dimensional isogenies. The first
isogeny φ1 is expected to be a non-diagonal gluing so Algorithms 6.17 and 6.16 should be used to
compute and evaluate it. The following isogenies φ2, · · · , φm are expected to be generic isogenies so
Algorithms 6.13 and 6.12 should be used to compute and evaluate them. Algorithm 5.5 should also
be used for point duplications. A computational strategy may be useful if m is big enough, which is
generally not the case.

6.6.4 The second gluing in dimension 4

Assume that we have computed Φ := φm ◦ · · · ◦ φ1, so that we know fm ◦ · · · ◦ f1 = Diag(Φ,Φ) ◦ S.
In this section, we explain how to compute the 4-dimensional gluing fm+1 : A2

m −→ Bm+1.

Consider a ζ-symplectic basis B2 := (S1, · · · , S4, T1, · · · , T4) of (E4
1 × E4

2)[2
e+2] adapted to F

given by Lemma 6.4.1.(i):

S1 := (−[s]α̃1(Q, 0), 0, 0) = (−[sa1]Q,−[sa2]Q, 0, 0),

S2 := (−[s]α̃1(0, Q), 0, 0) = ([sa2]Q,−[sa1]Q, 0, 0),

S3 := (0, 0, [r]σ(P), 0), S4 := (0, 0, 0, [r]σ(P)),

T1 := ([a1]P, [a2]P, σ(P), 0), T2 := (−[a2]P, [a1]P, 0, σ(P)),

T3 := ([(1− s2e)a1]Q, [(1− s2e)a2]Q, σ(Q), 0), T4 := (−[(1− s2e)a2]Q, [(1− s2e)a1]Q, 0, σ(Q)),

where r and s are respectively the inverse of q and a21 + a22 modulo 2e+2. Then Lemma 6.3.4.(ii)
ensures that for all i ∈ Jm ; e− 1K,

Ci := ([2e−1]fi ◦ · · · ◦ f1(S1), · · · , [2e−1]fi ◦ · · · ◦ f1(Sg),
[2e−1−i]fi ◦ · · · ◦ f1(T1), · · · , [2e−1−i]fi ◦ · · · ◦ f1(Tg))

is a ζ2
e−1

-symplectic basis of Bi[8] adapted to fi+1 : Bi −→ Bi+1. In particular, Cm is adapted
to fm+1.

However, the level 2 theta coordinates naturally induced by the computation of fm ◦ · · · ◦ f1 are
not the ones induced by [2]Cm. Indeed, the domain of fm+1 is the product of the principally polarised
abelian surface (Am,Lm) with itself and by Theorem 6.1.1, we have a level 2 theta structure on
(Am,L2

m) induced by the ζ2
e

-symplectic basis of Am[4]:

D0 := ([2m]Φ(J1), [2
m]Φ(J1),Φ(K1),Φ(K2)),

where (J1, J2,K1,K2) has been defined in Lemma 6.6.2. Images by Φ are expressed in level 2 theta
coordinates induced by D0. Hence, we can easily express images by fm ◦ · · · ◦ f1 in the level 2 product
theta coordinates induced by D0 × D0. To express these images in theta coordinates adapted to
fm+1, we need to apply the change of coordinates formula from Theorem 6.2.10 which depends on
the symplectic change of basis matrix from D0 ×D0 to [2]Cm.

6.6. IMPLEMENTATION IN DIMENSION 4 255

Lemma 6.6.3. The change of coordinates matrix from D0 ×D0 to [2]Cm is given by:

sa21 −sa1a2 0 0 0 0 a1a
2
2/2

m a1a2
0 0 1 0 0 b1qa2/2

m 0 0
sa1a2 sa21 0 0 0 0 −a1a2 a1a

2
2/2

m

0 0 0 1 −b1qa2/2m 0 0 0
0 0 0 0 1 −b1a2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 b1a2 1 0 0
0 0 0 0 0 0 0 1

Proof. Let us denote G := fm ◦ · · · ◦ f1. Then we have:

[2e]G(S1) = (Φ(−[2esa1]Q, 0),Φ(−[2esa2]Q, 0)) = (Φ(−[sa212eb1]Q, 0),Φ(−[sa1a22eb1]Q, 0))
= ([sa21][2

m]Φ(J1), [sa1a2][2
m]Φ(J1))

[2e]G(S2) = (Φ([2esa2]Q, 0),Φ(−[2esa1]Q, 0)) = (Φ([sa1a22
eb1]Q, 0),Φ(−[sa212eb1]Q, 0))

= (−[sa1a2][2m]Φ(J1), [sa
2
1][2

m]Φ(J1))

[2e]G(S3) = (Φ(0, [2er]σ(P)), 0) = ([2m]Φ(J2), 0)

[2e]G(S4) = (0,Φ(0, [2er]σ(P))) = (0, [2m]Φ(J2))

[2e−m]G(T1) = (Φ([2e−ma1]P, [2
e−m]σ(P)),Φ([2e−ma2]P, 0)) = (Φ(K1),Φ([2

e−ma2]P, 0)),

with:

Φ([2e−ma2]P, 0) = Φ([b1a22
e−ma1]P, [b1a22

e−m]σ(P))− Φ(0, [b1a22
e−m]σ(P))

= [b1a2]Φ(K1)− Φ(0, [b1a2q2
e−mr]σ(P)) = [b1a2]Φ(K1)− [b1qa2/2

m][2m]Φ(J2),

so that:
[2e−m]G(T1) = (Φ(K1), [b1a2]Φ(K1)− [b1qa2/2

m][2m]Φ(J2))

It follows that:

[2e−m]G(T2) = (Φ(−[2e−ma2]P, 0),Φ([2e−ma1]P, [2e−m]σ(P)))

= (−[b1a2]Φ(K1) + [b1qa2/2
m][2m]Φ(J2),Φ(K1)).

Besides,

[2e−m]G(T3) = (Φ([2e−m(1− s2e)a1]Q, [2e−m]σ(Q)),Φ([2e−m(1− s2e)a2]Q, 0))
= (Φ([2e−ma1]Q, [2

e−m]σ(Q)),Φ([a1a22
e−mb1]Q, 0))

= (Φ([2e−ma1]Q, [2
e−m]σ(Q)),−[a1a2]Φ(J1)),

where we used the fact that m+ 2 ≤ e and where:

Φ([2e−ma1]Q, [2
e−m]σ(Q)) = Φ([2e−ma1(1 + a22b

2
1)]Q, [2

e−m]σ(Q))− Φ([2e−ma22b1]Q, 0)

= Φ(K2)− Φ([a1a
2
22
e−mb1]Q, 0) = Φ(K2) + [a1a

2
2/2

m][2m]Φ(J1),

so that:
[2e−m]G(T3) = (Φ(K2) + [a1a

2
2/2

m][2m]Φ(J1),−[a1a2]Φ(J1)).

Finally,

[2e−m]G(T4) = (Φ(−[2e−m(1− s2e)a2]Q, 0),Φ([2e−m(1− s2e)a1]Q, σ(Q)))

= ([a1a2]Φ(J1),Φ(K2) + [a1a
2
2/2

m][2m]Φ(J1)).

This completes the proof.

256 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Once we have computed the change of theta coordinates to obtain theta coordinates adapted to
fm+1, we express the images of [2e−m−1]T1, · · · , [2e−m−1]T4 and [2e−m−1](T1+T2) by fm◦· · ·◦f1 with
these new theta coordinates. In practice (see Conjecture 6.1.15.(ii)), this data is enough to recover
the codomain dual theta null point of fm+1 and we can apply (a gluing version of) Algorithm 6.5 with
these 8-torsion points as input.

Then, to evaluate a point R ∈ E2
1 × E2

2 via fm+1 ◦ · · · ◦ f1, we proceed as follows. We compute
R + [2e−m]T1 and R + [2e−m]T2 with Weierstrass or Jacobian coordinates on the elliptic product
E2

1 × E2
2 . Then, we evaluate R,R+ [2e−m]T1 and R+ [2e−m]T2 through the chain:

fm ◦ · · · ◦ f1 = Diag(φm ◦ · · · ◦ φ1, φm ◦ · · · ◦ φ1) ◦ S.

The image points can then be used in Algorithm 6.6 to finally obtain fm+1 ◦ · · · ◦ f1(R). In practice,
the evaluation succeeds (Conjecture 6.1.11).

Alternatively, we may use the faster Algorithm 6.7 with R + [2e−m−1]T1 and R − [2e−m−1]T2
instead of R+ [2e−m]T1 and R+ [2e−m]T2.

6.6.5 Computing the generic 2-isogenies in the chain

Once we have computed the gluing isogenies f1, · · · , fm+1, we compute the remaining 2-isogenies
of the chain fi (for i ∈ Jm+ 2 ; eK) as generic isogenies with Algorithm 6.5. This algorithm takes
as input the 8 torsion points [2e−i−2]fi−1 ◦ · · · ◦ f1(Tl) for l ∈ J1 ; 4K to output the codomain dual
theta null point of fi. Hence, we have to compute the leaves of the computation tree mentioned in
Section 6.3.3.

Quasi-linear divide and conquer strategies introduced in Section 6.3.3 also apply but they have to
account for the already computed gluing isogeny chain fm+1 ◦ · · · ◦ f1, so the strategy:

• Must be of length e−m instead of e (to start at fm+1 ◦ · · · ◦ f1, considered as one isogeny).

• Must take into account the higher cost of evaluation by the ”first” isogeny fm+1 ◦ · · · ◦ f1.

Recall the definition of a strategy from Eq. (6.16) as a subgraph of the tree Te defined in Eq. (6.16),
where nodes are basis of points, left branches of the tree represent point duplications and right branches
2-isogeny evaluations. We now consider a different measure for strategies than the one introduced
in Section 6.3.3 taking into account the additional cost of the ”first” isogeny evaluation. We denote
by µ′ this measure parametrized by (α, β, γ) ∈ R3

+ where α is the cost of a left edge (accounting for
duplication cost), β is the cost of a right edge not starting from the root (accounting for a generic
evaluation cost) and γ is the cost of a right edge starting from the root (accounting for the evaluation
by the ”first” isogeny).

Lemmas 6.3.6 and 6.3.7 ([JDF11, Lemma 4.3 and 4.5]) can easily be generalised to strategies with
the measure µ′. Namely, we obtain that optimal strategies for µ′ are canonical (hence determined by
their tree topology) and that their left and right branches are optimal strategies.

Therefore, a dynamic programming approach is still valid here. Assuming we have computed
optimal strategies S′

1, · · · , S′
n−1 and S1, · · · , Sn−1 within the trees T1, · · · , Tn−1 for the measures

µ parametrised by (α, β) from Section 6.3.3 and µ′ parametrised by (α, β, γ) respectively, we can
compute an optimal strategy S′

n for µ′ within Tn with left branch S′
i and right branch Sn−i, where

i ≥ 1 is given by:

i := argmin
1≤j≤n−1

(µ′(S′
j) + µ(Sn−j) + (n− j)α+ (j − 1)β + γ).

6.6.6 Computing product (theta) coordinates on the codomain

Once we have computed the whole 2-isogeny chain F = fe ◦ · · · ◦ f1, we want to be able to evaluate
points R ∈ E2

1 × E2
2 as:

F (R) = (F1(R), · · · , F4(R)),

where the Fi(R) are expressed in Montgomery (X : Z)-coordinates in E⌈i/2⌉ for i ∈ J1 ; 4K. In order
to do that, we need to compute product theta coordinates on E2

1 × E2
2 and to convert them into

Montgomery (X : Z)-coordinates.

6.6. IMPLEMENTATION IN DIMENSION 4 257

By Theorem 6.1.1, the theta coordinates naturally obtained after the isogeny chain com-
putation are associated to the the theta structure induced by the ζ2

e

-symplectic basis C :=
([2e]F (S1), · · · , [2e]F (S4), F (T1), · · · , F (T4)) of (E2

1 × E2
2)[4], where B2 := (S1, · · · , S4, T1, · · · , T4)

has been defined in Section 6.6.4. Let C0 be the product ζ2
e

-symplectic basis of (E2
1 × E2

2)[4] given
by:

C0 := (([2e]P, 0, 0, 0), (0, [2e]P, 0, 0), (0, 0, [2e]σ(P), 0), (0, 0, 0, [2e]σ(P)),

([2e]Q, 0, 0, 0), (0, [2e]Q, 0, 0), (0, 0, [2er]σ(Q), 0), (0, 0, 0, [2er]σ(Q))),

where r is a modular inverse of q mod 2e+2.

Lemma 6.6.4. The change of basis matrix from C to C0 is given by:

0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −a1 −a2 0 0 0 0
0 0 a2 −a1 0 0 0 0
1 0 a1 a2 0 0 0 0
0 1 −a2 a1 0 0 0 0
0 0 0 0 1 0 ra1 ra2
0 0 0 0 0 1 −ra2 ra1

Proof. Note that this is not a straightforward application of Lemma 6.4.1 given the shape of C0. We
have:

[2e]F (S1) = F (−[2esa1]Q,−[2esa2]Q, 0, 0) = (α1(−[2esa1]Q,−[2esa2]Q), [2esa1]σ(Q), [2esa2]σ(Q))

= (−[2es(a21 + a22)]Q, 0, [2
esa1]σ(Q), [2esa2]σ(Q)) = (−[2e]Q, 0, [2esa1]σ(Q), [2esa2]σ(Q))

[2e]F (S2) = F ([2esa2]Q,−[2esa1]Q, 0, 0) = (α1([2
esa2]Q,−[2esa1]Q),−[2esa2]σ(Q), [2esa1]σ(Q))

= (0,−[2es(a22 + a21)]Q,−[2esa2]σ(Q), [2esa1]σ(Q)) = (0,−[2e]Q,−[2esa2]σ(Q), [2esa1]σ(Q))

[2e]F (S3) = F (0, 0, [2er]σ(P), 0) = (Σ̃([2er]σ(P), 0), α̃2([2
er]σ(P), 0))

= ([2er]σ̂ ◦ σ(P), 0, [2era1]σ(P), [2era2]σ(P)) = ([2e]P, 0, [2era1]σ(P), [2
era2]σ(P))

[2e]F (S4) = F (0, 0, 0, [2er]σ(P)) = (Σ̃(0, [2er]σ(P), 0), α̃2(0, [2
er]σ(P)))

= (0, [2er]σ̂ ◦ σ(P),−[2era2]σ(P), [2era1]σ(P)) = (0, [2e]P,−[2era2]σ(P), [2era1]σ(P))

F (T1) = F ([a1]P, [a2]P, σ(P), 0) = (α1([a1]P, [a2]P) + Σ̃(σ(P), 0),−Σ([a1]P, [a2]P) + α̃2(σ(P), 0))

= ([a21 + a22]P + σ̂ ◦ σ(P), 0, 0, 0) = ([2e]P, 0, 0, 0)

F (T2) = F (−[a2]P, [a1]P, 0, σ(P)) = (α1(−[a2]P, [a1]P) + Σ̃(0, σ(P)),−Σ(−[a2]P, [a1]P) + α̃2(0, σ(P)))

= (0, [a22 + a21]P + σ̂ ◦ σ(P), 0, 0) = (0, [2e]P, 0, 0)

F (T3) = F ([(1− s2e)a1]Q, [(1− s2e)a2]Q, σ(Q), 0)

= (α1([(1− s2e)a1]Q, [(1− s2e)a2]Q) + Σ̃(σ(Q), 0),

− Σ([(1− s2e)a1]Q, [(1− s2e)a2]Q) + α̃2(σ(Q), 0))

= ([(1− s2e)(a21 + a22)]Q+ σ̂ ◦ σ(Q), 0, [s2ea1]σ(Q), [s2ea2]σ(Q))

= (0, 0, [s2ea1]σ(Q), [s2ea2]σ(Q))

F (T4) = F (−[(1− s2e)a2]Q, [(1− s2e)a1]Q, 0, σ(Q))

258 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

= (α1(−[(1− s2e)a2]Q, [(1− s2e)a1]Q) + Σ̃(0, σ(Q)),

− Σ(−[(1− s2e)a2]Q, [(1− s2e)a1]Q) + α̃2(0, σ(Q)))

= (0, [(1− s2e)(a22 + a21)]Q+ σ̂ ◦ σ(Q),−[s2ea2]σ(Q), [s2ea1]σ(Q))

= (0, 0,−[s2ea2]σ(Q), [s2ea1]σ(Q))

Inverting these relations, we obtain:

([2e]P, 0, 0, 0) = F (T1), (0, [2e]P, 0, 0) = F (T2),

and:
[2e]F (S3)− F (T1) = (0, 0, [2era1]σ(P), [2

era2]σ(P)),

[2e]F (S4)− F (T2) = (0, 0,−[2era2]σ(P), [2era1]σ(P)),

so that:
(0, 0, [2e]σ(P), 0) = −[a1]([2e]F (S3)− F (T1)) + [a2]([2

e]F (S4)− F (T2)),

(0, 0, 0, [2e]σ(P)) = −[a2]([2e]F (S3)− F (T1))− [a1]([2
e]F (S4)− F (T2)),

where we used the fact that r(a21 + a22) = r(2e − q) ≡ −qr ≡ −1 mod 4. We also obtain:

([2e]Q, 0, 0, 0) = −[2e]F (S1) + F (T3), (0, [2e]Q, 0, 0) = −[2e]F (S2) + F (T4)

(0, 0, [2er]σ(Q), 0) = [ra1]F (T3)− [ra2]F (T4), (0, 0, 0, [2er]σ(Q)) = [ra2]F (T3) + [ra1]F (T4).

This completes the proof.

Using the formulas from Theorem 6.2.10 with the matrix from Lemma 6.6.4 as input, we can
compute the product theta coordinates associated to the product theta structure induced by C0 on
E2

1 ×E2
2 from the non-product theta-coordinates associated to the theta structure naturally induced

by C . Applying Algorithm 6.9 twice, we can then decompose images of F as:

F (R) = (F1(R), · · · , F4(R)),

with F1(R), F2(R) written in level 2 theta coordinates (θE1
0 : θE1

1) associated to the theta structure
induced by ([2e]P, [2e]Q) on E1 and F3(R), F4(R) written in level 2 theta coordinates (θE2

0 : θE2
1) asso-

ciated to the theta structure induced by ([2e]σ(P), [2er]σ(Q)) on E2. Using the change of coordinate
formulas from Lemma 6.5.7, we can then express these points in Montgomery (X : Z)-coordinates, as
desired.

6.6.7 Adaptations when only half of the torsion is available

Unlike previously, we assume that we want to compute the 2e-isogeny F defined in Eq. (6.22) but
we can only access the 2f -torsion of E1 and E2 with f ≥ e/2 + 2, as in SQIsignHD. As explained
in Section 6.4.2, we decompose F = F2 ◦ F1 where F1 : E2

1 × E2
2 −→ C and F2 : C −→ E2

1 × E2
2

are respectively a 2e1 and 2e2-isogeny, with e = e1 + e2 and e1, e2 ≤ f − 2. We compute F1 using
2e1+2-torsion points lying above ker(F1) and F̃2 using 2e2+2-torsion points lying above ker(F̃2). Then

we easily infer
˜̃
F 2 = F2 from Section 6.2.3 and we are able to evaluate F = F2 ◦ F1.

The computation of F1 follows easily from what we previously explained. We follow the same
steps, except that we stop the computation after e1 2-isogenies computation when we reach C. A
notable exception applies nonetheless: in order to obtain theta structures on C that are dual of each
other from the computation of F1 and F̃2, unlike previously, the 2e1+2-torsion points lying above
ker(F1) that we use are given by Lemma 6.4.6. Let (P,Q) be a basis of E1[2

f]. Consider:

T1 := (−[c1sa1]P,−[c1sa2]P,−[c1s]σ(P), 0), T2 := ([c1sa2]P,−[c1sa1]P, 0,−[c1s]σ(P)),

T3 := (−[c1sa1]Q,−[c1sa2]Q, [c1r]σ(Q), 0), T4 := ([c1sa2]Q,−[c1sa1]Q, 0, [c1r]σ(Q)),

where c1 := 2f−e1−2 and r and s are inverses of q and a21+a
2
2 modulo 2f respectively. Then T1, · · · , T4

form a maximal isotropic subgroup of (E2
1 × E2

2)[2
e1+2] lying above ker(F1) that we use to compute

F1.

6.6. IMPLEMENTATION IN DIMENSION 4 259

Similarly, by Lemma 6.4.6, the points

T ′
1 := (−[c2(a21+a22)]Q, 0, [c2a1]σ(Q), [c2a2]σ(Q)), T ′

2 := (0,−[c2(a21+a22)]Q,−[c2a2]σ(Q), [c2a1]σ(Q)),

T ′
3 := (−[c2q]P, 0,−[c2a1]σ(P),−[c2a2]σ(P)), T ′

4 := (0,−[c2q]Q, [c2a2]σ(P),−[c2a1]σ(P)),

where c2 := 2f−e2−2, form a maximal isotropic subgroup of (E2
1 ×E2

2)[2
e2+2] lying above ker(F̃2) that

we use to compute F̃2 in order to obtain a level 2 theta structure on C which is the dual of the one
induced by F1.

The computation of F̃2 follows similar steps to F1: a gluing in dimension 2, then a gluing in
dimension 4 and the computation of the following generic 2-isogenies. Indeed, we have the following
lemma.

Lemma 6.6.5. Assume that 2|a2 and let m := v2(a2) be its 2-adic valuation. Then F̃ = ge ◦ · · · ◦ g1,
with

E2
1 × E2

2
g1−−−→ A′2

1 · · · A′2
m−1

gm−−−→ A′2
m

gm+1−−−→ B′−−−→ · · · ,

a chain of 2-isogenies, where the A′
i are abelian surfaces and B′ is an abelian variety of dimension 4.

We have:

(i) g1 = Diag(ψ1, ψ1)◦S, with S : (R1, S1, R2, S2) ∈ E2
1 ×E2

2 7−→ (R1, R2, S1, S2) ∈ (E1×E2)
2 and

ψ1 : E1 × E2 −→ A′
1 a gluing isogeny.

(ii) For all i ∈ J2 ; mK, gi is a diagonal isogeny Diag(ψi, ψi), with ψi : A
′
i−1 −→ A′

i.

(iii) gm+1 is a gluing isogeny.

(iv) ker(ψm ◦ · · · ◦ ψ1) = {([a1]P,−σ(P)) | P ∈ E1[2
m]}.

Proof. We proceed as in the proof of Lemma 6.6.1. By Lemma 2.2.9, we obtain that:

ker(F̃) = {([a1]P + [a2]Q,−[a2]P + [a1]Q,−σ(P),−σ(Q)) | P,Q ∈ E1[2
e]}.

Let g1, · · · , gm+1 be the m+ 1 first elements of the 2-isogeny chain F̃ . Then, since a2 ≡ 0 mod 2m,
we have

ker(gm ◦ · · · ◦ g1) = [2e−m] ker(F̃) = K1 ⊕K2,

where K1 := {([a1]P, 0,−σ(P), 0) | P ∈ E1[2
m]} and K2 := {(0, [a1]P, 0,−σ(P)) | P ∈ E1[2

m]}. This
proves the chain gm ◦ · · · ◦ g1 has the desired form.

6.6.8 Performance results

The computation and evaluation algorithms of F defined in Eq. (6.22) have been implemented in Sage-
Math for the needs of SQIsignHD. In addition to the timings already presented in Section 3.5.2 with
the fast Intel Core i5-1335U 4600MHz CPU, this computation has been tested on various parameters
on the slower 2.7 GHz Intel Core i5 CPU with random supersingular elliptic curves E1 defined over
finite fields Fp2 of characteristic p between 30 and 378 bits. Primes are of the form p = c · 2f ℓf ′ − 1
with ℓ = 3 or 7, f ≥ e+2 and c small. The isogeny σ : E1 −→ E2 ”embedded” in F ∈ End(E2

1 ×E2
2)

as defined in Eq. (6.22) is always a random cyclic isogeny of degree q|ℓf ′
and integers a1, a2 ∈ Z such

that q + a21 + a22 = 2e are precomputed. In SQIsignHD verification, q is not smooth and may vary
and a1, a2 are computed at runtime, however we have chosen q|ℓf ′

here to be able to verify that point
images of F are correct. For every set of parameters, we compared the computation and evaluation
of a 2e-isogeny F ∈ End(E2

1 ×E2
2) in dimension 4 as defined in Eq. (6.22) with the computation and

evaluation of a cyclic 2e-isogeny in dimension 1 with domain E1 (using x-only arithmetic code due to
Giacomo Pope2). To compute F , both full torsion and half torsion cases (Section 6.6.7) were tested3.
Computations were repeated 100 times and averaged.

2https://github.com/GiacomoPope/KummerIsogeny
3The 2e+2-torsion is always available but we only used ”half” of it to test the algorithmic approach introduced in

Section 6.6.7. Note that we observe a small asymptotic performance gain in this case due to the quasi-linear complexity
of isogeny chain computations (e log(e) > 2 · (e/2) log(e/2)).

https://github.com/GiacomoPope/KummerIsogeny

260 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Results are displayed in Tables 6.3 and 6.4. We found that computing a 2e-isogeny in dimension 4
is 16− 18 times more costly than in dimension 1 over a large base field Fp2 , with a slight advantage
to the half torsion algorithms (due to the quasilinear complexity of an isogeny chain computation).
Timings for evaluation are ≈ 20 times faster in dimension 1 than in dimension 4. This suggests that
our algorithmic approach is promising and can be made cryptographically relevant with a low level
implementation (e.g. in C or Rust).

Table 6.3: Comparison of timings (in ms) for 2e-isogeny computations in dimension 4 with full available
torsion, half available torsion and in dimension 1 with G. Pope’s code for various parameters in
Python/Sagemath on a 2.7 GHz Intel Core i5 CPU.

Dimension 4 Dimension 1
e log2(p) p deg(σ) Full tors. Half tors. G. Pope

16 33 219 · 39 − 1 39 139 164 6
32 55 234 · 313 − 1 313 366 384 12
64 121 11 · 268 · 331 − 1 331 741 695 37
64 125 5 · 266 · 336 − 1 335 678 674 36
128 254 2131 · 378 − 1 375 1519 1428 83
128 261 52 · 2131 · 379 − 1 379 1586 1484 87
192 365 2199 · 3105 − 1 3105 2447 2320 137
192 371 239 · 2194 · 3107 − 1 3107 2459 2309 137
17 30 3 · 220 · 73 − 1 73 142 168 6
17 35 221 · 75 − 1 75 131 164 6
33 52 32 · 235 · 75 − 1 75 256 261 12
33 71 237 · 712 − 1 711 352 351 18
65 110 109 · 267 · 713 − 1 713 691 685 37
65 137 5 · 270 · 723 − 1 723 723 708 39
129 249 261 · 2131 · 739 − 1 739 1559 1449 86
129 257 15 · 2132 · 743 − 1 743 1612 1517 91
193 359 32 · 2196 · 757 − 1 757 2499 2354 137
193 378 97 · 2195 · 763 − 1 763 2488 2370 142

6.6. IMPLEMENTATION IN DIMENSION 4 261

Table 6.4: Comparison of timings (in ms) for 2e-isogeny evaluations in dimension 4 with full available
torsion, half available torsion and in dimension 1 with G. Pope’s code for various parameters in
Python/Sagemath on a 2.7 GHz Intel Core i5 CPU.

Dimension 4 Dimension 1
e log2(p) p deg(σ) Full tors. Half tors. G. Pope

16 33 219 · 39 − 1 39 7.1 6.8 0.6
32 55 234 · 313 − 1 313 14.2 13.9 0.8
64 121 11 · 268 · 331 − 1 331 27.5 26.8 1.8
64 125 5 · 266 · 336 − 1 335 25.9 26.1 1.8
128 254 2131 · 378 − 1 375 59.3 59.4 3.5
128 261 52 · 2131 · 379 − 1 379 64.1 64.2 3.7
192 365 2199 · 3105 − 1 3105 107.7 109.9 5.4
192 371 239 · 2194 · 3107 − 1 3107 106.6 106.9 5.4
17 30 3 · 220 · 73 − 1 73 7.1 6.9 0.6
17 35 221 · 75 − 1 75 7.2 6.9 0.6
33 52 32 · 235 · 75 − 1 75 10.0 9.7 0.8
33 71 237 · 712 − 1 711 15.9 15.5 1.2
65 110 109 · 267 · 713 − 1 713 26.4 26.3 1.8
65 137 5 · 270 · 723 − 1 723 29.0 28.8 1.9
129 249 261 · 2131 · 739 − 1 739 60.2 59.3 3.6
129 257 15 · 2132 · 743 − 1 743 66.3 65.2 3.8
193 359 32 · 2196 · 757 − 1 757 108.5 107.4 5.4
193 378 97 · 2195 · 763 − 1 763 108.1 108.9 5.6

262 CHAPTER 6. COMPUTING 2-ISOGENY CHAINS

Bibliography

[AAA+25] M. A. Aardal, G. Adj, D. F. Aranha, A. Basso, I. A. C. Mart́ınez, J. Chávez-Saab,
M. C.-R. Santos, P. Dartois, L. De Feo, M. Duparc, J. K. Eriksen, T. B. Fouotsa,
D. L. G. Filho, B. Hess, D. Kohel, A. Leroux, P. Longa, L. Maino, M. Meyer, K.
Nakagawa, H. Onuki, L. Panny, S. Patranabis, C. Petit, G. Pope, K. Reijnders,
D. Robert, F. R. Henŕıquez, S. Schaeffler, and B. Wesolowski. SQIsign: Algorithm
specifications and supporting documentation. Tech. rep. Version 2. National Institute
of Standards and Technology, 2025.

[ABDPW25] M. A. Aardal, A. Basso, L. De Feo, S. Patranabis, and B. Wesolowski. A Complete
Security Proof of SQIsign. Cryptology ePrint Archive, Paper 2025/379. 2025. url:
https://eprint.iacr.org/2025/379.

[Ajt98] M. Ajtai. “The Shortest Vector Problem in L2 is NP-Hard for Randomized Reduc-
tions (Extended Abstract)”. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing. STOC ’98. Dallas, Texas, USA: Association for Computing
Machinery, 1998, 10–19. isbn: 0897919629. doi: 10.1145/276698.276705. url:
https://doi.org/10.1145/276698.276705.

[ADFMP20] N. Alamati, L. De Feo, H. Montgomery, and S. Patranabis. “Cryptographic Group
Actions and Applications”. In: Advances in Cryptology – ASIACRYPT 2020. Ed. by
S. Moriai and H. Wang. Cham: Springer International Publishing, 2020, pp. 411–439.
isbn: 978-3-030-64834-3.

[ABE+24] B. Allombert, J.-F. Biasse, J. K. Eriksen, P. Kutas, C. Leonardi, A. Page, R. Schei-
dler, and M. T. Bagi. PEARL-SCALLOP: Parameter Extension Applicable in Real
Life for SCALLOP. 2024.

[ACD+24] S. Arpin, J. Clements, P. Dartois, J. K. Eriksen, P. Kutas, and B. Wesolowski. “Find-
ing orientations of supersingular elliptic curves and quaternion orders”. In: Des.
Codes Cryptography 92.11 (June 2024), 3447–3493. issn: 0925-1022. doi: 10.1007/
s10623-024-01435-5. url: https://doi.org/10.1007/s10623-024-01435-5.

[Bac88] E. Bach. “How to generate factored random numbers”. In: SIAM Journal on Com-
puting 17.2 (1988), pp. 179–193. doi: 10.1137/0217012.

[BBC+25] A. Basso, G. Borin, W. Castryck, M. C.-R. Santos, R. Invernizzi, A. Leroux, L. Maino,
F. Vercauteren, and B. Wesolowski. PRISM: Simple And Compact Identification and
Signatures From Large Prime Degree Isogenies. Cryptology ePrint Archive, Paper
2025/135. 2025. url: https://eprint.iacr.org/2025/135.

[BCC+23] A. Basso, G. Codogni, D. Connolly, L. De Feo, T. B. Fouotsa, G. M. Lido, T. Mor-
rison, L. Panny, S. Patranabis, and B. Wesolowski. “Supersingular Curves You Can
Trust”. In: Advances in Cryptology – EUROCRYPT 2023. Ed. by C. Hazay and
M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 405–437. isbn: 978-3-031-
30617-4.

[BDF+25] A. Basso, P. Dartois, L. D. Feo, A. Leroux, L. Maino, G. Pope, D. Robert, and B.
Wesolowski. “SQIsign2D–West”. In: Advances in Cryptology – ASIACRYPT 2024.
Ed. by K.-M. Chung and Y. Sasaki. Singapore: Springer Nature Singapore, 2025,
pp. 339–370. isbn: 978-981-96-0891-1.

263

https://eprint.iacr.org/2025/379
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://doi.org/10.1007/s10623-024-01435-5
https://doi.org/10.1007/s10623-024-01435-5
https://doi.org/10.1007/s10623-024-01435-5
https://doi.org/10.1137/0217012
https://eprint.iacr.org/2025/135

264 BIBLIOGRAPHY

[BMT78] E. Berlekamp, R. McEliece, and H. van Tilborg. “On the inherent intractability of
certain coding problems (Corresp.)” In: IEEE Transactions on Information Theory
24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.1055873.

[BDFLS20] D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. “Faster computation of iso-
genies of large prime degree”. In: Open Book Series, Proceedings of the Fourteenth
Algorithmic Number Theory Symposium – ANTS XIV 4.1 (2020), pp. 39–55.

[BKP20] W. Beullens, S. Katsumata, and F. Pintore. “Calamari and Falafl: Logarithmic
(Linkable) Ring Signatures from Isogenies and Lattices”. In: Advances in Cryptology
– ASIACRYPT 2020. Ed. by S. Moriai and H. Wang. Cham: Springer International
Publishing, 2020, pp. 464–492. isbn: 978-3-030-64834-3.

[BKV19] W. Beullens, T. Kleinjung, and F. Vercauteren. “CSI-FiSh: Efficient Isogeny Based
Signatures Through Class Group Computations”. In: Advances in Cryptology – ASI-
ACRYPT 2019. Ed. by S. D. Galbraith and S. Moriai. Cham: Springer International
Publishing, 2019, pp. 227–247.

[BST+17] M. Bhargava, A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman, and Y. Zhao.
“Bounds on 2-torsion in class groups of number fields and integral points on elliptic
curves”. In: Journal of the American Mathematical Society 33 (Jan. 2017). doi:
10.1090/jams/945.

[BJS14] J.-F. Biasse, D. Jao, and A. Sankar. “A Quantum Algorithm for Computing Isogenies
between Supersingular Elliptic Curves”. In: Progress in Cryptology – INDOCRYPT
2014. Ed. by W. Meier and D. Mukhopadhyay. Cham: Springer International Pub-
lishing, 2014, pp. 428–442. isbn: 978-3-319-13039-2.

[BL04] C. Birkenhake and H. Lange. Complex Abelian Varieties. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004. isbn: 978-3-662-06307-1. doi: 10.1007/978-3-662-06307-
1. url: https://doi.org/10.1007/978-3-662-06307-1.

[BSS99] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1999.

[BKW20] D. Boneh, D. Kogan, and K. Woo. “Oblivious Pseudorandom Functions from Iso-
genies”. In: Advances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H.
Wang. Cham: Springer International Publishing, 2020, pp. 520–550. isbn: 978-3-
030-64834-3.

[BS20] X. Bonnetain and A. Schrottenloher. “Quantum Security Analysis of CSIDH”. In:
Advances in Cryptology – EUROCRYPT 2020. Ed. by A. Canteaut and Y. Ishai.
Cham: Springer International Publishing, 2020, pp. 493–522. isbn: 978-3-030-45724-
2.

[BMSS08] A. Bostan, F. Morain, B. Salvy, and E. Schost. “Fast algorithms for computing isoge-
nies between elliptic curves”. In: Mathematics of Computations 77 (2008), pp. 1755–
1778.

[BCRSC+23] G. Bruno, M. Corte-Real Santos, C. Costello, J. K. Eriksen, M. Meyer, M. Naehrig,
and B. Sterner. “Cryptographic Smooth Neighbors”. In: Advances in Cryptology –
ASIACRYPT 2023. Ed. by J. Guo and R. Steinfeld. Singapore: Springer Nature
Singapore, 2023, pp. 190–221. isbn: 978-981-99-8739-9.

[BLP93] J. P. Buhler, H. W. Lenstra, and C. Pomerance. “Factoring integers with the number
field sieve”. In: The development of the number field sieve. Ed. by A. K. Lenstra
and H. W. Lenstra. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 50–94.
isbn: 978-3-540-47892-8.

[CHMR25] F. Campos, A. Hellenbrand, M. Meyer, and K. Reijnders. dCTIDH: Fast & Deter-
ministic CTIDH. Cryptology ePrint Archive, Paper 2025/107. 2025. url: https:
//eprint.iacr.org/2025/107.

[CD20] W. Castryck and T. Decru. “CSIDH on the Surface”. In: Post-Quantum Cryptog-
raphy. Ed. by J. Ding and J.-P. Tillich. Cham: Springer International Publishing,
2020, pp. 111–129. isbn: 978-3-030-44223-1.

https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1090/jams/945
https://doi.org/10.1007/978-3-662-06307-1
https://doi.org/10.1007/978-3-662-06307-1
https://doi.org/10.1007/978-3-662-06307-1
https://eprint.iacr.org/2025/107
https://eprint.iacr.org/2025/107

BIBLIOGRAPHY 265

[CD23] W. Castryck and T. Decru. “An Efficient Key Recovery Attack on SIDH”. In:
Advances in Cryptology – EUROCRYPT 2023. Ed. by C. Hazay and M. Stam.
Cham: Springer Nature Switzerland, 2023, pp. 423–447. isbn: 978-3-031-30589-4.

[CLMPR18] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: An Effi-
cient Post-Quantum Commutative Group Action. Cryptology ePrint Archive, Report
2018/383. https://eprint.iacr.org/2018/383. 2018.

[CLG09] D. X. Charles, K. E. Lauter, and E. Z. Goren. “Cryptographic Hash Functions
from Expander Graphs”. In: Journal of Cryptology 22.1 (2009), pp. 93–113. doi:
10.1007/s00145-007-9002-x.

[CSCDJRH21] J. Chávez-Saab, J.-J. Chi-Domı́nguez, S. Jaques, and F. Rodŕıguez-Henŕıquez. “The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low expo-
nents”. In: Journal of Cryptographic Engineering 12 (2021), pp. 349 –368. url:
https://api.semanticscholar.org/CorpusID:239668631.

[CSSD+23] J. Chávez-Saab, M. C.-R. Santos, L. De Feo, J. K. Eriksen, B. Hess, D. Kohel, A.
Leroux, P. Longa, M. Meyer, L. Panny, S. Patranabis, C. Petit, F. R. Henŕıquez,
S. Schaeffler, and B. Wesolowski. SQIsign: Algorithm specifications and supporting
documentation. Tech. rep. Version 1. National Institute of Standards and Technology,
2023.

[CLP24] M. Chen, A. Leroux, and L. Panny. “SCALLOP-HD: Group Action from 2-
Dimensional Isogenies”. In: Public-Key Cryptography – PKC 2024. Ed. by Q. Tang
and V. Teague. Cham: Springer Nature Switzerland, 2024, pp. 190–216. isbn:
978-3-031-57725-3.

[CDPMR23] J.-J. Chi-Dominguez, A. Pizarro-Madariaga, and E. Riquelme. Computing Isoge-
nies of Power-Smooth Degrees Between PPAVs. Cryptology ePrint Archive, Paper
2023/508. https://eprint.iacr.org/2023/508. 2023. url: https://eprint.
iacr.org/2023/508.

[CJS14] A. Childs, D. Jao, and V. Soukharev. “Constructing elliptic curve isogenies in quan-
tum subexponential time”. In: Journal of Mathematical Cryptology 8.1 (2014), pp. 1–
29. doi: doi:10.1515/jmc-2012-0016. url: https://doi.org/10.1515/jmc-
2012-0016.

[CK20] L. Colò and D. Kohel. “Orienting supersingular isogeny graphs”. In: Journal of
Mathematical Cryptology 14.1 (2020), pp. 414–437. doi: doi:10.1515/jmc-2019-
0034.

[Cor08] G. Cornacchia. “Su di un metodo per la risoluzione in numeri interi dell’equazione∑n
h=0 Chx

n−hyh = P”. In: Giornale di matematiche di Battaglini 46 (1908), pp. 33–
90.

[CRSEMR24] M. Corte-Real Santos, J. K. Eriksen, M. Meyer, and K. Reijnders. “AprèsSQI: Ex-
tra Fast Verification for SQIsign Using Extension-Field Signing”. In: Advances in
Cryptology – EUROCRYPT 2024. Ed. by M. Joye and G. Leander. Cham: Springer
Nature Switzerland, 2024, pp. 63–93. isbn: 978-3-031-58716-0.

[Cos11] R. Cosset. “Applications des fonctions thêta à la cryptographie sur courbes hyper-
elliptiques”. PhD thesis. Université Henri-Poincarré, Nancy 1, France, Nov. 2011.
url: http://docnum.univ-lorraine.fr/public/SCD_T_2011_0145_COSSET.pdf.

[CR15] R. Cosset and D. Robert. “Computing (ℓ, ℓ)-isogenies in polynomial time on Jacobian
on genus 2 curves”. In: Mathematics of Computation 84.294 (2015), pp. 1953–1975.
issn: 00255718, 10886842. url: http://www.jstor.org/stable/24489183 (visited
on 02/19/2025).

[Cos20] C. Costello. “B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion”.
In: Advances in Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H. Wang.
Cham: Springer International Publishing, 2020, pp. 440–463. isbn: 978-3-030-64834-
3.

https://eprint.iacr.org/2018/383
https://doi.org/10.1007/s00145-007-9002-x
https://api.semanticscholar.org/CorpusID:239668631
https://eprint.iacr.org/2023/508
https://eprint.iacr.org/2023/508
https://eprint.iacr.org/2023/508
https://doi.org/doi:10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/doi:10.1515/jmc-2019-0034
https://doi.org/doi:10.1515/jmc-2019-0034
http://docnum.univ-lorraine.fr/public/SCD_T_2011_0145_COSSET.pdf
http://www.jstor.org/stable/24489183

266 BIBLIOGRAPHY

[CJL+17] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik. “Efficient
Compression of SIDH Public Keys”. In: Advances in Cryptology – EUROCRYPT
2017. Ed. by J.-S. Coron and J. B. Nielsen. Cham: Springer International Publishing,
2017, pp. 679–706. isbn: 978-3-319-56620-7.

[CMN21] C. Costello, M. Meyer, and M. Naehrig. “Sieving for Twin Smooth Integers with
Solutions to the Prouhet-Tarry-Escott Problem”. In: Advances in Cryptology – EU-
ROCRYPT 2021. Ed. by A. Canteaut and F.-X. Standaert. Cham: Springer Inter-
national Publishing, 2021, pp. 272–301. isbn: 978-3-030-77870-5.

[CS17] C. Costello and B. Smith. “Montgomery curves and their arithmetic: The case of
large characteristic fields”. In: Journal of Cryptographic Engineering 8 (Mar. 2017).
doi: 10.1007/s13389-017-0157-6.

[Cou06] J.-M. Couveignes. Hard Homogeneous Spaces. Cryptology ePrint Archive, Report
2006/291. https://eprint.iacr.org/2006/291. 2006.

[Cox13] D. A. Cox. Primes of the form x2 + ny2. Wiley, 2013, p. 349.

[Dar24] P. Dartois. Fast computation of 2-isogenies in dimension 4 and cryptographic appli-
cations. Cryptology ePrint Archive, Paper 2024/1180. 2024. url: https://eprint.
iacr.org/2024/1180.

[DEF+25] P. Dartois, J. K. Eriksen, T. B. Fouotsa, A. H. L. Merdy, R. Invernizzi, D. Robert,
R. Rueger, F. Vercauteren, and B. Wesolowski. PEGASIS: Practical Effective Class
Group Action using 4-Dimensional Isogenies. Cryptology ePrint Archive, Paper
2025/401. 2025. url: https://eprint.iacr.org/2025/401.

[DLRW24] P. Dartois, A. Leroux, D. Robert, and B. Wesolowski. “SQIsignHD: New Dimensions
in Cryptography”. In: Advances in Cryptology – EUROCRYPT 2024. Ed. by M.
Joye and G. Leander. Cham: Springer Nature Switzerland, 2024, pp. 3–32. isbn:
978-3-031-58716-0.

[DMPR25] P. Dartois, L. Maino, G. Pope, and D. Robert. “An Algorithmic Approach to (2,
2)-Isogenies in the Theta Model and Applications to Isogeny-Based Cryptography”.
In: Advances in Cryptology – ASIACRYPT 2024. Ed. by K.-M. Chung and Y. Sasaki.
Singapore: Springer Nature Singapore, 2025, pp. 304–338. isbn: 978-981-96-0891-1.

[DH48] H. DAVENPORT and M. HALL. “ON THE EQUATION ax2 + by2 + cz2 = 0”.
In: The Quarterly Journal of Mathematics os-19.1 (Jan. 1948), pp. 189–192. issn:
0033-5606. doi: 10.1093/qmath/os-19.1.189. eprint: https://academic.oup.
com/qjmath/article-pdf/os-19/1/189/4572198/os-19-1-189.pdf.

[DFKLPW20] L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. “SQISign: Com-
pact Post-quantum Signatures from Quaternions and Isogenies”. In: Advances in
Cryptology – ASIACRYPT 2020. Ed. by S. Moriai and H. Wang. Cham: Springer
International Publishing, 2020, pp. 64–93. isbn: 978-3-030-64837-4.

[DLW22] L. De Feo, A. Leroux, and B. Wesolowski. New algorithms for the Deuring correspon-
dence: SQISign twice as fast. Cryptology ePrint Archive, Paper 2022/234. https:

//eprint.iacr.org/2022/234. 2022. url: https://eprint.iacr.org/2022/234.

[DFM20] L. De Feo and M. Meyer. “Threshold Schemes from Isogeny Assumptions”. In:
Public-Key Cryptography – PKC 2020. Ed. by A. Kiayias, M. Kohlweiss, P. Wallden,
and V. Zikas. Cham: Springer International Publishing, 2020, pp. 187–212. isbn:
978-3-030-45388-6.

[DFSGF+21] L. De Feo, C. Delpech de Saint Guilhem, T. B. Fouotsa, P. Kutas, A. Leroux, C.
Petit, J. Silva, and B. Wesolowski. “Séta: Supersingular Encryption from Torsion
Attacks”. In: Singapore, Singapore: Springer-Verlag, 2021. isbn: 978-3-030-92067-8.
doi: 10.1007/978-3-030-92068-5_9.

[DG16] C. Delfs and S. D. Galbraith. “Computing isogenies between supersingular elliptic
curves over Fp”. In: Designs, Codes and Cryptography 78.2 (2016), pp. 425–440. doi:
10.1007/s10623-014-0010-1. url: https://doi.org/10.1007/s10623-014-
0010-1.

https://doi.org/10.1007/s13389-017-0157-6
https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2024/1180
https://eprint.iacr.org/2024/1180
https://eprint.iacr.org/2025/401
https://doi.org/10.1093/qmath/os-19.1.189
https://academic.oup.com/qjmath/article-pdf/os-19/1/189/4572198/os-19-1-189.pdf
https://academic.oup.com/qjmath/article-pdf/os-19/1/189/4572198/os-19-1-189.pdf
https://eprint.iacr.org/2022/234
https://eprint.iacr.org/2022/234
https://eprint.iacr.org/2022/234
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1

BIBLIOGRAPHY 267

[Deu41] M. Deuring. “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”.
In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 14.1
(1941), pp. 197–272. doi: 10.1007/BF02940746.

[DKRS03] I. Dinur, G. Kindler, R. Raz, and S. Safra. “Approximating CVP to Within Almost-
Polynomial Factors is NP-Hard”. In: Combinatorica 23 (Apr. 2003), pp. 205–243.
doi: 10.1007/s00493-003-0019-y.

[DF25] M. Duparc and T. B. Fouotsa. “SQIPrime: A Dimension 2 Variant of SQISignHD
with Non-smooth Challenge Isogenies”. In: Advances in Cryptology – ASIACRYPT
2024. Ed. by K.-M. Chung and Y. Sasaki. Singapore: Springer Nature Singapore,
2025, pp. 396–429. isbn: 978-981-96-0891-1.

[Dup06] R. Dupont. “Moyenne arithmético-géométrique, suites de Borchardt et applications”.
PhD thesis. PhD thesis, École polytechnique, 2006.

[EGM22] B. Edixhoven, G. van der Geer, and B. Moonen. Abelian Varieties. http://van-

der-geer.nl/~gerard/AV.pdf. 2022.

[EHLMP18] K. Eisenträger, S. Hallgren, K. Lauter, T. Morrison, and C. Petit. “Supersingular
Isogeny Graphs and Endomorphism Rings: Reductions and Solutions”. In: Advances
in Cryptology – EUROCRYPT 2018. Ed. by J. B. Nielsen and V. Rijmen. Cham:
Springer International Publishing, 2018, pp. 329–368. isbn: 978-3-319-78372-7.

[EHLMP20] K. Eisenträger, S. Hallgren, C. Leonardi, T. Morrison, and J. Park. “Computing
endomorphism rings of supersingular elliptic curves and connections to path-finding
in isogeny graphs”. In: Open Book Series, Proceedings of the Fourteenth Algorithmic
Number Theory Symposium – ANTS XIV 4.1 (2020), pp. 215–232.

[Elk98] N. D. Elkies. “Elliptic and modular curves over finite fields and related computational
issues”. In: Computational perspectives on number theory (Chicago, IL, 1995). Vol. 7.
AMS/IP Stud. Adv. Math. Amer. Math. Soc., Providence, RI, 1998, pp. 21–76. isbn:
0-8218-0880-X. doi: 10.1090/amsip/007/03. url: https://doi.org/10.1090/
amsip/007/03.

[EPSV24] J. Eriksen, L. Panny, J. Sotáková, and M. Veroni. “Deuring for the people: Super-
singular elliptic curves with prescribed endomorphism ring in general characteristic”.
In: Jan. 2024, pp. 339–373. isbn: 978-1-4704-7609-0. doi: 10.1090/conm/796/16008.

[FLR11] J.-C. Faugère, D. Lubicz, and D. Robert. “Computing modular correspondences for
abelian varieties”. In: Journal of Algebra 343.1 (2011), pp. 248–277. issn: 0021-
8693. doi: https://doi.org/10.1016/j.jalgebra.2011.06.031. url: https:
//www.sciencedirect.com/science/article/pii/S0021869311003802.

[FFK+23] L. D. Feo, T. B. Fouotsa, P. Kutas, A. Leroux, S.-P. Merz, L. Panny, and B.
Wesolowski. “SCALLOP: Scaling the CSI-FiSh”. In: Public-Key Cryptography – PKC
2023. Ed. by A. Boldyreva and V. Kolesnikov. Cham: Springer Nature Switzerland,
2023, pp. 345–375.

[FS87] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by A. M.
Odlyzko. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–194. isbn:
978-3-540-47721-1.

[FIKMN25] J. Fuselier, A. Iezzi, M. Kozek, T. Morrison, and C. Namoijam. “Computing su-
persingular endomorphism rings using inseparable endomorphisms”. In: Journal of
Algebra 668 (2025), pp. 145–189. issn: 0021-8693. doi: https://doi.org/10.1016/
j.jalgebra.2025.01.012. url: https://www.sciencedirect.com/science/
article/pii/S0021869325000353.

[GPS20] S. D. Galbraith, C. Petit, and J. Silva. “Identification protocols and signature schemes
based on supersingular isogeny problems”. In: Journal of Cryptology 33.1 (2020),
pp. 130–175.

[Gau07] P. Gaudry. “Fast genus 2 arithmetic based on Theta functions”. In: J. Math. Cryptol.
1.3 (2007), pp. 243–265. doi: 10.1515/JMC.2007.012.

https://doi.org/10.1007/BF02940746
https://doi.org/10.1007/s00493-003-0019-y
http://van-der-geer.nl/~gerard/AV.pdf
http://van-der-geer.nl/~gerard/AV.pdf
https://doi.org/10.1090/amsip/007/03
https://doi.org/10.1090/amsip/007/03
https://doi.org/10.1090/amsip/007/03
https://doi.org/10.1090/conm/796/16008
https://doi.org/https://doi.org/10.1016/j.jalgebra.2011.06.031
https://www.sciencedirect.com/science/article/pii/S0021869311003802
https://www.sciencedirect.com/science/article/pii/S0021869311003802
https://doi.org/https://doi.org/10.1016/j.jalgebra.2025.01.012
https://doi.org/https://doi.org/10.1016/j.jalgebra.2025.01.012
https://www.sciencedirect.com/science/article/pii/S0021869325000353
https://www.sciencedirect.com/science/article/pii/S0021869325000353
https://doi.org/10.1515/JMC.2007.012

268 BIBLIOGRAPHY

[GW10] U. Görtz and T. Wedhorn. Algebraic Geometry I Schemes with examples and exer-
cises. Advanced lectures in mathematics. Wiesbaden, Germany: Vieweg Teubner,
2010, pp. vii+615. isbn: 3-8348-0676-5.

[Gro96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
STOC ’96. Philadelphia, Pennsylvania, USA: Association for Computing Machinery,
1996, 212–219. isbn: 0897917855. doi: 10.1145/237814.237866. url: https:
//doi.org/10.1145/237814.237866.

[HW75] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Sixth.
Oxford, 1975. doi: 10.1093/oso/9780199219858.001.0001.

[Har77] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52. New
York: Springer-Verlag, 1977, pp. xvi+496. isbn: 0-387-90244-9.

[Ibu82] T. Ibukiyama. “On maximal orders of division quaternion algebras over the rational
number field with certain optimal embeddings”. In: Nagoya Mathematical Journal
88 (1982), 181–195. doi: 10.1017/S002776300002016X.

[Igu72] J.-I. Igusa. Theta functions. Die Grundlehren der mathematischen Wissenschaften,
Band 194. New York: Springer-Verlag, 1972, pp. x+232.

[JAC+20] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, D. Urbanik,
G. Pereira, K. Karabina, and A. Hutchinson. SIKE. Tech. rep. available at https://
csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.
National Institute of Standards and Technology, 2020.

[JDF11] D. Jao and L. De Feo. “Towards Quantum-Resistant Cryptosystems from Supersin-
gular Elliptic Curve Isogenies”. In: Post-Quantum Cryptography. Ed. by B.-Y. Yang.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19–34. isbn: 978-3-642-
25405-5.

[Kan97] E. Kani. “The number of curves of genus two with elliptic differentials”. In: Journal
für die reine und angewandte Mathematik 1997.485 (1997), pp. 93–122. doi: doi:
10.1515/crll.1997.485.93. url: https://doi.org/10.1515/crll.1997.485.93.

[KR09] T. Katsuyuki and Y. Reo. “An algorithm for computing a sequence of Richelot
isogenies”. In: Bulletin of the Korean Mathematical Society 46.4 (July 2009), pp. 789–
802.

[KV10] M. Kirschmer and J. Voight. “Algorithmic Enumeration of Ideal Classes for Quater-
nion Orders”. In: SIAM Journal on Computing 39.5 (2010), pp. 1714–1747. doi:
10.1137/080734467.

[KLPT14] D. Kohel, K. Lauter, C. Petit, and J.-P. Tignol. On the quaternion ℓ-isogeny path
problem. 2014. arXiv: 1406.0981 [math.NT].

[Kun22] S. Kunzweiler. Efficient Computation of (2n, 2n)-Isogenies. Cryptology ePrint
Archive, Paper 2022/990. 2022. url: https://eprint.iacr.org/2022/990.

[KMM+24] S. Kunzweiler, L. Maino, T. Moriya, C. Petit, G. Pope, D. Robert, M. Stopar, and
Y. B. Ti. Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2
and 3. Cryptology ePrint Archive, Paper 2024/1732. 2024. url: https://eprint.
iacr.org/2024/1732.

[Kup05] G. Kuperberg. “A Subexponential-Time Quantum Algorithm for the Dihedral Hid-
den Subgroup Problem”. In: SIAM Journal on Computing 35.1 (2005), pp. 170–
188. doi: 10.1137/S0097539703436345. eprint: https://doi.org/10.1137/
S0097539703436345. url: https://doi.org/10.1137/S0097539703436345.

[Lag70] J. L. de Lagrange. “Démonstration d’un théoreme d’arithmétique”. In: Nouveau
Mémoire de l’Académie Royale des Sciences de Berlin (1770), pp. 123–133.

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1093/oso/9780199219858.001.0001
https://doi.org/10.1017/S002776300002016X
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/doi:10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1137/080734467
https://arxiv.org/abs/1406.0981
https://eprint.iacr.org/2022/990
https://eprint.iacr.org/2024/1732
https://eprint.iacr.org/2024/1732
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345
https://doi.org/10.1137/S0097539703436345

BIBLIOGRAPHY 269

[LGSG21] Y.-F. Lai, S. D. Galbraith, and C. Delpech de Saint Guilhem. “Compact, Efficient
and UC-Secure Isogeny-Based Oblivious Transfer”. In: Advances in Cryptology –
EUROCRYPT 2021. Ed. by A. Canteaut and F.-X. Standaert. Cham: Springer
International Publishing, 2021, pp. 213–241. isbn: 978-3-030-77870-5.

[Lan04] S. Lang. Algèbre. Springer, 2004, p. 934.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L. Lovász. “Factoring polynomials with rational
coefficients”. In: Mathematische Annalen 261.4 (Jan. 1982), pp. 515–534. doi: 10.
1007/BF01457454.

[Ler22] A. Leroux. Quaternion algebras and isogeny-based cryptography. http://www.lix.
polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf. 2022.

[LWZ24] J. Lin, S. Wang, and C.-A. Zhao. “A note on (2,2)-isogenies via theta coordinates”.
In: Finite Fields and Their Applications 99 (2024), p. 102496. issn: 1071-5797.
doi: https://doi.org/10.1016/j.ffa.2024.102496. url: https://www.
sciencedirect.com/science/article/pii/S1071579724001357.

[LR12] D. Lubicz and D. Robert. “Computing isogenies between abelian varieties”. In:
Compositio Mathematica 148.5 (Sept. 2012), pp. 1483–1515. doi: 10 . 1112 /

S0010437X12000243.

[LR15] D. Lubicz and D. Robert. “Computing separable isogenies in quasi-optimal time”.
In: LMS Journal of Computation and Mathematics 18.1 (2015), 198–216. doi: 10.
1112/S146115701400045X.

[LR22] D. Lubicz and D. Robert. “Fast change of level and applications to isogenies”. In:
Research in Number Theory 9.7 (2022). doi: 10.1007/s40993-022-00407-9.

[MMPPW23] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. “A Direct Key
Recovery Attack on SIDH”. In: Advances in Cryptology – EUROCRYPT 2023. Ed.
by C. Hazay and M. Stam. Cham: Springer Nature Switzerland, 2023, pp. 448–471.
isbn: 978-3-031-30589-4.

[MW25] A. H. L. Merdy and B. Wesolowski. Unconditional foundations for supersingular
isogeny-based cryptography. Cryptology ePrint Archive, Paper 2025/271. 2025. url:
https://eprint.iacr.org/2025/271.

[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic
Perspective. Springer Science+Business Media, 2002, p. 220.

[Mil04] V. Miller. “The Weil Pairing, and Its Efficient Calculation”. In: The Journal of
Cryptology 17.4 (2004), pp. 235–261. doi: 10.1007/s00145-004-0315-8. url:
https://doi.org/10.1007/s00145-004-0315-8.

[Mil86] J. S. Milne. “Abelian Varieties”. In: Arithmetic Geometry. Ed. by G. Cornell and
J. H. Silverman. New York, NY: Springer New York, 1986, pp. 103–150. isbn: 978-
1-4613-8655-1. doi: 10.1007/978-1-4613-8655-1_5. url: https://doi.org/10.
1007/978-1-4613-8655-1_5.

[Mil08] J. S. Milne. Abelian Varieties (v2.00). Available at www.jmilne.org/math/. 2008.

[Mum66] D. Mumford. “On the equations defining abelian varieties 1”. In: Inventiones math-
ematicae 1.4 (1966), pp. 287–354. doi: 10.1007/BF01389737. url: https://doi.
org/10.1007/BF01389737.

[Mum74] D. Mumford. Abelian varieties. Second Edition. Tata Institute of fundamental re-
search studies in mathematics. London: Oxford University Press, 1974, pp. x+279.

[Mum84] D. Mumford. Tata lectures on theta II. With the collaboration of C. Musili, M. Nori,
E. Previato, M. Stillman and H. Umemura. Boston: Birkbäuser, 1984, pp. xiv+272.
isbn: 0-8176-4569-1.

[NO24] K. Nakagawa and H. Onuki. “QFESTA: Efficient Algorithms and Parameters for
FESTA Using Quaternion Algebras”. In: Advances in Cryptology – CRYPTO 2024.
Ed. by L. Reyzin and D. Stebila. Cham: Springer Nature Switzerland, 2024, pp. 75–
106. isbn: 978-3-031-68388-6.

https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
http://www.lix.polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf
http://www.lix.polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf
https://doi.org/https://doi.org/10.1016/j.ffa.2024.102496
https://www.sciencedirect.com/science/article/pii/S1071579724001357
https://www.sciencedirect.com/science/article/pii/S1071579724001357
https://doi.org/10.1112/S0010437X12000243
https://doi.org/10.1112/S0010437X12000243
https://doi.org/10.1112/S146115701400045X
https://doi.org/10.1112/S146115701400045X
https://doi.org/10.1007/s40993-022-00407-9
https://eprint.iacr.org/2025/271
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/BF01389737
https://doi.org/10.1007/BF01389737
https://doi.org/10.1007/BF01389737

270 BIBLIOGRAPHY

[NOC+25] K. Nakagawa, H. Onuki, W. Castryck, M. Chen, R. Invernizzi, G. Lorenzon, and
F. Vercauteren. “SQIsign2D-East: A New Signature Scheme Using 2-Dimensional
Isogenies”. In: Advances in Cryptology – ASIACRYPT 2024. Ed. by K.-M. Chung
and Y. Sasaki. Singapore: Springer Nature Singapore, 2025, pp. 272–303. isbn:
978-981-96-0891-1.

[NS09] P. Q. Nguyen and D. Stehlé. “Low-dimensional lattice basis reduction revisited”. In:
ACM Trans. Algorithms 5.4 (Nov. 2009). issn: 1549-6325. doi: 10.1145/1597036.
1597050. url: https://doi.org/10.1145/1597036.1597050.

[Onu21] H. Onuki. “On oriented supersingular elliptic curves”. In: Finite Fields and Their
Applications 69 (2021), p. 101777. issn: 1071-5797. doi: https://doi.org/10.
1016/j.ffa.2020.101777.

[ON25] H. Onuki and K. Nakagawa. “Ideal-to-Isogeny Algorithm Using 2-Dimensional Iso-
genies and Its Application to SQIsign”. In: Advances in Cryptology – ASIACRYPT
2024. Ed. by K.-M. Chung and Y. Sasaki. Singapore: Springer Nature Singapore,
2025, pp. 243–271. isbn: 978-981-96-0891-1.

[OP22] R. Oudompheng and G. Pope. A Note on Reimplementing the Castryck-Decru Attack
and Lessons Learned for SageMath. Cryptology ePrint Archive, Paper 2022/1283.
2022. url: https://eprint.iacr.org/2022/1283.

[PR23] A. Page and D. Robert. Introducing Clapoti(s): Evaluating the isogeny class group
action in polynomial time. Cryptology ePrint Archive, Paper 2023/1766. 2023. url:
https://eprint.iacr.org/2023/1766.

[PW24] A. Page and B. Wesolowski. “The Supersingular Endomorphism Ring and One En-
domorphism Problems are Equivalent”. In: Advances in Cryptology – EUROCRYPT
2024. Ed. by M. Joye and G. Leander. Cham: Springer Nature Switzerland, 2024,
pp. 388–417. isbn: 978-3-031-58751-1.

[PPS24] L. Panny, C. Petit, and M. Stopar. “KLaPoTi: An asymptotically efficient isogeny
group action from 2-dimensional isogenies”. In: IACR Cryptol. ePrint Arch. (2024),
p. 1844. url: https://eprint.iacr.org/2024/1844.

[PP02] G. Pareschi and M. Popa. “Regularity on abelian varieties I”. In: Journal of the
American Mathematical Society 16 (Nov. 2002), pp. 285–302. doi: 10.1090/S0894-
0347-02-00414-91.

[Pei20] C. Peikert. “He Gives C-Sieves on the CSIDH”. In: Advances in Cryptology – EU-
ROCRYPT 2020. Ed. by A. Canteaut and Y. Ishai. Cham: Springer International
Publishing, 2020, pp. 463–492. isbn: 978-3-030-45724-2.

[Piz90] A. K. Pizer. “Ramanujan graphs and Hecke operators”. In: Bulletin of the American
Mathematical Society 23 (1990), pp. 127–137. url: https://api.semanticscholar.
org/CorpusID:19789543.

[PT18] P. Pollack and E. Treviño. “Finding the Four Squares in Lagrange’s Theorem”. In:
Integers 18A (2018), A15.

[Rob10] D. Robert. “Theta functions and cryptographic applications”. PhD thesis. Université
Henri-Poincarré, Nancy 1, France, July 2010. url: http://www.normalesup.org/

~robert/pro/publications/academic/phd.pdf.

[Rob23] D. Robert. “Breaking SIDH in Polynomial Time”. In: Advances in Cryptology – EU-
ROCRYPT 2023. Ed. by C. Hazay and M. Stam. Cham: Springer Nature Switzerland,
2023, pp. 472–503. isbn: 978-3-031-30589-4.

[Rob24] D. Robert. A note on optimising 2n-isogenies in higher dimension. Cryptology ePrint
Archive, Paper 2024/406. https://eprint.iacr.org/2024/406. 2024.

[RS24] D. Robert and N. Sarkis. Halving differential additions on Kummer lines. Cryptology
ePrint Archive, Paper 2024/1582. 2024. url: https://eprint.iacr.org/2024/
1582.

https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://doi.org/10.1145/1597036.1597050
https://doi.org/https://doi.org/10.1016/j.ffa.2020.101777
https://doi.org/https://doi.org/10.1016/j.ffa.2020.101777
https://eprint.iacr.org/2022/1283
https://eprint.iacr.org/2023/1766
https://eprint.iacr.org/2024/1844
https://doi.org/10.1090/S0894-0347-02-00414-91
https://doi.org/10.1090/S0894-0347-02-00414-91
https://api.semanticscholar.org/CorpusID:19789543
https://api.semanticscholar.org/CorpusID:19789543
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
https://eprint.iacr.org/2024/406
https://eprint.iacr.org/2024/1582
https://eprint.iacr.org/2024/1582

BIBLIOGRAPHY 271

[RS06] A. Rostovtsev and A. Stolbunov. Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145. https://eprint.iacr.org/2006/

145. 2006.

[RT22] J. Rouse and K. Thompson. Quaternary quadratic forms with prime discriminant.
2022. arXiv: 2206.00412 [math.NT].

[SGOPS20] C. D. de Saint Guilhem, E. Orsini, C. Petit, and N. P. Smart. “Semi-commutative
Masking: A Framework for Isogeny-Based Protocols, with an Application to Fully
Secure Two-Round Isogeny-Based OT”. In: Cryptology and Network Security. Ed.
by S. Krenn, H. Shulman, and S. Vaudenay. Cham: Springer International Publishing,
2020, pp. 235–258. isbn: 978-3-030-65411-5.

[SEMRH24] M. C.-R. Santos, J. K. Eriksen, M. Meyer, and F. Rodŕıguez-Henŕıquez. “Finding
Practical Parameters for Isogeny-based Cryptography”. In: IACR Communications
in Cryptology 1.3 (Oct. 7, 2024). issn: 3006-5496. doi: 10.62056/ayojbhey6b.

[Sch87] C. P. Schnorr. “A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms”. In: Theoretical Computer Science 53 (1987), 201–224. issn: 1088-6842.
doi: 10.1016/0304-3975(87)90064-8. url: https://doi.org/10.1016/0304-
3975(87)90064-8.

[Sha13] I. R. Shafarevich. Basic Algebraic Geometry I. Third Edition. Springer-Verlag Berlin,
2013, p. 310. isbn: 978-3-642-37956-7. doi: https://doi.org/10.1007/978-3-
642-37956-7.

[Sha71] D. Shanks. “Class number, a theory of factorization, and genera”. In: Proceedings
of Symposia in Pure Mathematics. Vol. 20. 1971. isbn: 978-0-8218-9306-7. url:
https://doi.org/10.1090/pspum/020.

[Sha86] S. S. Shatz. “Group Schemes, Formal Groups, and p-Divisible Groups”. In: Arith-
metic Geometry. Ed. by G. Cornell and J. H. Silverman. New York, NY: Springer
New York, 1986, pp. 29–78. isbn: 978-1-4613-8655-1. doi: 10.1007/978-1-4613-
8655-1_5. url: https://doi.org/10.1007/978-1-4613-8655-1_5.

[Sho97] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (1997),
1484–1509. issn: 1095-7111. doi: 10.1137/s0097539795293172. url: http://dx.
doi.org/10.1137/S0097539795293172.

[Sil09] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer, 2009, p. 522.

[Sim05] D. Simon. “Solving quadratic equations using reduced unimodular quadratic forms”.
In: Math. Comput. 74 (July 2005), pp. 1531–1543. doi: 10.1090/S0025-5718-05-
01729-1.

[Ste23] B. Sterner. Towards Optimally Small Smoothness Bounds for Cryptographic-Sized
Twin Smooth Integers and their Isogeny-based Applications. Cryptology ePrint
Archive, Paper 2023/1576. 2023. url: https://eprint.iacr.org/2023/1576.

[Syl82] J. J. Sylvester. “On Subvariants, i.e. Semi-Invariants to Binary Quantics of an Un-
limited Order”. In: American Journal of Mathematics 5.1 (1882), pp. 79–136. issn:
00029327, 10806377. url: http://www.jstor.org/stable/2369536 (visited on
03/13/2025).

[Tat66] J. Tate. “Endomorphisms of Abelian Varieties over Finite Fields”. In: Inventiones
mathematicae 2 (1966), pp. 134–144.

[The24] The Stacks project authors. The Stacks project. https://stacks.math.columbia.
edu. 2024.

[VV15] D. Venturi and A. Villani. Zero-Knowledge Proofs and Applications. 2015. url:
http://danieleventuri.altervista.org/files/zero-knowledge.pdf.

[Voi21] J. Voight. Quaternion Algebras. Jan. 2021, p. 877. isbn: 978-3-030-56692-0. doi:
10.1007/978-3-030-56694-4.

https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://arxiv.org/abs/2206.00412
https://doi.org/10.62056/ayojbhey6b
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/10.1016/0304-3975(87)90064-8
https://doi.org/https://doi.org/10.1007/978-3-642-37956-7
https://doi.org/https://doi.org/10.1007/978-3-642-37956-7
https://doi.org/10.1090/pspum/020
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1007/978-1-4613-8655-1_5
https://doi.org/10.1137/s0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
https://doi.org/10.1090/S0025-5718-05-01729-1
https://doi.org/10.1090/S0025-5718-05-01729-1
https://eprint.iacr.org/2023/1576
http://www.jstor.org/stable/2369536
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
http://danieleventuri.altervista.org/files/zero-knowledge.pdf
https://doi.org/10.1007/978-3-030-56694-4

272 BIBLIOGRAPHY

[Vé71] J. Vélu. “Isogénies entre courbes elliptiques”. In: Comptes-rendus de l’Académie des
Sciences 273 (1971). Available at https://gallica.bnf.fr, pp. 238–241.

[Wae56] B. L. V. der Waerden. “Die Reduktionstheorie der positiven quadratischen Formen”.
In: Acta Mathematica 96 (1956), pp. 265–309. doi: 10.1007/BF02392364.

[Wat69] W. C. Waterhouse. “Abelian varieties over finite fields”. eng. In: Annales scientifiques
de l’École Normale Supérieure 2.4 (1969). http://eudml.org/doc/81852, pp. 521–
560.

[Wes22] B. Wesolowski. “The supersingular isogeny path and endomorphism ring problems
are equivalent”. In: FOCS 2021 - 62nd Annual IEEE Symposium on Foundations
of Computer Science. Denver, Colorado, United States, Feb. 2022. url: https:
//hal.archives-ouvertes.fr/hal-03340899.

[Wes24] B. Wesolowski. Random walks in number-theoretic cryptography. École Normale
Supérieure de Lyon, Aug. 2024. url: https://bweso.com/hdr.pdf.

https://gallica.bnf.fr
https://doi.org/10.1007/BF02392364
http://eudml.org/doc/81852
https://hal.archives-ouvertes.fr/hal-03340899
https://hal.archives-ouvertes.fr/hal-03340899
https://bweso.com/hdr.pdf

	Introduction et résumé substantiel en français
	Introduction (English)
	Preliminaries
	Elliptic curves and isogenies
	Elliptic curves
	Montgomery elliptic curves and their arithmetic
	Isogenies
	Elliptic curves over finite fields and supersingular elliptic curves
	Efficient representations of isogenies

	Quaternion algebras and the Deuring correspondence
	Quaternion algebras, orders, ideals
	The quaternion algebra ramified at p and
	Ideal equivalence
	The Deuring correspondence
	Lattices of rank 4

	Oriented supersingular elliptic curves
	Oriented supersingular elliptic curves and isogenies
	The ideal class group action
	Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

	Polarised abelian varieties
	Abelian varieties
	Line bundles and divisors
	Isogenies
	Isogenies as quotient maps
	The dual abelian variety and polarisations
	The Weil pairing

	I Cryptographic applications of higher dimensional isogenies
	Improving ideal-to-isogeny translation algorithms
	KLPT based techniques of ideal-to-isogeny translation and applications
	A constructive use of the Deuring correspondence
	Piecewise ideal-to-isogeny translation
	How to translate a piece of ideal
	On the practical efficiency of KLPT based techniques

	Kani's embedding lemma and isogeny interpolation
	Kani's embedding lemma
	Isogeny interpolation
	The SIDH protocol
	Attacks against SIDH
	Higher dimensional isogeny computation algorithms

	Translating ideals of short norm with 4-dimensional isogenies
	Conditions on the ideal norm
	Application of Kani's lemma
	Evaluation of torsion points

	Translating any ideal from a special curve with isogenies in dimension 2
	Computing an isogeny of arbitrary odd degree from a special curve
	The ideal-to-isogeny translation algorithm
	Improving the norm equation step success probability

	Class group action with 4-dimensional isogenies
	Step 1: the norm equation
	Step 3: evaluating 2-dimensional isogenies of given polarised degree
	Step 4: computing the 4-dimensional isogeny
	Step 2: evaluating Elkies' isogenies
	Performance

	SQIsignHD
	An overview of the SQIsign framework
	An identification protocol
	From SQIsign to SQIsignHD
	The Fiat-Shamir transform

	Algorithmic building blocks
	Ideal-to-isogeny translations and isogeny of fixed degree
	Isogeny to ideal
	Sampling a uniformly random ideal of fixed norm
	Sampling a uniformly random ideal of bounded small norm

	Main phases of the SQIsignHD identification protocol
	Key generation
	Commitment
	Challenge
	Response
	Verification

	Security analysis
	Special soundness
	The zero knowledge property
	On isogeny generation oracles

	Instantiation of the SQIsignHD signature scheme
	Parameter choices and compression techniques
	Performance

	SQIsign2D-West
	The SQIsign2D-West identification protocol
	Setting and algorithmic building blocks
	Key generation and commitment
	Challenge
	Response
	Verification

	Security analysis
	Special soundness
	The zero knowledge property
	On the UTO and FIDIO oracles

	Instantiation and performance
	Parameter choices and signature sizes
	Performance

	II Fast computation of higher dimensional isogenies with the theta model
	Introduction to the theory of theta functions
	Theta structures
	The theta group
	Descending theta groups
	The commutator pairing
	Theta structures
	Theta functions
	When theta functions become coordinates
	The theta null point
	Action by translation of the theta group on theta functions

	Isogenies and theta structures
	Compatible theta structures
	The isogeny theorem

	Symmetric theta structures and arithmetic applications
	The theory of symmetric theta structures
	The duplication formula
	Level 2 symmetric theta structures on Montgomery curves

	Computing 2-isogeny chains
	Computing 2-isogenies
	Change of level formula and isogeny evaluation
	Computation of the codomain theta null point
	The gluing case

	Change of theta coordinates
	Heisenberg group automorphisms
	Action of automorphisms on symmetric and compatible theta structures
	Computing the dual of a 2-isogeny

	Computing a chain of 2-isogenies
	Computing an adapted theta structure on the domain
	How the adapted theta structure propagates along the chain
	Quasi-linear computational strategies
	Assumptions on the base field

	Isogenies obtained from Kani's lemma
	Change of theta coordinates on the domain and codomain with full available torsion
	Change of theta coordinates on the domain and codomain with half available torsion

	Implementation in dimension 2
	Computing an adapted theta structure on the domain
	Computing and evaluating a generic 2-isogeny
	Computing and evaluating a gluing 2-isogeny
	Computing product (theta) coordinates on the codomain
	Performance results

	Implementation in dimension 4
	Locating gluings
	An overview of the isogeny chain computation
	The first gluing in dimension 2
	The second gluing in dimension 4
	Computing the generic 2-isogenies in the chain
	Computing product (theta) coordinates on the codomain
	Adaptations when only half of the torsion is available
	Performance results

