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The Deuring correspondence

Supersingular elliptic curves Quaternions
j(E ) or j(E )p supersingular O ∼= End(E ) maximal order in Bp,∞

φ : E −→ E ′ left O-ideal and right O′-ideal Iφ
φ,ψ : E −→ E ′ Iφ ∼ Iψ (Iψ = Iφα)

φ̂ Iφ
φ ◦ ψ Iψ · Iφ

θ ∈ End(E ) Principal ideal Oθ
deg(φ) nrd(Iφ)
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Hard problems
Supersingular Isogeny
Problem: Given two
supersingular elliptic curves
E1,E2/Fp2 , find an isogeny
φ : E1 −→ E2.
Supersingular End Ring
Problem: Given a
supersingular elliptic curve
E/Fp2 , compute End(E ).
These two problems are
equivalent [Wes22].

Easy problems
Connecting ideal: Given two
maximal orders O1,O2 ⊂ Bp,∞,
find a left O1-ideal I that is also a
right O2-ideal.
Vélu: Given G = ker(φ) (with #G
smooth), compute φ [Vél71].
Quaternion path problem: Given
a left O-ideal I , find J ∼ I of
smooth norm [KLPT14].
Ideal translation: Given a left
O-ideal I of smooth norm,
compute the associated isogeny φI

[DKLPW20].
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Computing isogenies via the Deuring correspondence

Let E1 and E2 of known endomorphism rings O1 ∼= End(E1) and
O2 ∼= End(E2).
Compute a connecting ideal I between O1 and O2.
Compute J ∼ I of smooth norm via KLPT.
Translate J into an isogeny φJ : E1 −→ E2.

Becomes hard when End(E1) or End(E2) is unknown.
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The SQIsign identification scheme [DKLPW20; FLLW23]

E0
τ

EA

ψ

E1

φ
E2

σ

public
Prover’s secret
published by Verifier
published by Prover

Prover Verifier

Accept if

φ̂ ◦ σ is cyclic

Statement : I know τ

Commitment: E1

Challenge: φ

Response: σ
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Fiat-Shamir transform [FS87]

E0
τ

EA

ψ

E1

φ
E2

σ

public
Signer’s secret
published by Signer

Signature: message m, public key
EA, secret key τ .

Commitment ψ : E0 −→ E1.
Challenge φ := H(E1,m)
(where H is a hash function).
Compute and send signature
(E1, σ) to the verifier.

Verification: EA,m, (E1, σ).
Recompute φ := H(E1,m).
Verify that φ̂ ◦ σ is cyclic.
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How to compute the signature σ ?

E0
τ

Iτ
EA

ψIψ

E1

φ

Iφ
E2

σI

Compute J := Iτ · Iψ · Iφ.
Find I ∼ J random of norm
nrd(I ) = ℓe (KLPT).
Compute σ associated to I .
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Ideal-to-isogeny I [GPS20]

Input: E/Fp2 supersingular, O ∼= End(E ) and I a left O-ideal of smooth
norm.

Output: φI : E −→ EI .

Compute
E [I ] := {P ∈ E | ∀α ∈ I , α(P) = 0}.

Compute φI of kernel E [I ] in O(poly(maxℓ| nrd(I ) ℓ)) operations over
Fpk , where E [I ] ⊆ E (Fpk ).

Issue: If I is a KLPT output, then nrd(I ) ≃ p15/4 ≫ p so k is
exponentially big. Not practical for SQIsign !
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Ideal-to-isogeny II [FLLW23]
Main idea: Cut the computation into smaller pieces. Write

I = I0 · I1 · · · In−1 and φI = φn−1 ◦ · · · ◦ φ1 ◦ φ0

with nrd(I0) = · · · = nrd(In−1) = ℓf .

E = E0
I0

φ0
E1

θ1
I1

φ1
E2

θ2

· · · En−1

θn−1
In−1

φn−1
En = EI

The endomorphisms θi are meant to refresh the ℓf -torsion.

Torsion requirements: ℓf T |p2 − 1 so that E [ℓf T ] ⊆ E (Fp4), where
deg(θi ) = T 2 and T ≃ p5/4.

Issue: This is slow!
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Another method to compute σ [DLRW23]

Issue in SQIsign: deg(σ) has to be smooth deg(σ) = ℓe ≃ p15/4.

Our idea: Take deg(σ) non smooth. Then deg(σ) ≃ √
p.

Evaluate σ on EA[ℓ
e ] ⊆ EA(Fp2).

Use the following algorithm to evaluate σ everywhere.

Theorem (Robert, 2022)

Let σ : E −→ E ′ of degree q < ℓe . There exists a polynomial time
algorithm with:

Input: (σ(P1), σ(P2)), where (P1,P2) is a basis of E [ℓe ] and
Q ∈ E (Fp2).
Output: σ(Q).

Context: This idea comes from the attacks against SIDH [CD23; MM22;
Rob23].
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Evaluating σ

Main idea: Use the alternate path φ ◦ ψ ◦ τ̂ .

E0
τ

Iτ
EA

ψ Iψ

E1

φ

Iφ
E2

σI

Let γ := ψ̂ ◦ φ̂ ◦ σ ◦ τ ∈ End(E0).
We have O0γ = Iτ · I · Iφ · Iψ so we can compute γ.
Then:

[DψDφDτ ]σ = φ ◦ ψ ◦ γ ◦ τ̂

We can evaluate σ on P ∈ EA[ℓ
e ] provided

(DψDφDτ ) ∧ ℓ = 1:

σ(P) = [λ]φ ◦ ψ ◦ γ ◦ τ̂(P),

with λDψDφDτ ≡ 1 mod ℓe .

Pierrick Dartois SQIsignHD 15 / 36



The Deuring correspondence
SQIsign and effective Deuring correspondence

Higher dimensional isogenies
SQIsignHD: signing with higher dimensional isogenies

Conclusion

Another approach to effective Deuring correspondence
Embedding isogenies in higher dimension
Computing isogenies in dimension 4

d -isogenies and the dual isogeny in higher dimension

Definition (d-isogeny)

Let φ : (A, λA) −→ (B, λB) be an isogeny between two principally
polarized abelian varieties (PPAV). We define:

φ̃ := λ−1
A ◦ φ̂ ◦ λB : B −→ A.

B
λB−→ B̂

φ̂−→ Â
λ−1
A−→ A

We say that φ is a d-isogeny if φ̃ ◦ φ = [d ]A.
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Kani’s embedding lemma [Kan97]

Definition (isogeny diamond)

An (a, b)-isogeny diamond is
a commutative diagram s.t.:

A′ φ′
// B ′

A

ψ

OO

φ // B

ψ′

OO

where φ,φ′ are a-isogenies
and ψ,ψ′ are b-isogenies.

Lemma (Kani)

Consider the (a, b)-isogeny diamond on the
left. Then:

F : A× B ′ −→ B × A′,

F :=

(
φ ψ̃′

−ψ φ̃′

)

is a d-isogeny with d = a+ b.
If a ∧ b = 1, then

ker(F ) = {(φ̃(x), ψ′(x)) | x ∈ B[d ]}.
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Application of Kani’s lemma to SQIsignHD
Embedding σ in higher dimension:

Let q = deg(σ).
Let a1, a2 ∈ Z s.t. a2

1 + a2
2 + q = ℓe .

q should be good: ℓe − q prime ≡ 1 mod 4.
Consider the isogeny diamond:

E 2
2

α2 // E 2
2

E 2
A

Σ

OO

αA // E 2
A

Σ

OO

where Σ := Diag(σ, σ) and for i = A, 2,

αi :=

(
a1 a2
−a2 a1

)
∈ End(E 2

i ).
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Application of Kani’s lemma to SQIsignHD

Embedding σ in higher dimension:
Then

F :=

(
α1 Σ̃
−Σ α̃A

)
∈ End(E 2

A × E 2
2 ).

is an ℓe-isogeny.
And

ker(F ) = {([a1]R− [a2]S , [a2]R+[a1]S , σ(R), σ(S)) | R,S ∈ EA[ℓ
e ]}.

F can be computed in polynomial time [LR12; LR15; LR23;
DLRW23].
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Algorithm for higher dimensional isogeny computations

The ℓe-isogeny F can be computed as a chain of ℓ-isogenies:

A0
F0

A1
F2

A2 · · · Ae−1
Fe

Ae

Each ℓ-isogeny can be computed in O(ℓg ) efficiently in the Θ-model
[LR12; LR15; LR23; DLRW23].
The whole chain can be computed in time O(ℓge log(e)) [JD11;
DLRW23].
This method is valid in any dimension g .
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SQIsignHD identification scheme [DLRW23]

E0
τ

EA

ψ

E1

φ
E2

σ

public
Prover’s secret
published by Verifier
published by Prover

Secret key: τ

Commitment: E1

Challenge: φ

Response: (q, σ(P1), σ(P2))

Compute I ∼ Iτ · Iψ · Iφ random of
norm q ≃ √

p.
Compute a canonical basis (P1,P2)
of EA[ℓ

e ].
Evaluate σ = φI on (P1,P2).
Send (q, σ(P1), σ(P2)).

Very fast !
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SQIsignHD identification scheme [DLRW23]

E0
τ

EA

ψ

E1

φ
E2

σ

public
Prover’s secret
published by Verifier
published by Prover

Response: (q, σ(P1), σ(P2))

Verification: Compute the embedding
F ∈ End(E 2

A × E 2
2 ) of σ.

Find a1, a2 ∈ Z such that
a2
1 + a2

2 + q = ℓe (Cornacchia).
Compute the canonical basis (P1,P2)
of EA[ℓ

e ].
Compute ker(F ), knowing
a1, a2,P1,P2, σ(P1), σ(P2).
Compute F .
Accept if F ∈ End(E 2

A × E 2
2 ) and

F (Q, 0, 0, 0) = ([a1]Q,−[a2]Q, ∗, 0).

Proof of concept.
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Fiat-Shamir transform [FS87] of SQIsignHD

E0
τ

EA

ψ

E1

φ
E2

σ

public
Signer’s secret
published by Signer

Signature: message m, public key EA,
secret key τ .

Commitment ψ : E0 −→ E1.
Challenge φ := H(E1,m) (where H is a
hash function).
Compute and send signature
(E1, q, σ(P1), σ(P2)) to the verifier.

Verification: EA,m, (E1, q, σ(P1), σ(P2)).
Recompute φ := H(E1,m).
Use φ, q, σ(P1), σ(P2) to compute the
embedding F of σ.
Check that F ∈ End(E 2

A × E 2
2 ) and

F (Q, 0, 0, 0) = ([a1]Q,−[a2]Q, ∗, 0).
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Parameter choice

Characteristic: as in SIDH,

p = cℓf ℓ′f
′
− 1.

with c small.

In practice ℓ = 2 and ℓ′ = 3. For NIST-1, p = 13 · 2126 · 378 − 1.

Use of ℓf -torsion: the 4-dimensional isogeny F .

Use of ℓ′f
′
-torsion: τ , ψ, φ.

E0 : y2 = x3 + x defined over Fp (p ≡ 3 mod 4). End(E0) is known.
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Outline of the security analysis

Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:
Complete: a honest execution is always accepted by the verifier.
Sound: an attacker cannot "guess" a response.
Zero-knowledge: the response does not leak any information on
the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable
signature under chosen message attacks in the random oracle model.
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Soundness

Similar to SQIsign

Proposition (Special soundness)

Given two transcripts (E1, φ, q, σ(P1), σ(P2)), (E1, φ
′, q′, σ′(P ′

1), σ
′(P ′

2))
with the same commitment E1 and φ ̸= φ′, we can extract α ∈ End(EA)
non-scalar.

Proof.

Exctract σ from (q, σ(P1), σ(P2)) and σ′ from (q′, σ′(P ′
1), σ

′(P ′
2)).

Then α := σ̂′ ◦ φ′ ◦ φ̂ ◦ σ ∈ End(EA) is non-scalar.
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Zero-knowledge

Definition (Recall)

We say that an integer q is good if ℓe − q is a prime ≡ 1 mod 4.

Definition (RUGDIO)

A random uniform good degree isogeny oracle (RUGDIO):
Input: A supersingular elliptic curve E/Fp2 .
Output: An isogeny σ : E −→ E ′ of good degree q s.t.

E ′ is uniform among supersingular elliptic curves.
Given E ′, σ is uniform among isogenies of good degree E −→ E ′.
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Zero-knowledge

Theorem
Assume that:

E1 is computationally close to uniform.
We have access to a RUGDIO.

Then SQIsignHD is computationally honest-verifier zero-knowledge.

Proof.
We build a simulator S of protocol transcripts:

S calls the RUGDIO to generate (q, σ(P1), σ(P2)).
S generates a random challenge φ̂ : E2 −→ E1.
S outputs (E1, φ, q, σ(P1), σ(P2)).
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Zero-knowledge: comparison with SQIsign

Heuristic assumptions to prove the zero-knowledge property

In SQIsign:
σ : E1 −→ E2 is computationally
indistinguishable from a random
isogeny of degree ℓe .

In SQIsignHD:
E1 is computationally close
to uniform.
We have access to a
RUGDIO.
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Fast and compact signatures

Signature time: 28 ms on a 13th Gen Intel(R) Core(TM) i5-1335U
(4600MHz) CPU.

Signature size comparison

In SQIsign In SQIsignHD
Asymptotic (in bits) ∼ 23/4 log2(p) ∼ 13/4 log2(p)

NIST-1 security level (in bytes) 204 109
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A promising POC for the verification
Timing: 855 ms in sagemath with p = 13 · 2126 · 378 − 1 on a 13th Gen
Intel(R) Core(TM) i5-1335U (4600MHz) CPU.

Challenge computation (φ): 60 ms.
Dimension 4 2142-isogeny: 770 ms with Θ-coordinates of level 2.

F ∈ End(E 2
A × E 2

2 ) is divided in two:

E 2
A × E 2

2

F1
C

F̃2
E 2
A × E 2

2

Compute F1 and F̃2.
Check that codomains of F1 and F̃2 match.
Compute F2 :=

˜̃
F 2

Isogeny evaluation: 25 ms.

F (Q, 0, 0, 0) = F2 ◦ F1(Q, 0, 0, 0)
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Comparison of SQIsignHD with SQIsign

SQIsign SQIsignHD
Security ✗ Ad-hoc heuristic: ✓ Simpler heuristics:

• Distribution of σ. • RUGDIO;
• Distribution of E1.

Signing time ✗ 400 ms for NIST-1 ✓ 28 ms for NIST-1
Signature size ✓ 204 bytes for NIST-1 ✓ 109 bytes for NIST-1
Verification ✓ Fast (6 ms for NIST-1) ✗ 850 ms for NIST-1

in sagemath
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Thank you for listening.

Find our pre-print here: https://eprint.iacr.org/2023/436
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