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The SQISign identification scheme (DFKLPW, 2020)

Ea

public

Prover's secret
published by Verifier
published by Prover

Pierrick Dartois

Prover

Statement : | know 7

Verifier

Commitment: Ej

Challenge: ¢

Response: o

Accept if
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Fiat-shamir transform

Signature: message m, public key
E,, secret key 7.
o Commitment ¢ : Eg — E;.
o Challenge ¢ := H(Ey, m)
(where H is a hash function).

@ Compute and send signature

® (E1, 0) to the verifier.
Ef—— F

public
——— Signer's secret

published by Signer
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Fiat-shamir transform

Signature: message m, public key
E,, secret key 7.

o Commitment ¢ : Eg — E;.
o Challenge ¢ := H(Ey, m)
(where H is a hash function).

@ Compute and send signature

® (E1, 0) to the verifier.
Ef—— F

Verification: Ex, m, (Ey, o).

pSlfb“C ' @ Recompute ¢ := H(E;, m).
. t - Goo i i
igher's secre o Verify that ¢ o o is cyclic.

published by Signer
NB: Not necessary to send Ej.
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How to compute the signature o 7

The Deuring correspondence

Supersingular elliptic curves  Quaternions
J(E) or j(E)P supersingular O = End(E) maximal order in B,
o E— F left O-ideal and right O'-ideal I,
o, E— E lo ~ Iy Ba € Bp oo, by = lpax)
9 I
ot by - 1p
0 € End(E) Principal ideal ©O8
deg(yp) nrd(/,)
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How to compute the signature o 7

EO—T>EA o Compute J:= 1 - Iy - I,.
I ! e Find / ~ J of norm nrd(/) = ¢¢
' (KLPT, 2014 & FKLPW,
[}
bl o o 2020).
! @ Compute ¢ associated to /.
|
© \
EL—— b
I
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How to compute the signature o 7

EO—T>EA o Compute J:= 1 - Iy - I,.
Iz ! e Find | ~ J of norm nrd(/) = ¢¢
' (KLPT, 2014 & FKLPW,
bl o . 2020).
: @ Compute ¢ associated to /.
|
i t Ideal-to-iso lation:
E E, geny translation:

ly o nrd(/) = deg(o) = p'®/4
(DFLW, 2022).

@ Not enough /°-torsion
accessible.

@ o is computed piecewise
(DFLW, 2022). It is slow.
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Representing an isogeny in higher dimension

Representing an isogeny in higher dimension
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Representing an isogeny in higher dimension

Efficient isogeny representation

Definition
An efficient representation of an isogeny ¢ : E — E’ is a couple
(D, ), where:
@ D is polynomial size data (in log(p), log(deg())).
© & is an algorithm computing ¢(P) on input D and P € E(IF ) in
polynomial time (in log(p), log(deg(y)) and k).
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Representing an isogeny in higher dimension

Efficient isogeny representation

Example (efficient representation): If o : E — E’ is an {®-isogeny:
o D: chain of (-isogenies E = Eg 2% E; -+ Eoq 23 E, = E'.

@ &/ evaluate each isogeny of the chain successively.
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Representing an isogeny in higher dimension

Efficient isogeny representation

Example (efficient representation): If o : E — E’ is an {®-isogeny:
o D: chain of (-isogenies E = Eg 2% E; -+ Eoq 23 E, = E'.

@ &/ evaluate each isogeny of the chain successively.

State of the art :
o All efficient representations are essentially equivalent to this one.

@ Only smooth degree isogenies can be represented (explains the use
of KLPT in SQISign).

@ In SQISign, the conversion of an ideal / into such a representation
(isogeny-chain) is costly.
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Representing an isogeny in higher dimension

d-isogenies

o Let ¢ : (A, Aa) — (B, \g) be an isogeny between PPAV!,
e Consider ¢ : (B, \a) — (A, Ag) the isogeny

~ & o~ At
B- 2. B_ P A" A

1Principally polarized abelian varieties.
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Representing an isogeny in higher dimension

d-isogenies

o Let ¢ : (A, Aa) — (B, \g) be an isogeny between PPAV!,
e Consider ¢ : (B, \a) — (A, Ag) the isogeny

~ & o~ At
B- 2. B_ P A" A

Definition

© is a d-isogeny if ¢ o p = [d]a or equivalently p o ¢ = [d]5.

1Principally polarized abelian varieties.
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Representing an isogeny in higher dimension

d-isogenies

o Let ¢ : (A, Aa) — (B, \g) be an isogeny between PPAV!,
e Consider ¢ : (B, \a) — (A, Ag) the isogeny

~ & o~ At
B- 2. B_ P A" A

Definition

© is a d-isogeny if ¢ o p = [d]a or equivalently p o ¢ = [d]5.

If d = (¢, then ¢ can be decomposed as a product of (-isogenies

P1 Pe—2

A

1Principally polarized abelian varieties.
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Representing an isogeny in higher dimension

Kani's lemma (K, 1997)

An (a, b)-isogeny diamond is a
commutative diagram:
S0/

A—T—p

Lemma (K, 1997)

(4 '

a.
eg(y') = b.
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Representing an isogeny in higher dimension

Kani's lemma (K, 1997)

An (a, b)—lisoge'ny dlalmond is a Lemma (K, 1997)
commutative diagram:
/

A 2 g (i) Assume a and b coprime with p.

Then
0
(0 (4 F=[*% %, "Ax B — Bx A
Y o
A —('D, B is a d-isogeny (with d :== a+ b).
with:

o deg(y) = deg(¢') = a.
o deg(1)) = deg(1”) = b,
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Representing an isogeny in higher dimension

Kani's lemma (K, 1997)

An (a, b)-isogeny diamond is a

commutative diagram: Lomms (¢, 4827)
/

% (i) Assume a and b coprime with p.
A—"8 Then
7
(0 Y’ F=|7 %, Ax B — Bx A
Y ¢
A —('D, B is a d-isogeny (with d :== a+ b).
(i) If an b =1, we have
with: ker(F) = {(&(x),¥'(x)) | x € B[d]}.
o deg(p) =deg(y') = a.
o deg(1s) = deg(') = b.
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Representing an isogeny in higher dimension

Representation in dimension 4

We can now represent isogenies of non-smooth degrees!

Let:
@ 0: Epx — E; of degree g < ¢¢.
o ¥ := Diag(o,0): E2 — EZ.

@ aj,ax € 7Z, s.t.
al+as+q=1(°

e a € End(E3) given by:

(% %)

Q=

—dy a1

@ and o’ € End(E%) defined as a.
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Representing an isogeny in higher dimension

Representation in dimension 4

We can now represent isogenies of non-smooth degrees!

Let: The (g, a3 + a3)-isogeny diamond
@ 0: Epx — E; of degree g < ¢¢. )
o ¥ := Diag(c,0) : E2 — E2. E; ——E;
@ aj,ax € 7Z, s.t. ZT TZ

a?+ a3+ q=1r° E2 %> F2

e a € End(E3) given by: yields an £e-isogeny

o= a1 a2 « i
=\ 5 a F .= <_z ~/> € End(E3 x E3).

a
@ and o’ € End(E%) defined as a.
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Representing an isogeny in higher dimension

Representation in dimension 4

We can now represent isogenies of non-smooth degrees!

The isogeny diamond @ We have

E2 ' E2 ker(F) = {(&(P),x(P)) | P € E3[(°]}.

2 @ 2
EA EA

yields an /¢-isogeny

a X
F:= ( - ~,> € End(EZ < E2).

— [
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Representing an isogeny in higher dimension

Representation in dimension 4

We can now represent isogenies of non-smooth degrees!

The isogeny diamond o We have
£2 s E2 ker(F) = {(&(P),x(P)) | P € E3[(°]}.
ZT T): o It suffices to compute o(Ea[¢¢]) to
compute ker(F).

2 _ o 2
Ea Ea @ F can then be computed as a chain of

yields an £¢-isogeny {-isogenies.

F = ( O‘z §> € End(E2x E2).

@ Knowing F, we can evaluate o
everywhere.

— o
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Representing an isogeny in higher dimension

Representation in dimension 4

The bad news: We have to compute isogenies in dimension 4.
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Representing an isogeny in higher dimension

Representation in dimension 4

The bad news: We have to compute isogenies in dimension 4.

The good news:
@ Much more freedom on g = deg(o).
© Smaller degree g = nrd(/) ~ ,/p.
o Recall that g = ¢¢ ~ p'5/* in SQISign.
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Representing an isogeny in higher dimension

Representation in dimension 4

The bad news: We have to compute isogenies in dimension 4.

The good news:
@ Much more freedom on g = deg(o).
© Smaller degree g = nrd(/) ~ ,/p.
o Recall that g = ¢¢ ~ p'5/* in SQISign.

How much freedom on the choice of g?

e Constraint: we can find a;,a; € Z such that a3 + a3 + q = ¢¢.

@ In practice: /¢ — g is a prime =1 mod 4.
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Representing an isogeny in higher dimension

Representation in dimension 8

Representing o of any degree g < /¢
@ Find a1, a», a3, as € Z such that

adtad+aitalt+qg=1Lo
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Representing an isogeny in higher dimension

Representation in dimension 8

Representing o of any degree g < /¢
@ Find a1, a», a3, as € Z such that

aj+a+ait+aitqg=1L
o Let ¥ := Diag(o,---,0): E4 — E%,

dy —adp —asz —a4

an ai asq —a

o= e End(E;)
a3 —as ai an
dg as —dar a1

and o’ € End(Ey) defined as a.
@ Instead, we can represent o with the /¢-isogeny

a ¥
F .= ( 5 ~/> € End(E4 x EJ).

— «
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Algorithms for response and verification

Algorithms for response and verification
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Algorithms for response and verification

The response algorithm

Overview of the response algorithm

EO—T>EA o Compute J:= 1 - Iy - ,.
Iz ! @ Find I ~ J random of norm
' qg<{¢st (°—qisprime=1
VY / ' o mod 4.
Lpr | |y H
i
0 \
Ef — 8 ™ E
e
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Algorithms for response and verification

The response algorithm

Overview of the response algorithm

T _

| — - o Compute J =1 ly - I,.
I ! @ Find I ~ J random of norm
' qg<{¢st (°—qisprime=1
VY / ' o mod 4.
o | o Generate (Py, P») a canonical
| basis of Ex[¢¢].
2 v e Compute (o(P1),0(Pz2)) using
EE— + F

popoT.
Send (q,0(P1),0(P2)).
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Algorithms for response and verification

The response algorithm

Evaluating o

7— > ~
EO—I>E|A o Lety:=9opooor e End(Ep).
o We have Ogy = I,/ -1, I, so we can compute 7.

|

|

Y'Y !
lpr| | e he

|

o Y

El—IP E2

]
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Algorithms for response and verification

The response algorithm

Evaluating o

7— > ~
EO—I>E|A o Lety:=9opooor e End(Ep).
o We have Ogy = I,/ -1, I, so we can compute 7.

)
’ [}
;’i/ }i IECT @ Then:
; [DyDyD: o =¢potpoyoT
ARG
©
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Algorithms for response and verification

The response algorithm

Evaluating o

7— > ~
EO—I>E|A o Lety:=9opooor e End(Ep).
! o We have Ogy = I,/ -1, I, so we can compute 7.

’ [}
;’i/ }i IECT @ Then:
; [DyDyD: o =¢potpoyoT
ARG
©

@ We can evaluate o on P € E[¢¢] provided
(DyD,D)NE=1:

a(P) =[wodpoyor(P),

with ADyD,D; =1 mod ¢¢.
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Algorithms for response and verification

The response algorithm

Evaluating o

7— > ~
EO—I>E|A o Lety:=9opooor e End(Ep).
! o We have Ogy = I,/ -1, I, so we can compute 7.

’ [}
;’i/ }i IECT @ Then:
; [DyDyD: o =¢potpoyoT
ARG
©

@ We can evaluate o on P € E[¢¢] provided
(DyD,D)NE=1:

a(P) =[wodpoyor(P),

with ADyD,D; =1 mod ¢¢.
e In SQISignHD, Dy, D, and D, are powers of a
prime ¢/ # £.
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Algorithms for response and verification

Compute the challenge ideal

Goal: Given ¢ : E; — E, of degree D, = ¢'*, compute /.
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Algorithms for response and verification

Compute the challenge ideal

Goal: Given ¢ : E; — E, of degree D, = ¢'*, compute /.

Step 1: Compute a basis B of
O1 = End(E;) that can be
evaluated on E;1[D,].
o We know a basis By of
Oo = End(Ep).
@ Push it through
wl B — B (Dw/ =/°
coprime with D, = ¢'*).
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Algorithms for response and verification

Compute the challenge ideal

Goal: Given ¢ : E; — E, of degree D, = ¢'*, compute /.

Step 1: Compute a basis B of
O1 = End(E;) that can be
evaluated on E;1[D,].
o We know a basis By of
Oo = End(Ep).
@ Push it through
wl B — B (Dw/ =/°
coprime with D, = ¢'*).
Why do we need two paths
Y,1" : By — E; 7 Because
Dy, = {£'* is not coprime with
D,=10".
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Algorithms for response and verification

Compute the challenge ideal

Goal: Given ¢ : E; — E, of degree D, = ¢'*, compute /.

Step 1: Compute a basis B of Step 2: Evaluate B; on ker(y) and
O1 = End(E;) that can be solve DLPs to find a basis of /.
evaluated on E;1[D,].
o We know a basis By of
Oo = End(Ep).
@ Push it through
wl B — B (Dw/ =/°
coprime with D, = ¢'*).
Why do we need two paths
Y,1" : By — E; 7 Because
Dy, = {£'* is not coprime with
D,=10".
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Algorithms for response and verification

Compute the challenge ideal

Goal: Given ¢ : E; — E, of degree D, = ¢'*, compute /.

Step 1: Compute a basis B of Step 2: Evaluate B; on ker(y) and

O1 = End(E;) that can be solve DLPs to find a basis of /.
evaluated on E;1[D,]. o Let By := (1, ,f4) and
@ We know a basis By of ker(¢) := (P) (assuming ¢ cyclic).
Oo = End(Eo). o Compute §;(P) for 1 < i < 4.
o Push it through o Find /,j such that (8:(P), 3;(P))
V' Eg — Ey (Dyr = £° generate E1[D,].

. . _ e
coprime with D, = ¢'*). o Let k#i,j. Find a,b € Z/D,Z

Why do we need two paths st. B(P) = aBi(P) + bB;(P).
Y,1" : By — E; 7 Because
Dy, = {£'* is not coprime with
D, = (.

o Let v:= B¢ — afi — bB; and return
IQ‘(J = Ol’y + OlDtp-
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Algorithms for response and verification

The choice of prime p
As in SIDH: p = c/ ' — 1 with ¢/ ~ ¢'" ~ /p.
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Algorithms for response and verification

The choice of prime p
As in SIDH: p = c/ ' — 1 with ¢/ ~ ¢'" ~ /p.
Size of p: p = ©(22*) for \ bits of security (DG, 2016).

Example: p = 228381 _ 1 for NIST-1 level of security.
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Algorithms for response and verification

The choice of prime p
As in SIDH: p = c/ ' — 1 with ¢/ ~ ¢'" ~ /p.
Size of p: p = ©(22*) for \ bits of security (DG, 2016).

Example: p = 228381 _ 1 for NIST-1 level of security.

T Degree choices:
Efb——+E ,
° 5 o Dy =D, =2 ~

T

o Dy =12 ~p.

|
|
|
¢/ ’(/J : o D —E/f/

= ~ ./p.

p.| |Dy q : o ® VP
|
0 A\
EL—m F

©
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Algorithms for response and verification

The verification algorithm

Notations:
, Entry: (an(Pl)7U(P2))'
B ——E5

2 _ @, 2
EA EA

a a
o= 1 2
—d2 a1

and idem for /. ¥ := Diag(o, o)

-
R W Y

Pierrick Dartois SQISignHD 22/41



Algorithms for response and verification

The verification algorithm

Notations:
, Entry: (an(Pl)7U(P2))'
E} —— EZ o Cornacchia: find a;,a, € Z s.t.
ZT Tz ai+as+q=1(°

2 _ @, 2
EA EA

a a
o= 1 2
—d2 a1

and idem for /. ¥ := Diag(o, o)

-
R W Y
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Algorithms for response and verification

The verification algorithm

Notations:
, Entry: (an(Pl)7U(P2))'
E} —— EZ o Cornacchia: find a;,a, € Z s.t.
ZT Tz ai+as+q=1(°

E3 s E3
@ Generate (P1, P2) and compute

am(202) ker(F) := {((P;, Py), £ (Pi, P))

and idem for /. ¥ := Diag(o, o)

-
R W Y
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Algorithms for response and verification

The verification algorithm

Notations:
, Entry: (an(Pl)7U(P2))'
E} —— EZ o Cornacchia: find a;,a, € Z s.t.
ZT Tz ai+as+q=1(°

E3 s E3
@ Generate (P1, P2) and compute

. ( a2 ) ker(F) = ((a(P;. P}). Z(P;. P)))) 1

—dy a1
and idem for /. ¥ := Diag(o, o) o Compute F as an f-isogeny chain
F_[ @ g Ao Ay A, o AL
B MY

with Ag := E3 x E3.
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Algorithms for response and verification

The verification algorithm

Notations:
, Entry: (an(Pl)7U(P2))'
E} —— EZ o Cornacchia: find a;,a, € Z s.t.
ZT Tz ai+as+q=1(°

E3 s E3
@ Generate (P1, P2) and compute

. ( a2 ) ker(F) = ((a(P;. P}). Z(P;. P)))) 1

—dy a1
and idem for /. ¥ := Diag(o, o) o Compute F as an f-isogeny chain
F_[ @ g Ao Ay A, o AL
B MY

with Ag := E3 x E3.
@ Accept if Ae = Ap.
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Algorithms for response and verification

Verifying with less torsion

@ We can divide F into

A g 2y

where A := EZ x E3, F; is an (%-isogeny (for i = 1,2) and
e.:=e + 6.
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Algorithms for response and verification

Verifying with less torsion

@ We can divide F into

A g 2y

where A := EZ x E3, F; is an (%-isogeny (for i = 1,2) and
e.:=e + 6.

o ker(Fy) = ker(F) N A[¢%] and ker(F>) = F(A[(%]).
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Algorithms for response and verification

Verifying with less torsion

@ We can divide F into

A g 2y

where A := EZ x E3, F; is an (%-isogeny (for i = 1,2) and
e:=e +ée.

o ker(Fy) = ker(F) N A[¢%] and ker(F>) = F(A[(%]).

o Let (P, P») be a basis of Ea[¢"t] with f > f; > max(ey, e).
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Algorithms for response and verification

Verifying with less torsion

@ We can divide F into

A g 2y

where A := EZ x E3, F; is an (%-isogeny (for i = 1,2) and
e:=e +e.

o ker(Fy) = ker(F) N A[¢%] and ker(F>) = F(A[(%]).

o Let (P, P») be a basis of Ea[¢"t] with f > f; > max(ey, e).

e Knowing (Py, P2,0(P1),0(P2)) is sufficient to compute F; and Fo.
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Algorithms for response and verification

Verifying with less torsion

We can divide F into

A g 2y

where A := EZ x E3, F; is an (%-isogeny (for i = 1,2) and
e:=e +e.

ker(F1) = ker(F) N A[f®t] and ker(Fy) = F(A[(]).

Let (P1, P>) be a basis of E4[¢"] with f > fi > max(er, e).
Knowing (P, P2,0(P1),o(P2)) is sufficient to compute F; and Fo.

@ The verifier accepts if the codomains of F; and T:; match.
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Algorithms for response and verification

Verifying with less torsion

Advantages:
o Use ¢fi-torsion with f; ~ e/2 instead of (*-torsion (f; < f).

@ g < /¢ is not constained by the accessible torsion (more freedom on

the choice of /).
o Makes signature communications o(Py), o(P>) twice more compact.
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Algorithms for response and verification

Higher dimensional isogeny computation

Goal: Compute an £°-isogeny F : A — B.
o Let Ay be a basis of ker(F).
@ Decompose:

A=Ay oAy Aey A =B

o let B :=F;o---0 Fl(%())
o Then ker(F;) = ([(*~"|%B;_1).
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Algorithms for response and verification

Higher dimensional isogeny computation

Goal: Compute an (¢-isogeny F : A — B. Computation tree for e =5
o Let Ay be a basis of ker(F). o
@ Decompose: N\ F
\
[0 % B
A:AoiAl"'AeflgAe:B '/] 0/1\F2
o let B :=F;o---0 Fl(%()) [62]/}0 [f]%l %2
o Then ker(F;) = <[ee 1B;:_1). VANVANVANE
@ Descend the computation tree to [53]% [52]31 [432 %3

compute the F; (DFJP, 11). / / / / \Fa

[¢4] %o [z3]9§1 [42]32 [z] %3 14
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Algorithms for response and verification

Higher dimensional isogeny computation

Goal: Compute an (®-isogeny F : A — B. Computation tree for e =5
o Let Ay be a basis of ker(F). o
@ Decompose: N
\
[€)1%
A=A B0 Ay Aoy T A =B /] °/1\F2
o let B :=F,o---0 Fl(ﬂo) Zz]ﬂo [Z]A& ﬁz
o Then ker(F;) = ([¢(¢~11%i_1). / / / NE
o Descend the computation tree to [53]@0 [42]93'1 [4] 72
compute the F; (DFJP, 11). / / / / \Fa
@ Each F; is computed with the © model (¢4 %0 [63]%‘1 [KZ]%'Z [é] B3 ,ﬁ4
(level £ = 2).
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Commitment (and key generation)

Commitment (and key generation)
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Commitment (and key generation)

Double path to the commitment

Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = ¢
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Commitment (and key generation)

Double path to the commitment

Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = ¢

Accessible torsion: Ey[¢f¢'f'] (p = ct /" —1).
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Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = £
Accessible torsion: Ey[¢f¢'f'] (p = ct /" —1).

E} e Compute v € Oy = End(Ep) s.t.
| nrd(v) — €2f£/2f’_
I
" [92]5*9;/1 b @ Factor v = 9/2 o 9/1 065 0 01, with
! deg(01) = deg(@é) = Eff/and
Eo E E deg(62) = deg(0) = ¢'".
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Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = ¢

Accessible torsion: Ey[¢f¢'f'] (p = ct /" —1).

E, o Compute v € Oy = End(Ep) s.t.
| nrd(y) = 2F 027
|
0 [0,).6, & e Factor v = 6} 0 67 0 0 0 1, with
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Commitment (and key generation)

Double path to the commitment

Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = ¢

Accessible torsion: Ey[¢f¢'f'] (p = ct /" —1).

E, o Compute v € Oy = End(Ep) s.t.
| nrd(y) = 2F 027
|
01 0-1. 0" & @ Factor v =6, 08 0850867, with
[ 2],* 1 2-"1
: deg(6,) = deg(0}) = Eff/and
. M [ deg(0s) = deg(0}) = ("
i o Compute [0].02 of kernel 0] (ker 62).
|
[9/1]: 0, o Compute [02].0] of kernel 02(ker 67).
05 : 01 o = [0]].62 06} and ¢’ := [6,].8, o 6;.
|
Ei
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Commitment (and key generation)

Double path to the commitment

Goal: Compute ¥, : Ey — Ey and Iy, Iy with deg(¢) = ¢2f and
deg(y) = £
Accessible torsion: Ey[¢f¢'f'] (p = ct /" —1).

E, o Compute v € Oy = End(Ep) s.t.

: nrd(ﬁ/) — €2f£/2fl.

" [92]:*9;/1 b Factor v = é\/z o 9/1 o é; o 61, with
| deg(61) = deg(6)) = ¢ and
v deg(6) = deg(6h) = ¢'*".

Eo E E’'
Compute [01].02 of kernel 8] (ker 62).

A
[9/15 0 Compute [02].07 of kernel 03(ker 0}).
AL
|
|

¥ = [01].62 0605 and ¢ = [05].0} 0 6.
El o Iy i= O + Ogl?", Iy := Opy + Opl?’.
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Security analysis

Outline of the security analysis

Theorem (Fiat-Shamir, 1986)
Let ID be an identification protocol that is:

o Complete: a honest execution is always accepted by the verifier.
@ Sound: an attacker cannot "guess" a response.

e Zero-knowledge: the response does not leak any information on
the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable
signature under chosen message attacks in the random oracle model.
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Security analysis

Soundness

Similar to SQISign

Proposition (Special soundness)

Assume g A0 = 1.
Then given two transcripts (E1, ¢, R), (E1, ', R") with the same
commitment Ey and ¢ # ', we can extract « € End(Ea) non-scalar.

@ Exctract o from R and ¢’ from R'.

o Then o := ¢’ 00’ 0 g o ¢ € End(Ea) is non-scalar.
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Security analysis

Zero-knowledge

Definition

We say that an integer g is good if:
@ /* —qgisaprime =1 mod 4.
e gNl' =1.
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Security analysis

Zero-knowledge

Definition

We say that an integer g is good if:
@ /* —qgisaprime =1 mod 4.
e gNl' =1.

Definition (RUGDIO)

A random uniform good degree isogeny oracle (RUGDIO):
Input: A supersingular elliptic curve E /T 2.
Output: An isogeny o : E — E’ of good degree g s.t.

@ E’ is uniform in the supersingular isogeny graph.
@ Given E’, o is uniform among isogenies of good degree E — E’.
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Security analysis

Zero-knowledge

Assume that:
@ E; is computationally close to uniform.
@ We have access to a RUGDIO.
Then SQISignHD is computationally honest-verifier zero-knowledge.
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Security analysis

Zero-knowledge

Assume that:
@ E; is computationally close to uniform.
@ We have access to a RUGDIO.
Then SQISignHD is computationally honest-verifier zero-knowledge.

We build a simulator S of protocol transcripts:

@ S calls the RUGDIO to generate an efficient representation R of
(o EA — E2.

@ S generates a random challenge ¢ : E;, — E;.
e S outputs (Eq, ¢, R).
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Security analysis

Zero-knowledge: comparison with SQISign

Heuristic assumptions to prove the zero-knowledge property

In SQISign: In SQISignHD:
@ 0: Ex — E, is computationally e E; is computationally close
indistinguishable from a random to uniform.
isogeny of degree £°. @ We have access to a
RUGDIO.
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Security analysis

Zero-knowledge: the interest of dimension 8

In SQISign:
@ 0! EA — E2 is
computationally close to a
random isogeny of degree £¢.
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Security analysis

Zero-knowledge: the interest of dimension 8

In SQISign: In RigorousSQISignHD:
0ec:Es— Eis @ We have access to a RADIO.

computationally close to a
random isogeny of degree £¢.

Definition (RADIO)

A random any degree isogeny oracle (RADIO):

Input: A supersingular elliptic curve E /T 2.

Output: An efficient representation of a uniformly random isogeny
o: E— E' of degree g < ¢°.
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Performance

Performance
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Performance

Compact signatures

In SQISign: 0: Ex — E; of In SQISignHD: (j(E1), q,0(P1),0(P2)),
degree (¢ ~ p'5/4, where:

o (P1,Py) is a basis of Ea[¢].
NB: no need to transmit (Py, P2).
o (f ~ pl/4

° g=~,/p.
o j(E1) € Fp2 has size 2log,(p) bits.
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Performance

Compact signatures

In SQISign: 0 : Ex — E; of In SQISignHD: (j(E1),q,0(P1),0(P2)),
degree (¢ ~ p'5/4, where:
o (P1,Py) is a basis of Ea[¢].
NB: no need to transmit (Py, P2).
o (f ~ pl/4

° g=~,/p.
o j(E1) € Fp2 has size 2log,(p) bits.

Signature size (in bits)
In SQISign In SQISignHD

In general ~ 15/4log,(p) | ~ 13/4log,(p)
NIST-1 security level 1060 840
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Performance

Fast signatures at the expense of verification

Fast signature:
@ Only 1-dimensional isogenies: 1, v, ©.
e Evaluating (o(P1),0(P2)) with ¢ 01 o T is fast.

@ Preliminary implementation way faster than SQISign.
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Performance

Fast signatures at the expense of verification

Fast signature:
@ Only 1-dimensional isogenies: 1, v, ©.
e Evaluating (o(P1),0(P2)) with ¢ 01 o T is fast.

@ Preliminary implementation way faster than SQISign.

Comparison with SQISign signatures:
@ Slow ideal-to-isogeny translation: | — 0.

o Piecewise computation involving 30 T-isogenies with T ~ p®/4.

Verification:
@ Isogenies in dimension 4 to compute.
@ Known algorithms.

@ But to be implemented...

Pierrick Dartois SQISignHD 38 /41



Conclusion

Conclusion
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Conclusion

Comparison of SQISignHD with SQISign

SQISign SQISignHD
Security Ad-hoc heuristic: Simpler heuristics:
e Distribution of o. e RUGDIO;
e Distribution of E;.
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Conclusion

Comparison of SQISignHD with SQISign

SQISign SQISignHD
Security Ad-hoc heuristic: Simpler heuristics:
e Distribution of o. e RUGDIO;
e Distribution of E;.
Prime p | ¢/ T|p? — 1 with T ~ p°/* p=clfef -1
e Slow isogeny computations | e Fast isogeny computations
e Not certain if it scales e Scales well
Signature | o with deg(o) = (¢ ~ p*>* | (q,0(P1),0(P2))
e |deal-to-isogeny translation | e Fast via pot o7
e 30 T-isogenies involved
Verification | e Recompute o as a chain of | ¢ Compute F an ¢¢-isogeny

l-isogenies of known kernels
o deg(o) = (¢ ~ p1o/*

of dimension 4
o deg(o) =(°~/p
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Conclusion

Thank you for listening.

Find our pre-print here: https://eprint.iacr.org/2023/436
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