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d -isogenies and the dual isogeny in higher dimension

Definition (d-isogeny)

Let φ : (A, λA) −→ (B, λB) be an isogeny between two principally
polarized abelian varieties (PPAV). We define:

φ̃ := λ−1
A ◦ φ̂ ◦ λB : B −→ A.

B
λB−→ B̂

φ̂−→ Â
λ−1
A−→ A

We say that φ is a d-isogeny if φ̃ ◦ φ = [d ]A.

Pierrick Dartois
Computing higher dimensional isogenies in the Theta model
4 / 47



Why the Theta model?
Introduction to Theta coordinates

Computing isogenies with Theta coordinates
Implementation results and future works

Kani’s lemma
Applications of Kani’s lemma
Higher dimensional isogeny computation

Kani’s embedding lemma

Definition (isogeny diamond)

An (a, b)-isogeny diamond is
a commutative diagram s.t.:

A′ φ′
// B ′

A

ψ

OO

φ // B

ψ′

OO

where φ,φ′ are a-isogenies
and ψ,ψ′ are b-isogenies.

Lemma (Kani)

Consider the (a, b)-isogeny diamond on the
left. Then:

F : A× B ′ −→ B × A′,

F :=

(
φ ψ̃′

−ψ φ̃′

)

is a d-isogeny with d = a+ b.
If a ∧ b = 1, then

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d ]}.
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Applications of Kani’s lemma

Why Kani’s lemma? It provides an algorithm to evaluate everywhere a
non-smooth degree isogeny φ given its values on some torsion points.

Applications:
Polynomial time attack against SIDH.
New algorithms for the Deuring correspondence (in dimension 2
and 4).
New primitives: signatures (SQIsignHD), encryption (FESTA),
VRF...
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The limits of state of the art techniques

State of the art:
Fast algorithms in dimension 1 (for smooth degree isogenies).
Isogenies in the Jacobian model suitable for dimension 2 and 3 (e.g.
Richelot), but slow.
ℓ-isogenies in the Theta model at level n coprime with ℓ (ng

coordinates in dimension g), not optimized.

Question: How fast can the Theta model be when ℓ = n = 2? Suitable
for constructive applications?
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Line bundles

Notations:
k : algebraically closed field.
A: abelian variety defined over k .

A line bundle L on A is a locally free sheaf of OA-modules of
rank 1.
Line bundles on A form a group for the tensor product.
Isomorphism classes of line bundles form the Picard group Pic(A).
Pic(A) ∼= {divisors on A modulo principal divisors}.
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Polarizations

Let:
Pic0(A) = {[L] ∈ Pic(A) | ∀a ∈ A(k), t∗aL ∼= L}

Pic0(A) ∼= Â(k) (k-rational points of Â).
If L is a line bundle on A, consider:

φL : A −→ Â

x ∈ A(k) 7−→ [t∗xL ⊗ L−1] ∈ Pic0(A)

When K (L) := ker(φL) is finite, φL is an isogeny and we say that:
L is ample.
φL is a polarization of A.
(A,L) is a polarized abelian variety.
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The Theta group

Let L be an ample line bundle on A.
Then, for every x ∈ K (L) = ker(φL), there is an isomorphism
ϕx : L ∼−→ t∗xL.
Given x , y ∈ K (L), we can consider the isomorphism:

L ϕx−−−→ t∗xL
t∗x ϕy−−−→ t∗x t

∗
yL = t∗x+yL.

This defines a group structure on:

G (L) = {(x , ϕx) | x ∈ K (L) and ϕx : L ∼−→ t∗xL},

given by (x , ϕx) · (y , ϕy ) = (x + y , t∗x ϕy ◦ ϕx).
G (L) is called the Theta group of L.
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The commutator pairing

There is an exact sequence:

1 −→ k∗ −→ G (L) −→ K (L) −→ 0,

where the first arrow is λ 7−→ (0, λidL) and the last arrow is the
forgetful map ρL : (x , ϕx) 7−→ x .
G (L) does not commute and we measure the commutativity defect
via the commutator pairing.
Let x , y ∈ K (L) and x̃ , ỹ ∈ G (L) be lifts of x , y . Define:

eL(x , y) := x̃ · ỹ · x̃−1 · ỹ−1 ∈ k∗.

as the commutator pairing of x and y .
eL : K (L)× K (L) −→ k∗ is a non-degenerate skew-symmetric
bilinear map.
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Symplectic decomposition

A subgroup K ⊂ K (L) is isotropic if eL(x , y) = 1 for all x , y ∈ K .
K (L) induces a symplectic decomposition:

K (L) = K1(L)⊕ K2(L),

where K1(L) and K2(L) are maximal isotropic subgroups.
The map:

y ∈ K2(L) 7−→ eL(., y) ∈ K̂1(L) = Hom(K1(L), k∗)

is an isomorphism K2(L) ∼= K̂1(L).
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Symplectic decomposition

There exists a unique tuple of integers δ = (d1, · · · , dg ) such that:
d1| · · · |dg and g = dim(A);
K1(L) ∼= K1(δ) and K2(L) ∼= K2(δ).

Where:

K1(δ) :=
r∏

i=1

Z/diZ and K2(δ) := K̂1(δ) = Hom(K1(δ), k
∗).

We say that L has type δ.
K (δ) := K1(δ)⊕ K2(δ) can be equipped with a pairing
eδ : K (δ)× K (δ) −→ k∗.
There always exists a symplectic isomorphism σ : K (δ)

∼−→ K (L):

∀x , y ∈ K (δ), eL(σ(x), σ(y)) = eδ(x , y).

The Ki (L) := σ(Ki (δ)) form a symplectic decomposition of K (L).
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Theta structures

We define the Heisenberg group as H(δ) := k∗ × K (δ), with the
group law:

(α, x , χ) · (β, x ′, χ′) := (αβχ′(x), x + x ′, χχ′).

[Recall that K (δ) = K1(δ)⊕ K2(δ) with K2(δ) = Hom(K1(δ), k
∗),

so χ, χ′ are homorphisms K1(δ) −→ k∗].
A Theta structure is an isomorphism ΘL : H(δ) ∼−→ G (L)
inducing an isomorphism of exact sequences:

1 // k∗ // H(δ) //

ΘL

��

K (δ) //

ΘL
��

0

1 // k∗ // G (L) // K (L) // 0

In particular, ΘL : K (δ)
∼−→ K (L) is symplectic.
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Theta structures

Proposition

Theta structures always exist and are in bijection with triples (ΘL, s1, s2),
where:

ΘL is a symplectic isomorphism K (δ)
∼−→ K (L);

si are sections Ki (L) = ΘL(Ki (δ))
∼−→ K̃i (L) ⊂ G (L).
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Action of the Heisenberg group

Let V (δ) be the space of functions K1(δ) −→ k .
H(δ) acts on V (δ) as follows:

(α, x , χ) · f : y 7−→ αχ(y)−1f (y − x),

for all f ∈ V (δ) and (α, x , χ) ∈ H(δ).

Theorem (Mumford, 1966)

Every irreducible representation of H(δ) on which k∗ acts naturally is
isomorphic to V (δ).
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Action of the Theta group

G (L) acts on the space of global sections Γ(A,L) as follows:

∀s ∈ Γ(A,L), (x , ϕx) ∈ G (L), (x , ϕx) · s = t∗−x(ϕx(s)).

Theorem (Mumford, 1966)

Γ(A,L) is an irreducible representation of G (L).

Hence, if L has type δ, there exists an isomorphism of
representations β : V (δ)

∼−→ Γ(A,L):

∀v ∈ V (δ), h ∈ H(δ), β(h · v) = ΘL(h) · β(v).

β is unique up to a multiplicative constant (by Shur’s lemma).
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Theta functions

Consider the basis of V (δ) given by Kronecker functions:

δi : j ∈ K1(δ) 7−→ δi,j =

{
1 if i = j
0 otherwise

for all i ∈ K1(δ).
Then the θLi := β(δi ) form the basis of theta functions on
(A,L,ΘL).
This basis is defined up to a multiplicative constant.
It defines a projective map:

A(k) −→ Pd1···dg−1(k)
x 7−→ (θLi (x))i∈K1(δ)
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Action of the Heisenberg group and Theta functions

β "transfers" the Heisenberg group action to Theta functions.
This way, we easily obtain formulas:

ΘL(α, j , χ) · θLi = β((α, j , χ) · δi ) = αχ(i + j)−1θLi+j .

In particular, we can obtain the θLi from θL0 :

∀i ∈ K1(δ), ΘL(1, i , 1) · θL0 = θLi .

Besides, K2(δ) stabilizes θL0 :

∀χ ∈ K2(δ), ΘL(1, 0, χ) · θL0 = θL0 .
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Action of a maximal level subgroup

Let K ⊆ K (L).
A level subgroup lying above K is a subgroup K̃ ⊂ G (L)
isomorphic to K via the forgetful map (x , ϕx) 7−→ x .
K admits a level subgroup if and only if K is isotropic (eL(x , y) = 1
for all x , y ∈ K ).

Proposition (Mumford, 1966)

Let K̃ ⊂ G (L) be a maximal level subgroup. Then the subspace of
Γ(A,L) stabilized by the action of K̃ has dimension 1 over k .

In particular, θL0 is the only function up to a constant to be
stabilized by K̃2(L).
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Heisenberg group automorphisms and base change formulas

Heisenberg group automorphisms are automorphisms of H(δ)
fixing k∗.
They induce new theta structures Θ′

L = ΘL ◦ ψ.

Proposition (Robert, 2010)

Consider basis of theta functions (θi )i and (θ′i )i associated to ΘL and
Θ′

L = ΘL ◦ ψ respectively.
Then, there exists i0 ∈ K1(δ) and λ ∈ k∗ such that:

θ′0 = λ
∑

χ∈K2(δ)

ΘL(δ) ◦ ψ(1, 0, χ) · θi0 .

The θ′i are then given by θ′i = ΘL ◦ ψ(1, i , 1) · θ′0.
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Descent theory

Consider an isogeny f : (A,L) −→ (B,M) (f ∗M∼= L).
Let K := ker(f ). Then K ⊂ K (L) is an isotropic subgroup.
Given an isomorphism α : f ∗M ∼−→ L, define a level subgroup:

K̃ := {(x , t∗xα ◦ α−1) | x ∈ K}.

Then, α induces an isomorphism αf : Z (K̃ )/K̃
∼−→ G (M).

Theorem (Grothendieck)

There is a one to one correspondence between triples (f , α,M) and level
subgroups K̃ ⊂ G (L).
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Compatible Theta structures

Definition

Two theta-structures ΘL and ΘM on G (L) and G (M) respectively are
compatible when:

K̃ = (K̃ ∩ K̃1(L))⊕ (K̃ ∩ K̃2(L)).
αf maps Z (K̃ ) ∩ K̃i (L) to K̃i (M) for i ∈ {1, 2}.

Write K = K1 ⊕ K2 with Ki ⊆ Ki (L) for i ∈ {1, 2}.
Let K⊥ = {x ∈ K (L) | ∀y ∈ K , eL(x , y) = 1}.
Write K⊥ = K⊥,1 ⊕ K⊥,2 with K⊥,i ⊆ Ki (L) for i ∈ {1, 2}.

Proposition (Mumford, 1966)

There is a one to one correspondence between theta-structures ΘM on
G (M) compatible with ΘL and isomorphisms σ : K⊥,1/K1

∼−→ K1(δM).
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The isogeny theorem

Theorem (Mumford, 1966 and Robert, 2010)

Let ΘL and ΘM be compatible theta-structures on G (L) and G (M)
respectively and let σ : K⊥,1/K1

∼−→ K1(δM) be the isomorphism
induced by ΘM.
Then, there exists λ ∈ k∗ such that for all i ∈ K1(δM),

f ∗θMi = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .
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Computing 2-isogenies in the Theta model

Let f : A −→ B is a 2-isogeny f̃ ◦ f = [2].
Consider line bundles L and M on A and B of type 2 = (2, · · · , 2).
We say that L and M are of level 2.
This minimizes the number of coordinates to 2g .
But the map:

A(k) −→ P2g−1(k)
x 7−→ (θLi (x))i∈K1(2)

is not an embedding. It defines an embedding of the Kummer
variety A/±.

Goal: compute (θMi (f (x)))i knowing (θLi (x))i .
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Case K = K2(2)

Idea: Reduce to the case when there is only one element in the sum:

f ∗θMi = λ
∑

j∈Θ
−1
L (σ−1({i}))

θLj .

Let L and M be line bundles of level 2 on A and B such that
f ∗M∼= L2.
Assume that K = K2(L).
Then, we can choose ΘM so that for all i ∈ K1(2),

f ∗θMi = θL
2

2i .

[L2 is of level 4 (i.e. of type 4).]

Problem: Obtain the θL
2

2i from the θLi .
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Symmetric Theta structures

Let L be a line bundle of type δ on A.
L is symmetric if [−1]∗L ∼= L.
L is totally symmetric if there exists a line bundle M on A such
that L ∼=M2.
Consider the automorphism δ−1 of G (L) fitting into:

1 // k∗ // G (L)

δ−1

��

ρL // K (L)

[−1]
��

// 0

1 // k∗ // G (L)
ρL // K (L) // 0

Let D−1 be its analogue in H(δ).
A theta-structure ΘL is symmetric if ΘL ◦ D−1 = δ−1 ◦ΘL.
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Compatible symmetric Theta structures

Let L be a totally symmetric line bundle on A.
Let ΘL and ΘL2 be symmetric theta-structures on G (L) and G (L2)
respectively.
Consider the maps ε2 : G (L) −→ G (L2) and η2 : G (L2) −→ G (L):

1 // k∗

λ7→λ2

��

// G (L)

ε2

��

ρL // K (L)� _

��

// 0

1 // k∗ // G (L2)
ρL2 // K (L2) // 0

1 // k∗

λ7→λ2

��

// G (L2)

η2

��

ρL2 // K (L2)

[2]
��

// 0

1 // k∗ // G (L)
ρL // K (L) // 0
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Compatible symmetric Theta structures

Let E2 : H(δ) −→ H(2δ) and H2 : H(2δ) −→ H(δ) their Heisenberg
analogues.
We say that ΘL and ΘL2 are compatible if ΘL2 ◦ E2 = ε2 ◦ΘL and
ΘL ◦ H2 = η2 ◦ΘL2 .

Theorem (Mumford, 1966)

Every symmetric theta-structure ΘL2 on G (L2) induces a unique
symmetric theta-structure ΘL on G (L) that is compatible with ΘL2 .
The resulting theta-structure ΘL on G (L) only depends on the
symplectic isomorphism ΘL2 : K (2δ) ∼−→ K (L2).
Every symmetric theta-structure on G (L) is induced by a symmetric
theta-structure on G (L2), or equivalently, by a symplectic
isomorphism K (2δ) ∼−→ K (L2).
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Addition and duplication formulas
Let ΘL and ΘL2 be compatible symmetric theta structures on G (L) and
G (L2).

Theorem (Robert, 2010)

For all x , y ∈ A(k), and all i , j ∈ K1(δ),

θLi (x + y)θLj (x − y) =
∑

{
u,v∈K1(2δ)
u+v=2i
u−v=2j

θL
2

u (x)θL
2

v (y)

Definition (Dual Theta coordinates)

For all χ ∈ K2(2) = ̂(Z/2Z)g and i ∈ K1(2δ), define:

UL2

χ,i :=
∑

t∈K1(2)

χ(t)θL
2

i+tδ
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Addition and duplication formulas (with dual coordinates)

Theorem (Robert, 2010)

Let x , y ∈ A(k). Then there exists λ1, λ2 ∈ k∗ such that for all
i , j ∈ K1(2δ) such that i ≡ j mod δ, we have:

θLi+j(x + y)θLi−j(x − y) = λ1

∑
χ∈K2(2)

UL2

χ,i (x)U
L2

χ,j (y)

UL2

χ,i (x)U
L2

χ,j (y) = λ2

∑
t∈K1(2)

χ(t)θLi+j+tδ/2(x + y)θLi−j+tδ/2(x − y).

With these formulas, we can:
Compute the θLi+j(x + y), knowing the θLi (x), θ

L
i (y), θ

L
i (x − y) and

θLi (0) (differential addition).
Compute the θLi+j(2x), knowing the θLi (x) and θLi (0) (doubling).
Derive our isogeny formula...
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Back to isogeny formulas (case K = K2(2))

Recall that:
f : (A,L2) −→ (B,M) is a 2-isogeny.
L is of type δ = 2 = (2, · · · , 2).
K = K2(L).
For all i ∈ K1(2),

f ∗θMi = θL
2

2i .

We want to express the θL
2

2i .

The duplication formulas ensure that:

UL2

χ,0(x)U
L2

χ,0(0A) =
∑

t∈K1(2)

χ(t)θLt (x)
2.
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Back to isogeny formulas (case K = K2(2))

Proposition (Robert, 2023)

We have:

H((θMi (f (x)))i ) ⋆ H((θMi (0B))i ) = H ◦ S((θLi (x))i ),

where:
H is the Hadamard operator: (xi )i 7−→

(∑
i∈K1(2)(−1)⟨i|j⟩xi

)
j
.

S is the squaring operator (xi )i 7−→ (x2
i )i .

Hence, to evaluate an isogeny, we first have to compute the dual of the
codomain theta null-point:

H((θMi (0B))i ) = (UM
χ,0(0B))χ.
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Evaluation algorithm (case K = K2(2))

Algorithm 1: Generic isogeny evaluation algorithm.

Data: A theta point (θLi (x))i of A and the dual theta-null point
H((θMi (0B))i ) of B with non-vanishing coordinates.

Result: (θLi (f (x)))i .
1 Let (Dj)j := H((θMi (0B))i ) and precompute Cj ←− 1/Dj for all

j ∈ K1(2);
2 Compute (Zj)j ←− H ◦ S((θLi (x))i );
3 Compute (Yj)j ←− (Cj · Zj)j ;
4 Return H((Yj)j);
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Computing the codomain Theta null point (K = K2(2))

Let (T ′
1, · · · ,T ′

g ) be a basis of K2(L2) ⊂ A[4].
Let T ′′

i ∈ A[8] such that [2]T ′′
i = T ′

i for all i ∈ J1 ; gK.
For all i ∈ J1 ; gK, let χi : j ∈ K1(2) 7−→ (−1)ji .

Proposition

For all i ∈ J1 ; gK and χ ∈ K2(2),

UM
χχi ,0(0B) · H ◦ S((θ

M
j (T ′′

i ))j)χ = UM
χ,0(0B) · H ◦ S((θMj (T ′′

i ))j)χχi .
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Example for g = 2

Let (T ′
1,T

′
2) be a basis of K2(L2) ⊂ A[4].

Let T ′′
i ∈ A[8] such that [2]T ′′

i = T ′
i for all i ∈ {1, 2}.

Let (α : β : γ : δ) be the dual theta null point.
Then, we have:

H ◦ S(θ00(T
′′
1 ), θ10(T

′′
1 ), θ01(T

′′
1 ), θ11(T

′′
1 )) = (xα, xβ, yγ, yδ)

H ◦ S(θ00(T
′′
2 ), θ10(T

′′
2 ), θ01(T

′′
2 ), θ11(T

′′
2 )) = (zα, tβ, zγ, tδ)

We can the compute (1 : β/α : γ/α : δ/α) as follows:

β

α
=

xβ

xα
,

γ

α
=

zγ

zα
,

δ

α
=

yδ

yγ
· γ
α

What happens when α · β · γ · δ = 0?
We can still find (α : β : γ : δ) but not evaluate f as easily.
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Gluing isogenies

Isogenies A1 × A2 −→ B.
Example: elliptic products.
The dual theta constants UM

χ,0(0B) can vanish.

The previous evaluation algorithm requiring 1/UM
χ,0(0B) does not

apply.
This is not surprising since we work on Kummer varieties. We have
to lift sign ambiguities:

(A1/±)× (A2/±) −→ B/±
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Fixing the evaluation algorithm

In most cases, it suffices to to compute H ◦ S((θLi (x))i ) to compute
(θMi (f (x)))i .
When some dual theta-constants vanish, we need additional data:

H ◦ S((θLi (x + T ′))i ),

for some T ′ ∈ K2(L2) of order 4.
In dimension g = 2, translating by T ′ := T ′

1 is sufficient.
In dimension g = 4, we use 10 translates T ′ = T ′

i and
T ′ := T ′

i + T ′
j (1 ≤ i < j ≤ 4) (could be optimized).
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Computing the Theta null point

Goal: Compute the codomain dual theta null point UM
χ,0(0B) of a gluing

isogeny.

In dimension g = 2, the H ◦ S((θLi (T ′′
i ))i ) suffice.

In dimension g = 4, we also need translates H ◦ S((θLi (T ′′
i + T ′

j ))i ).
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Why base change formulas?

Our formulas work when K = K2(L).
When K ̸= K2(L), we have to compute a base change of Theta
coordinates.
A symplectic basis (S ′

1, · · · ,S ′
g ,T

′
1, · · · ,T ′

g ) of A[4] = K (L2)
satisfies:

eL(S
′
i ,S

′
j ) = eL(T

′
i ,T

′
j ) = 1 and eL(S

′
i ,T

′
j ) = ζ4,

with ζ2
4 = −1.

Such a defines a symplectic isomorphism ΘL : K (4) ∼−→ K (L2), so
it suffices to define a symmetric Theta structure ΘL.
We then have:

K2(L2) = ΘL(K2(4)) = ⟨T ′
1, · · · ,T ′

g ⟩

We may change of basis so that [2]K2(L2) = K .
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Explicit base change formulas

A symplectic base change of A[4] = K (L2) is given by a matrix:

M :=

(
A C
B D

)
∈ Sp(Z/4Z)

Let (θLi )i and (θ′i
L)i be respectively theta functions determined by

basis B and B′ := MTB of A[4].

Theorem (D., 2023)

There exists i0 ∈ K1(2) such that for all i ∈ K1(2):

θ′
L
i = λ

∑
j∈K1(2)

ζ
⟨i|j⟩−⟨Ai+Cj+2i0|Bi+Dj⟩
4 θLAi+Cj+i0 .
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Implementation results and future works

Pierrick Dartois
Computing higher dimensional isogenies in the Theta model
44 / 47



Why the Theta model?
Introduction to Theta coordinates

Computing isogenies with Theta coordinates
Implementation results and future works

In dimension 2

Goal: Compute a 2n-isogeny F : E1 × E2 −→ E3 × E4, given
K ′′ ⊂ E1 × E2[2n+2] such that [4]K ′′ = ker(f ) defined over Fp2 .

Implementation results: log(p) = 254, n = 126.

Theta Rust Theta SageMath Richelot SageMath
Codomains 2.85 ms 108 ms 1028 ms
Evaluation 161 µs 5.43 ms 114 ms
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In dimension 4

Goal: Compute a 2n-isogeny F : E 2
1 × E 2

2 −→ E 2
2 × E 2

3 , given
K ′′ ⊂ E 2

1 × E 2
2 [2

n+2] such that [4]K ′′ = ker(f ) defined over Fp2 .

Implementation results: In SageMath, with log(p) = 256, n = 142
(SQIsignHD verification).

Codomains: 770 ms.
Image: 12 ms.
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Conclusion and future works

Conclusion:
General theory to compute 2-isogenies in level 2.
Implementation in dimension 2. Read our paper here:
https://eprint.iacr.org/2023/1747

Proof of concept in dimension 4 for SQIsignHD verification. Read
our paper here: https://eprint.iacr.org/2023/436

Future works:
Provide a robust and optimized implementation of dimension 4.
Provide a low level implementation of dimension 4.
Integrate dimension 2 (and 4) into SageMath, Pari GP...

Thank you for listening!
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