Signing with higher dimensional isogenies

Pierrick Dartois

Joint work with Antonin Leroux, Damien Robert and Benjamin Wesolowski Acknowledgements to Luca De Feo

12 October 2023

1 The Deuring correspondence

- 2 SQIsign and effective Deuring correspondence
- 3 Higher dimensional isogenies
- SQIsignHD: signing with higher dimensional isogenies

5 Conclusion

The Deuring correspondence

SQIsign and effective Deuring correspondence Higher dimensional isogenies SQIsignHD: signing with higher dimensional isogenies Conclusion

The Deuring correspondence Hard and easy problems

The Deuring correspondence

The Deuring correspondence

SQIsign and effective Deuring correspondence Higher dimensional isogenies SQIsignHD: signing with higher dimensional isogenies Conclusion

The Deuring correspondence Hard and easy problems

The Deuring correspondence

Supersingular elliptic curves	Quaternions	
$j(E)$ or $j(E)^p$ supersingular	$\mathcal{O} \cong End(E)$ maximal order in $\mathcal{B}_{p,\infty}$	
$\varphi: E \longrightarrow E'$	left \mathcal{O} -ideal and right \mathcal{O}' -ideal I_arphi	
$\varphi, \psi: E \longrightarrow E'$	$I_{arphi} \sim I_{\psi} \; (I_{\psi} = I_{arphi} lpha)$	
\widehat{arphi}	$\overline{I_{\varphi}}$	
$\varphi \circ \psi$	$I_\psi \cdot I_arphi$	
$ heta\inEnd(E)$	Principal ideal $\mathcal{O}\theta$	
$deg(\varphi)$	$nrd(I_arphi)$	

The Deuring correspondence

SQIsign and effective Deuring correspondence Higher dimensional isogenies SQIsignHD: signing with higher dimensional isogenies Conclusion

The Deuring correspondence Hard and easy problems

Hard and easy problems

Hard problems

- Supersingular Isogeny Problem: Given two supersingular elliptic curves $E_1, E_2/\mathbb{F}_{p^2}$, find an isogeny $\varphi: E_1 \longrightarrow E_2$.
- Supersingular End Ring Problem: Given a supersingular elliptic curve E/\mathbb{F}_{p^2} , compute End(E).
- These two problems are equivalent [Wes22].

Easy problems

- **Connecting ideal:** Given two maximal orders $\mathcal{O}_1, \mathcal{O}_2 \subset \mathcal{B}_{p,\infty}$, find a left \mathcal{O}_1 -ideal *I* that is also a right \mathcal{O}_2 -ideal.
- Vélu: Given G = ker(φ) (with #G smooth), compute φ [Vél71].
- Quaternion path problem: Given a left *O*-ideal *I*, find *J* ~ *I* of smooth norm [KLPT14].
- Ideal translation: Given a left *O*-ideal *I* of smooth norm, compute the associated isogeny φ_I [DKLPW20].

The Deuring correspondence Hard and easy problems

The Deuring correspondence SQIsign and effective Deuring correspondence Higher dimensional isogenies SQIsignHD: signing with higher dimensional isogenies Conclusion

Computing isogenies via the Deuring correspondence

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via KLPT.
- Translate J into an isogeny $\varphi_J : E_1 \longrightarrow E_2$.

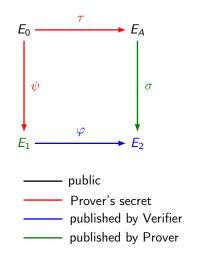
Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.

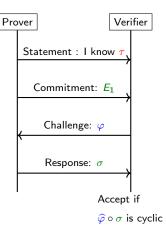
SQIsign Effective Deuring correspondence

SQIsign and effective Deuring correspondence

SQIsign Effective Deuring correspondence

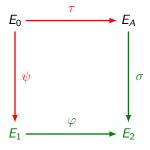
The SQIsign identification scheme [DKLPW20; FLLW23]





SQIsign Effective Deuring correspondence

Fiat-Shamir transform [FS87]



public
Signer's secret
published by Signer

Signature: message *m*, public key E_A , secret key τ .

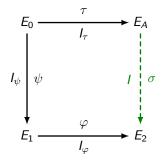
- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature (E₁, σ) to the verifier.

Verification: E_A , m, (E_1, σ) .

- Recompute $\varphi := H(E_1, m)$.
- Verify that $\widehat{\varphi} \circ \sigma$ is cyclic.

SQIsign Effective Deuring correspondence

How to compute the signature σ ?



- Compute $J := \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$.
- Find *I* ~ *J* random of norm nrd(*I*) = ℓ^e (KLPT).
- Compute σ associated to *I*.

SQIsign Effective Deuring correspondence

Ideal-to-isogeny I [GPS20]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \text{End}(E)$ and I a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_I : E \longrightarrow E_I$.

Compute

$$E[I] := \{ P \in E \mid \forall \alpha \in I, \quad \alpha(P) = 0 \}.$$

• Compute φ_I of kernel E[I] in $O(\text{poly}(\max_{\ell \mid \text{nrd}(I)} \ell))$ operations over \mathbb{F}_{p^k} , where $E[I] \subseteq E(\mathbb{F}_{p^k})$.

Issue: If *I* is a KLPT output, then $nrd(I) \simeq p^{15/4} \gg p$ so *k* is exponentially big. Not practical for SQIsign !

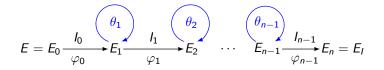
SQIsign Effective Deuring correspondence

Ideal-to-isogeny II [FLLW23]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.



The endomorphisms θ_i are meant to refresh the ℓ^f -torsion.

Torsion requirements: $\ell^f T | p^2 - 1$ so that $E[\ell^f T] \subseteq E(\mathbb{F}_{p^4})$, where $\deg(\theta_i) = T^2$ and $T \simeq p^{5/4}$.

Issue: This is slow!

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Higher dimensional isogenies

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQIsign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Our idea: Take deg(σ) non smooth. Then deg(σ) $\simeq \sqrt{p}$.

- Evaluate σ on $E_A[\ell^e] \subseteq E_A(\mathbb{F}_{p^2})$.
- \bullet Use the following algorithm to evaluate σ everywhere.

Theorem (Robert, 2022)

Let $\sigma : E \longrightarrow E'$ of degree $q < \ell^e$. There exists a polynomial time algorithm with:

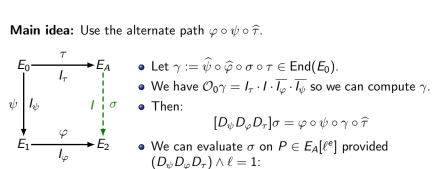
- Input: $(\sigma(P_1), \sigma(P_2))$, where (P_1, P_2) is a basis of $E[\ell^e]$ and $Q \in E(\mathbb{F}_{p^2})$.
- Output: $\sigma(Q)$.

Context: This idea comes from the attacks against SIDH [CD23; MM22; Rob23].

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Evaluating σ

Main idea: Use the alternate path $\varphi \circ \psi \circ \hat{\tau}$.



$$[D_{\psi}D_{\varphi}D_{\tau}]\sigma = \varphi \circ \psi \circ \gamma \circ \widehat{\tau}$$

 $(D_{\eta}, D_{\Omega}, D_{\tau}) \wedge \ell = 1$:

$$\sigma(P) = [\lambda] \varphi \circ \psi \circ \gamma \circ \widehat{\tau}(P),$$

with $\lambda D_{\psi} D_{\omega} D_{\tau} \equiv 1 \mod \ell^e$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

d-isogenies and the dual isogeny in higher dimension

Definition (*d*-isogeny)

Let $\varphi : (A, \lambda_A) \longrightarrow (B, \lambda_B)$ be an isogeny between two principally polarized abelian varieties (PPAV). We define:

•
$$\widetilde{\varphi} := \lambda_A^{-1} \circ \widehat{\varphi} \circ \lambda_B : B \longrightarrow A.$$

$$B \xrightarrow{\lambda_B} \widehat{B} \xrightarrow{\widehat{\varphi}} \widehat{A} \xrightarrow{\lambda_A^{-1}} A$$

• We say that φ is a <u>*d*-isogeny</u> if $\widetilde{\varphi} \circ \varphi = [d]_A$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Kani's embedding lemma [Kan97]

Definition (isogeny diamond)

An (a, b)-isogeny diamond is a commutative diagram s.t.:

where φ, φ' are *a*-isogenies and ψ, ψ' are *b*-isogenies.

Lemma (Kani)

Consider the (a, b)-isogeny diamond on the left. Then:

•
$$F: A \times B' \longrightarrow B \times A'$$
,

$$F := \begin{pmatrix} arphi & \widetilde{\psi'} \\ -\psi & \widetilde{arphi'} \end{pmatrix}$$

is a d-isogeny with d = a + b.

• If $a \wedge b = 1$, then

$$\ker(F) = \{ (\widetilde{\varphi}(x), \psi'(x)) \mid x \in B[d] \}.$$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQIsignHD

Embedding σ in higher dimension:

- Let $q = \deg(\sigma)$.
- Let $a_1, a_2 \in \mathbb{Z}$ s.t. $a_1^2 + a_2^2 + q = \ell^e$.
- q should be good: $\ell^e q$ prime $\equiv 1 \mod 4$.
- Consider the isogeny diamond:

$$\begin{array}{c} E_2^2 \xrightarrow{\alpha_2} E_2^2 \\ \Sigma & \uparrow & \uparrow \\ E_A^2 \xrightarrow{\alpha_A} E_A^2 \end{array}$$

where $\Sigma := \text{Diag}(\sigma, \sigma)$ and for i = A, 2,

$$\alpha_i := \begin{pmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{pmatrix} \in \mathsf{End}(E_i^2).$$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQIsignHD

Embedding σ in higher dimension:

• Then

$$F := \begin{pmatrix} \alpha_1 & \widetilde{\Sigma} \\ -\Sigma & \widetilde{\alpha}_A \end{pmatrix} \in \mathsf{End}(E_A^2 \times E_2^2).$$

is an $\ell^e\text{-}\text{isogeny.}$

And

 $\ker(F) = \{ ([a_1]R - [a_2]S, [a_2]R + [a_1]S, \sigma(R), \sigma(S)) \mid R, S \in E_A[\ell^e] \}.$

• *F* can be computed in polynomial time [LR12; LR15; LR23; DLRW23].

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Algorithm for higher dimensional isogeny computations

• The ℓ^e -isogeny F can be computed as a chain of ℓ -isogenies:

$$\mathcal{A}_{0} \xrightarrow{F_{0}} \mathcal{A}_{1} \xrightarrow{F_{2}} \mathcal{A}_{2} \quad \cdots \quad \mathcal{A}_{e-1} \xrightarrow{F_{e}} \mathcal{A}_{e}$$

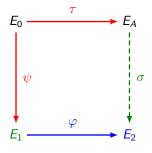
- Each *l*-isogeny can be computed in O(*l^g*) efficiently in the Θ-model [LR12; LR15; LR23; DLRW23].
- The whole chain can be computed in time $O(\ell^g e \log(e))$ [JD11; DLRW23].
- This method is valid in any dimension g.

The protocol Security Performance

SQIsignHD: signing with higher dimensional isogenies

The protocol Security Performance

SQIsignHD identification scheme [DLRW23]



- public
- Prover's secret

— published by Verifier

— published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

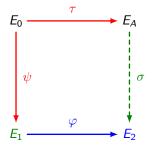
- Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.
- Compute a canonical basis (P₁, P₂) of E_A[ℓ^e].
- Evaluate $\sigma = \varphi_I$ on (P_1, P_2) .

• Send
$$(q, \sigma(P_1), \sigma(P_2))$$
.

Very fast !

The protocol Security Performance

SQIsignHD identification scheme [DLRW23]

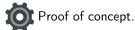


- —— public
 - Prover's secret
 - published by Verifier
 - published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2))$

Verification: Compute the embedding $F \in \operatorname{End}(E_A^2 \times E_2^2)$ of σ .

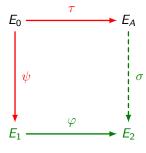
- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P₁, P₂) of E_A[l^e].
- Compute ker(F), knowing a₁, a₂, P₁, P₂, σ(P₁), σ(P₂).
- Compute F.
- Accept if $F \in \operatorname{End}(E^2_A imes E^2_2)$ and
 - $F(Q,0,0,0) = ([a_1]Q, -[a_2]Q, *, 0).$



SQIsignHD

The protocol Security Performance

Fiat-Shamir transform [FS87] of SQIsignHD



- —— public
 - Signer's secret
 - published by Signer

Signature: message *m*, public key E_A , secret key τ .

- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature $(E_1, q, \sigma(P_1), \sigma(P_2))$ to the verifier.

Verification: E_A , m, $(E_1, q, \sigma(P_1), \sigma(P_2))$.

- Recompute $\varphi := H(E_1, m)$.
- Use φ , q, $\sigma(P_1)$, $\sigma(P_2)$ to compute the embedding F of σ .
- Check that $F \in \text{End}(E_A^2 \times E_2^2)$ and $F(Q, 0, 0, 0) = ([a_1]Q, -[a_2]Q, *, 0).$

The protocol Security Performance

Parameter choice

• Characteristic: as in SIDH,

$$p = c\ell^f \ell'^{f'} - 1.$$

with *c* small.

- In practice $\ell = 2$ and $\ell' = 3$. For NIST-1, $p = 13 \cdot 2^{126} \cdot 3^{78} 1$.
- Use of ℓ^{f} -torsion: the 4-dimensional isogeny *F*.
- Use of $\ell'^{f'}$ -torsion: τ , ψ , φ .
- $E_0: y^2 = x^3 + x$ defined over \mathbb{F}_p $(p \equiv 3 \mod 4)$. End (E_0) is known.

The protocol Security Performance

Outline of the security analysis

Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:

- Complete: a honest execution is always accepted by the verifier.
- **Sound:** an attacker cannot "guess" a response.
- **Zero-knowledge:** the response does not leak any information on the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable signature under chosen message attacks in the random oracle model.

Soundness

Similar to SQIsign

Proposition (Special soundness)

Given two transcripts $(E_1, \varphi, q, \sigma(P_1), \sigma(P_2)), (E_1, \varphi', q', \sigma'(P_1'), \sigma'(P_2'))$ with the same commitment E_1 and $\varphi \neq \varphi'$, we can extract $\alpha \in \text{End}(E_A)$ non-scalar.

The protocol

Performance

Security

Proof.

- Exctract σ from $(q, \sigma(P_1), \sigma(P_2))$ and σ' from $(q', \sigma'(P'_1), \sigma'(P'_2))$.
- Then $\alpha := \widehat{\sigma'} \circ \varphi' \circ \widehat{\varphi} \circ \sigma \in \text{End}(E_A)$ is non-scalar.

Zero-knowledge

The protocol Security Performance

Definition (Recall)

We say that an integer q is **good** if $\ell^e - q$ is a prime $\equiv 1 \mod 4$.

Definition (RUGDIO)

A random uniform good degree isogeny oracle (RUGDIO): **Input:** A supersingular elliptic curve E/\mathbb{F}_{p^2} . **Output:** An isogeny $\sigma : E \longrightarrow E'$ of good degree q s.t.

- E' is uniform among supersingular elliptic curves.
- Given E', σ is uniform among isogenies of good degree $E \longrightarrow E'$.

The protocol Security Performance

Zero-knowledge

Theorem

Assume that:

- *E*₁ is computationally close to uniform.
- We have access to a RUGDIO.

Then SQIsignHD is computationally honest-verifier zero-knowledge.

Proof.

We build a simulator $\mathcal S$ of protocol transcripts:

- S calls the RUGDIO to generate $(q, \sigma(P_1), \sigma(P_2))$.
- S generates a random challenge $\widehat{\varphi}: E_2 \longrightarrow E_1$.
- S outputs $(E_1, \varphi, q, \sigma(P_1), \sigma(P_2))$.

The protocol Security Performance

Zero-knowledge: comparison with SQIsign

Heuristic assumptions to prove the zero-knowledge property

In SQIsign:

• $\sigma: E_1 \longrightarrow E_2$ is computationally indistinguishable from a random isogeny of degree ℓ^e .

In SQIsignHD:

- *E*₁ is computationally close to uniform.
- We have access to a RUGDIO.

The protocol Security Performance

Fast and compact signatures

• Signature time: 28 ms on a 13th Gen Intel(R) Core(TM) i5-1335U (4600MHz) CPU.

Signature size comparison

	In SQIsign	In SQIsignHD
Asymptotic (in bits)	$\sim 23/4\log_2(p)$	$\sim 13/4\log_2(p)$
NIST-1 security level (in bytes)	204	109

The protocol Security Performance

A promising POC for the verification

Timing: 855 ms in sagemath with $p = 13 \cdot 2^{126} \cdot 3^{78} - 1$ on a 13th Gen Intel(R) Core(TM) i5-1335U (4600MHz) CPU.

- Challenge computation (φ): 60 ms.
- Dimension 4 2^{142} -isogeny: 770 ms with Θ -coordinates of level 2.
 - $F \in \operatorname{End}(E_A^2 \times E_2^2)$ is divided in two:

$$E_A^2 \times E_2^2 \xrightarrow{F_1} \mathcal{C} \xleftarrow{\widetilde{F}_2} E_A^2 \times E_2^2$$

- Compute F_1 and \widetilde{F}_2 .
- Check that codomains of F_1 and \tilde{F}_2 match.
- Compute $F_2 := \widetilde{F}_2$
- Isogeny evaluation: 25 ms.

$$F(Q, 0, 0, 0) = F_2 \circ F_1(Q, 0, 0, 0)$$

Conclusion

Comparison of SQIsignHD with SQIsign

	SQIsign	SQIsignHD
Security	× Ad-hoc heuristic:	✓ Simpler heuristics:
	• Distribution of σ .	 RUGDIO;
		• Distribution of <i>E</i> ₁ .
Signing time	✗ 400 ms for NIST-1	√ 28 ms for NIST-1
Signature size	\checkmark 204 bytes for NIST-1	\checkmark 109 bytes for NIST-1
Verification	✓ Fast (6 ms for NIST-1)	× 850 ms for NIST-1
		in sagemath

Thank you for listening.

Find our pre-print here: https://eprint.iacr.org/2023/436