Signing with higher dimensional isogenies

Pierrick Dartois

Joint work with Antonin Leroux, Damien Robert and Benjamin Wesolowski Acknowledgements to Luca De Feo

12 september 2023

- Quaternions and isogenies
- 2 SQISign and effective Deuring correspondence
- 3 Higher dimensional isogenies
- SQISignHD: signing with higher dimensional isogenies
- 5 Conclusion

Quaternions and isogenies	Isogenies
SQISign and effective Deuring correspondence	The endomorphism ring
Higher dimensional isogenies	Quaternions
SQISignHD: signing with higher dimensional isogenies	The Deuring correspondence
Conclusion	Hard and easy problems

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

Elliptic curves

Isogenies

The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Elliptic curves:

An elliptic curve *E*/F_q is defined by:

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_q$

with an infinite element 0_E .

• *E* is equipped with a commutative group law.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

Isogenies - Definition

Isogenies

The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies:

Maps between elliptic curves

- $\varphi: E_1 \longrightarrow E_2$ such that:
 - φ is a homomorphism of algebraic varieties.
 - φ is a group homomorphism:

$$\varphi(P+Q) = \varphi(P) + \varphi(Q).$$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

Isogenies

The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies - Examples

• The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny.

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies - Examples

- The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny.
- The Frobenius:

$$\begin{array}{rccc} \pi_p : E & \longrightarrow & E^{(p)} \\ (x, y) & \longmapsto & (x^p, y^p) \end{array}$$

with E/\mathbb{F}_{p^n} is an isogeny.

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies - Examples

- The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny.
- The Frobenius:

$$\begin{array}{rccc} \pi_p : E & \longrightarrow & E^{(p)} \\ (x,y) & \longmapsto & (x^p, y^p) \end{array}$$

with E/\mathbb{F}_{p^n} is an isogeny.

• An explicit example: Consider

$$E_1: y^2 = x^3 + x + 4$$
 and $E_2: y^2 = x^3 - x + 4$

over \mathbb{F}_7 . Then

$$\begin{array}{rcl} \varphi: E_1 & \longrightarrow & E_2 \\ (x,y) & \longmapsto & \left(\frac{x^2 - 2x - 1}{x - 2}, y \frac{x^2 + 3x - 2}{(x - 2)^2} \right) \end{array}$$

is an isogeny.

The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies - the degree

Definition (The degree)

• Measures the "size" of an isogeny. More precisely

$$\deg(\varphi) = [k(E_1) : \varphi^* k(E_2)] = \max(\deg(f), \deg(g))$$

Isogenies

where $\varphi(x, y) = (f(x)/g(x), \cdots)$.

• Is multiplicative: $\deg(\varphi \circ \psi) = \deg(\varphi) \deg(\psi)$.

If deg(φ) = n, we say that φ is an *n*-isogeny.

tenies Isogenies dence The endomorphism ring genies Quaternions genies The Deuring correspondence usion Hard and easy problems

Isogenies - the degree

Definition (The degree)

• Measures the "size" of an isogeny. More precisely

$$\deg(\varphi) = [k(E_1) : \varphi^* k(E_2)] = \max(\deg(f), \deg(g))$$

where $\varphi(x, y) = (f(x)/g(x), \cdots)$.

• Is multiplicative: $\deg(\varphi \circ \psi) = \deg(\varphi) \deg(\psi)$.

If deg(φ) = *n*, we say that φ is an <u>*n*-isogeny</u>.

Definition (Separability)

We say that φ is <u>separable</u> if $\# \ker(\varphi) = \deg(\varphi)$.

nies Isogenies ence The endomorphism ring nies Quaternions The Deuring correspondence sion Hard and easy problems

Isogenies - the degree

Definition (The degree)

• Measures the "size" of an isogeny. More precisely

$$\deg(\varphi) = [k(E_1) : \varphi^* k(E_2)] = \max(\deg(f), \deg(g))$$

where $\varphi(x, y) = (f(x)/g(x), \cdots)$.

• Is multiplicative: $\deg(\varphi \circ \psi) = \deg(\varphi) \deg(\psi)$.

If deg(φ) = *n*, we say that φ is an <u>*n*-isogeny</u>.

Definition (Separability)

We say that φ is <u>separable</u> if $\# \operatorname{ker}(\varphi) = \operatorname{deg}(\varphi)$.

Definition (Dual isogeny)

If $\varphi: E_1 \longrightarrow E_2$ the dual $\widehat{\varphi}: E_2 \longrightarrow E_1$ satisfies $\widehat{\varphi} \circ \varphi = [\deg(\varphi)]_{E_1}$ and $\deg(\varphi) = \deg(\widehat{\varphi})$.

The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Isogenies - Examples

- The scalar multiplication $[n]: E \longrightarrow E$ is an isogeny of **degree** n^2 .
- The Frobenius:

$$\begin{array}{rccc} \pi_p: E & \longrightarrow & E^{(p)} \\ (x, y) & \longmapsto & (x^p, y^p) \end{array}$$

with E/\mathbb{F}_{p^n} is an **inseparable** *p*-**isogeny**.

An explicit example: Consider

$$E_1: y^2 = x^3 + x + 4$$
 and $E_2: y^2 = x^3 - x + 4$

over \mathbb{F}_7 . Then

$$\begin{array}{rcl} \varphi: E_1 & \longrightarrow & E_2 \\ (x,y) & \longmapsto & \left(\frac{x^2 - 2x - 1}{x - 2}, y \frac{x^2 + 3x - 2}{(x - 2)^2} \right) \end{array}$$

is a **separable** 2-isogeny.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Endomorphism ring

Definition (Endomorphism ring)

$$\operatorname{End}(E) = \{0\} \cup \{\operatorname{Isogenies} \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Endomorphism ring

Definition (Endomorphism ring)

$$\mathsf{End}(E) = \{0\} \cup \{\mathsf{Isogenies} \ \varphi : E \longrightarrow E\}$$

Defines a ring for the addition and composition of isogenies.

Theorem (Deuring)

Let E/\mathbb{F}_q ($p = char(\mathbb{F}_q)$). Then End(E) is either isomorphic to:

- An order in a quadratic imaginary field. We say that E is ordinary.
- A maximal order in a quaternion algebra ramifying at p and ∞. We say that E is supersingular.

If *E* is supersingular, we may assume $\mathbb{F}_q = \mathbb{F}_{p^2}$.

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{\boldsymbol{\rho},\infty}=\mathbb{Q}\oplus\mathbb{Q}\boldsymbol{i}\oplus\mathbb{Q}\boldsymbol{j}\oplus\mathbb{Q}\boldsymbol{k},$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{\rho,\infty}=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- **Order:** A full rank lattice $\mathcal{O} \subset \mathcal{B}_{\rho,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

Quaternion algebra ramifying at *p* and ∞: A 4-dimensional non commutative division algebra over Q:

$$\mathcal{B}_{\boldsymbol{\rho},\infty}=\mathbb{Q}\oplus\mathbb{Q}\boldsymbol{i}\oplus\mathbb{Q}\boldsymbol{j}\oplus\mathbb{Q}\boldsymbol{k},$$

with

$$i^2 = -1$$
 (if $p \equiv 3 \mod 4$), $j^2 = -p$ and $k = ij = -ji$.

- Order: A full rank lattice $\mathcal{O} \subset \mathcal{B}_{\rho,\infty}$ with a ring structure.
- Maximal Order: An order $\mathcal{O} \subset \mathcal{B}_{p,\infty}$ such that for any other order $\mathcal{O}' \supseteq \mathcal{O}$, we have $\mathcal{O}' = \mathcal{O}$.
- Left Ideal: A left \mathcal{O} -ideal I is a full rank lattice $I \subset \mathcal{B}_{p,\infty}$ such that $\mathcal{O} \cdot I = I$.
- Right Ideal: A right O-ideal I is a full rank lattice I ⊂ B_{p,∞} such that I · O = I.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• Norm:
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• Norm:
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

• Ideal norm:
$$nrd(I) := gcd\{nrd(\alpha) \mid \alpha \in I\}.$$

• Ideal conjugate:
$$\overline{I} := \{\overline{\alpha} \mid \alpha \in I\}.$$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternions - Definitions

$$\alpha = x + yi + zj + tk \longmapsto \overline{\alpha} = x - yi - zj - tk$$

• Norm:
$$\operatorname{nrd}(\alpha) := \alpha \overline{\alpha} = x^2 + y^2 + p(z^2 + t^2).$$

- Ideal norm: $nrd(I) := gcd\{nrd(\alpha) \mid \alpha \in I\}.$
- Ideal conjugate: $\overline{I} := \{\overline{\alpha} \mid \alpha \in I\}.$
- Equivalent left \mathcal{O} -ideals: $I \sim J \iff \exists \alpha \in \mathcal{B}^*_{p,\infty}, \quad J = I\alpha.$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions **The Deuring correspondence** Hard and easy problems

The Deuring correspondence

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathcal{O}\cong End(E)$ maximal order in $\mathcal{B}_{ ho,\infty}$
$\varphi: E \longrightarrow E'$	left \mathcal{O} -ideal and right \mathcal{O}' -ideal I_arphi
$arphi,\psi: E \longrightarrow E'$	$I_arphi \sim I_\psi \; (I_\psi = I_arphi lpha)$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$I_\psi \cdot I_arphi$
$ heta\inEnd(E)$	Principal ideal $\mathcal{O} heta$
$deg(\varphi)$	$nrd(I_arphi)$

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Computing isogenies (Easy)

Proposition

A separable isogeny is determined by its kernel. If $\varphi : E_1 \longrightarrow E_2$ and $\varphi' : E_1 \longrightarrow E'_2$ are separable and ker $(\varphi) = \text{ker}(\varphi')$, then there exists an isomorphism $\lambda : E_2 \xrightarrow{\sim} E'_2$ such that $\varphi' = \lambda \circ \varphi$.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Computing isogenies (Easy)

Proposition

A separable isogeny is determined by its kernel. If $\varphi : E_1 \longrightarrow E_2$ and $\varphi' : E_1 \longrightarrow E'_2$ are separable and ker $(\varphi) = \text{ker}(\varphi')$, then there exists an isomorphism $\lambda : E_2 \xrightarrow{\sim} E'_2$ such that $\varphi' = \lambda \circ \varphi$.

• Given $G = \ker(\varphi)$, we can compute φ in time $O(\sqrt{\#G})$ [BDLS20].

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Computing isogenies (Easy)

Proposition

A separable isogeny is determined by its kernel. If $\varphi : E_1 \longrightarrow E_2$ and $\varphi' : E_1 \longrightarrow E'_2$ are separable and ker $(\varphi) = \text{ker}(\varphi')$, then there exists an isomorphism $\lambda : E_2 \xrightarrow{\sim} E'_2$ such that $\varphi' = \lambda \circ \varphi$.

- Given $G = \ker(\varphi)$, we can compute φ in time $O(\sqrt{\#G})$ [BDLS20].
- Given $P \in E$ such that $G = \langle P \rangle$ and if deg $(\varphi) = \ell^n$ with ℓ small, we compute $\varphi : E \longrightarrow E'$ as a sequence of ℓ -isogenies

$$E = E_0 \longrightarrow E_1 \longrightarrow \cdots \longrightarrow E_{n-1} \longrightarrow E_n$$

in time $O(n \log(n))$ [JD11].

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Computing isogenies (Easy)

Proposition

A separable isogeny is determined by its kernel. If $\varphi : E_1 \longrightarrow E_2$ and $\varphi' : E_1 \longrightarrow E'_2$ are separable and ker $(\varphi) = \text{ker}(\varphi')$, then there exists an isomorphism $\lambda : E_2 \xrightarrow{\sim} E'_2$ such that $\varphi' = \lambda \circ \varphi$.

- Given $G = \ker(\varphi)$, we can compute φ in time $O(\sqrt{\#G})$ [BDLS20].
- Given $P \in E$ such that $G = \langle P \rangle$ and if deg $(\varphi) = \ell^n$ with ℓ small, we compute $\varphi : E \longrightarrow E'$ as a sequence of ℓ -isogenies

$$E = E_0 \longrightarrow E_1 \longrightarrow \cdots \longrightarrow E_{n-1} \longrightarrow E_n$$

in time $O(n \log(n))$ [JD11].

• Only smooth degree isogenies can be computed efficiently.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Supersingular Isogeny Problem (Hard)

Problem (Supersingular Isogeny Problem)

Given two supersingular elliptic curves $E_1, E_2/\mathbb{F}_{p^2}$, find an isogeny $\varphi: E_1 \longrightarrow E_2$.

When p has cryptographic size, this problem is hard for quantum computers.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Supersingular Endomorphism Ring Problem (Hard)

Problem (Supersingular Endomorphism Ring Problem)

Given a supersingular elliptic curve E/\mathbb{F}_{p^2} , compute End(E).

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Supersingular Endomorphism Ring Problem (Hard)

Problem (Supersingular Endomorphism Ring Problem)

Given a supersingular elliptic curve E/\mathbb{F}_{p^2} , compute End(E).

An easy instance: Consider $E_0: y^2 = x^3 + x$ over \mathbb{F}_p $(p \equiv 3 \mod 4)$ and

$$\pi_{p}: (x, y) \in E_{0} \longmapsto (x^{p}, y^{p}) \in E_{0}$$
$$\iota: (x, y) \in E_{0} \longmapsto (x, \sqrt{-1}y) \in E_{0}$$
Then $\pi_{p}^{2} = [-p], \ \iota^{2} = [-1] \text{ and } \pi_{p} \circ \iota = -\iota \circ \pi_{p} \text{ and}$
$$\mathsf{End}(E_{0}) = \left\langle 1, \iota, \frac{\iota + \pi_{p}}{2}, \frac{1 + \iota \pi_{p}}{2} \right\rangle \cong \left\langle 1, i, \frac{i + j}{2}, \frac{1 + k}{2} \right\rangle$$

Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

The Supersingular Endomorphism Ring Problem (Hard)

Problem (Supersingular Endomorphism Ring Problem)

Given a supersingular elliptic curve E/\mathbb{F}_{p^2} , compute End(E).

An easy instance: Consider $E_0: y^2 = x^3 + x$ over \mathbb{F}_p $(p \equiv 3 \mod 4)$ and

$$\pi_{p} : (x, y) \in E_{0} \longmapsto (x^{p}, y^{p}) \in E_{0}$$
$$\iota : (x, y) \in E_{0} \longmapsto (x, \sqrt{-1}y) \in E_{0}$$
Then $\pi_{p}^{2} = [-p], \ \iota^{2} = [-1] \text{ and } \pi_{p} \circ \iota = -\iota \circ \pi_{p} \text{ and}$
$$\mathsf{End}(E_{0}) = \left\langle 1, \iota, \frac{\iota + \pi_{p}}{2}, \frac{1 + \iota \pi_{p}}{2} \right\rangle \cong \left\langle 1, i, \frac{i + j}{2}, \frac{1 + k}{2} \right\rangle$$

Theorem (Wesolowski, 2022)

The Supersingular Isogeny Problem and the Supersingular Endomorphism Ring Problem are equivalent.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternion path problem (Easy)

Problem (Connecting ideal)

Given two maximal orders $\mathcal{O}_1, \mathcal{O}_2 \subset \mathcal{B}_{p,\infty}$, find a left \mathcal{O}_1 -ideal I that is also a right \mathcal{O}_2 -ideal.

This is simple arithmetic $I \sim \mathcal{O}_1 \cdot \mathcal{O}_2$.

Problem (Quaternion path problem)

Given a left \mathcal{O} -ideal I, find $J \sim I$ of smooth norm.

Solved in polynomial time by the KLPT algorithm [KLPT14; DKLPW20].

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternion path problem (Easy)

Computing isogenies via the Deuring correspondence:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via KLPT.
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.

SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion Isogenies The endomorphism ring Quaternions The Deuring correspondence Hard and easy problems

Quaternion path problem (Easy)

Computing isogenies via the Deuring correspondence:

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \text{End}(E_1)$ and $\mathcal{O}_2 \cong \text{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via KLPT.
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.

Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.

SQISign Effective Deuring correspondence

SQISign and effective Deuring correspondence

SQISign Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

The SQISign identification scheme [DKLPW20; DLW22]

SQISign Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

The SQISign identification scheme [DKLPW20; DLW22]

SQISign Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

The SQISign identification scheme [DKLPW20; DLW22]

SQISign Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

The SQISign identification scheme [DKLPW20; DLW22]

— published by Prover

SQISign Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

The SQISign identification scheme [DKLPW20; DLW22]

SQISign Effective Deuring correspondence

Fiat-Shamir transform [FS87]

public
 Signer's secret
 published by Signer

Signature: message *m*, public key E_A , secret key τ .

- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature
 (E₁, σ) to the verifier.

SQISign Effective Deuring correspondence

Fiat-Shamir transform [FS87]

public
Signer's secret
published by Signer

Signature: message *m*, public key E_A , secret key τ .

- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature
 (E₁, σ) to the verifier.

Verification: E_A , m, (E_1, σ) .

- Recompute $\varphi := H(E_1, m)$.
- Verify that $\widehat{\varphi} \circ \sigma$ is cyclic.

ence SQISign mies Effective Deuring correspondence

Quaternions and isogenies SQISign and effective Deuring correspondence Higher dimensional isogenies SQISignHD: signing with higher dimensional isogenies Conclusion

How to compute the signature σ ?

- Compute $J := \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$.
- Find *I* ~ *J* random of norm nrd(*I*) = ℓ^e (KLPT).
- Compute σ associated to *I*.

SQISign Effective Deuring correspondence

Ideal-to-isogeny I [GPS16]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \text{End}(E)$ and I a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_I : E \longrightarrow E_I$.

SQISign Effective Deuring correspondence

Ideal-to-isogeny I [GPS16]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \text{End}(E)$ and I a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_I : E \longrightarrow E_I$.

Compute

$$E[I] := \{ P \in E \mid \forall \alpha \in I, \quad \alpha(P) = 0 \}.$$

SQISign Effective Deuring correspondence

Ideal-to-isogeny I [GPS16]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \text{End}(E)$ and I a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_I : E \longrightarrow E_I$.

• Compute

$$E[I] := \{ P \in E \mid \forall \alpha \in I, \quad \alpha(P) = 0 \}.$$

• Compute φ_I of kernel E[I] in $O(\text{poly}(\max_{\ell \mid \text{nrd}(I)} \ell))$ operations over \mathbb{F}_{p^k} , where $E[I] \subseteq E(\mathbb{F}_{p^k})$.

SQISign Effective Deuring correspondence

Ideal-to-isogeny I [GPS16]

Input: E/\mathbb{F}_{p^2} supersingular, $\mathcal{O} \cong \text{End}(E)$ and I a left \mathcal{O} -ideal of smooth norm.

Output: $\varphi_I : E \longrightarrow E_I$.

• Compute

$$E[I] := \{ P \in E \mid \forall \alpha \in I, \quad \alpha(P) = 0 \}.$$

• Compute φ_I of kernel E[I] in $O(\text{poly}(\max_{\ell \mid \text{nrd}(I)} \ell))$ operations over \mathbb{F}_{p^k} , where $E[I] \subseteq E(\mathbb{F}_{p^k})$.

Issue: If I is a KLPT output, then $nrd(I) \simeq p^{15/4} \gg p$ so k is exponentially big. Not practical for SQISign !

SQISign Effective Deuring correspondence

Ideal-to-isogeny II [DLW22]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.

SQISign Effective Deuring correspondence

Ideal-to-isogeny II [DLW22]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.

SQISign Effective Deuring correspondence

Ideal-to-isogeny II [DLW22]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.

The endomorphisms θ_i are meant to refresh the ℓ^f -torsion.

SQISign Effective Deuring correspondence

Ideal-to-isogeny II [DLW22]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.

The endomorphisms θ_i are meant to refresh the ℓ^f -torsion.

Torsion requirements: $\ell^f T | p^2 - 1$ so that $E[\ell^f T] \subseteq E(\mathbb{F}_{p^4})$, where $\deg(\theta_i) = T^2$ and $T \simeq p^{5/4}$.

SQISign Effective Deuring correspondence

Ideal-to-isogeny II [DLW22]

Main idea: Cut the computation into smaller pieces. Write

 $I = I_0 \cdot I_1 \cdots I_{n-1}$ and $\varphi_I = \varphi_{n-1} \circ \cdots \circ \varphi_1 \circ \varphi_0$

with $\operatorname{nrd}(I_0) = \cdots = \operatorname{nrd}(I_{n-1}) = \ell^f$.

The endomorphisms θ_i are meant to refresh the ℓ^f -torsion.

Torsion requirements: $\ell^f T | p^2 - 1$ so that $E[\ell^f T] \subseteq E(\mathbb{F}_{p^4})$, where $\deg(\theta_i) = T^2$ and $T \simeq p^{5/4}$.

Issue: This is slow!

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Higher dimensional isogenies

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQISign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQISign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Our idea: Take deg(σ) non smooth. Then deg(σ) $\simeq \sqrt{p}$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQISign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Our idea: Take deg(σ) non smooth. Then deg(σ) $\simeq \sqrt{p}$.

• Evaluate σ on $E_A[\ell^e] \subseteq E_A(\mathbb{F}_{p^2})$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQISign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Our idea: Take deg(σ) non smooth. Then deg(σ) $\simeq \sqrt{p}$.

- Evaluate σ on $E_A[\ell^e] \subseteq E_A(\mathbb{F}_{p^2})$.
- \bullet Use the following algorithm to evaluate σ everywhere.

Theorem (Robert, 2022)

Let $\sigma : E \longrightarrow E'$ of degree $q < \ell^e$. There exists a polynomial time algorithm with:

- Input: $(\sigma(P_1), \sigma(P_2))$, where (P_1, P_2) is a basis of $E[\ell^e]$ and $Q \in E(\mathbb{F}_{p^2})$.
- Output: σ(Q).

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Another method to compute σ [DLRW23]

Issue in SQISign: deg(σ) has to be smooth deg(σ) = $\ell^e \simeq p^{15/4}$.

Our idea: Take deg(σ) non smooth. Then deg(σ) $\simeq \sqrt{p}$.

- Evaluate σ on $E_{\mathcal{A}}[\ell^e] \subseteq E_{\mathcal{A}}(\mathbb{F}_{p^2})$.
- \bullet Use the following algorithm to evaluate σ everywhere.

Theorem (Robert, 2022)

Let $\sigma : E \longrightarrow E'$ of degree $q < \ell^e$. There exists a polynomial time algorithm with:

- Input: $(\sigma(P_1), \sigma(P_2))$, where (P_1, P_2) is a basis of $E[\ell^e]$ and $Q \in E(\mathbb{F}_{p^2})$.
- Output: $\sigma(Q)$.

Context: This idea comes from the attacks against SIDH [CD22; MM22; Rob22].

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Evaluating σ

Main idea: Use the alternate path $\varphi \circ \psi \circ \hat{\tau}$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Evaluating σ

Main idea: Use the alternate path $\varphi \circ \psi \circ \hat{\tau}$.

- Let $\gamma := \widehat{\psi} \circ \widehat{\varphi} \circ \sigma \circ \tau \in \operatorname{End}(E_0).$ We have $\mathcal{O}_0 \gamma = I_\tau \cdot I \cdot \overline{I_\varphi} \cdot \overline{I_\psi}$ so we can compute γ .

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Evaluating σ

Main idea: Use the alternate path $\varphi \circ \psi \circ \hat{\tau}$.

- Let $\gamma := \widehat{\psi} \circ \widehat{\varphi} \circ \sigma \circ \tau \in \operatorname{End}(E_0).$
- Let $\gamma := \widehat{\psi} \circ \widehat{\varphi} \circ \sigma \circ \tau \in \operatorname{End}(E_0).$ We have $\mathcal{O}_0 \gamma = I_\tau \cdot I \cdot \overline{I_\varphi} \cdot \overline{I_\psi}$ so we can compute γ . Then:

$$[D_{\psi}D_{\varphi}D_{\tau}]\sigma = \varphi \circ \psi \circ \gamma \circ \widehat{\tau}$$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Main idea: Use the alternate path $\varphi \circ \psi \circ \hat{\tau}$.

Evaluating σ

$$[D_{\psi}D_{\varphi}D_{\tau}]\sigma = \varphi \circ \psi \circ \gamma \circ \widehat{\tau}$$

 $(D_{\eta}, D_{\Omega}, D_{\tau}) \wedge \ell = 1$:

$$\sigma(P) = [\lambda] \varphi \circ \psi \circ \gamma \circ \widehat{\tau}(P),$$

with $\lambda D_{\psi} D_{\omega} D_{\tau} \equiv 1 \mod \ell^e$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

d-isogenies and the dual isogeny in higher dimension

Definition (*d*-isogeny)

Let $\varphi : (A, \lambda_A) \longrightarrow (B, \lambda_B)$ be an isogeny between two principally polarized abelian varieties (PPAV). We define:

•
$$\widetilde{\varphi} := \lambda_A^{-1} \circ \widehat{\varphi} \circ \lambda_B : B \longrightarrow A.$$

$$B \xrightarrow{\lambda_B} \widehat{B} \xrightarrow{\widehat{\varphi}} \widehat{A} \xrightarrow{\lambda_A^{-1}} A$$

• We say that φ is a <u>*d*-isogeny</u> if $\widetilde{\varphi} \circ \varphi = [d]_A$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Kani's embedding lemma [Kan97]

Definition (isogeny diamond)

An (a, b)-isogeny diamond is a commutative diagram s.t.:

where φ, φ' are *a*-isogenies and ψ, ψ' are *b*-isogenies.

Lemma (Kani)

Consider the (a, b)-isogeny diamond on the left. Then:

•
$$F: A \times B' \longrightarrow B \times A'$$
,

$$F := \begin{pmatrix} arphi & \widetilde{\psi'} \\ -\psi & \widetilde{arphi'} \end{pmatrix}$$

is a d-isogeny with d = a + b.

• If $a \wedge b = 1$, then

$$\ker(F) = \{ (\widetilde{\varphi}(x), \psi'(x)) \mid x \in B[d] \}.$$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

- Let $q = \deg(\sigma)$.
- Let $a_1, a_2 \in \mathbb{Z}$ s.t. $a_1^2 + a_2^2 + q = \ell^e$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

- Let $q = \deg(\sigma)$.
- Let $a_1, a_2 \in \mathbb{Z}$ s.t. $a_1^2 + a_2^2 + q = \ell^e$.
- q should be good: $\ell^e q$ prime $\equiv 1 \mod 4$.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Embedding σ in higher dimension:

- Let $q = \deg(\sigma)$.
- Let $a_1, a_2 \in \mathbb{Z}$ s.t. $a_1^2 + a_2^2 + q = \ell^e$.
- q should be good: $\ell^e q$ prime $\equiv 1 \mod 4$.
- Consider the isogeny diamond:

$$\begin{array}{c} E_2^2 \xrightarrow{\alpha_2} E_2^2 \\ \Sigma & \uparrow & \uparrow \\ E_A^2 \xrightarrow{\alpha_A} E_A^2 \end{array}$$

where $\Sigma := \text{Diag}(\sigma, \sigma)$ and for i = A, 2,

$$\alpha_i := \begin{pmatrix} a_1 & a_2 \\ -a_2 & a_1 \end{pmatrix} \in \mathsf{End}(E_i^2).$$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Embedding σ in higher dimension:

• Then

$$F := \begin{pmatrix} \alpha_1 & \widetilde{\Sigma} \\ -\Sigma & \widetilde{\alpha}_A \end{pmatrix} \in \mathsf{End}(E_A^2 \times E_2^2).$$

is an ℓ^e -isogeny.

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Embedding σ in higher dimension:

• Then

$$F := \begin{pmatrix} \alpha_1 & \widetilde{\Sigma} \\ -\Sigma & \widetilde{\alpha}_A \end{pmatrix} \in \mathsf{End}(E_A^2 \times E_2^2).$$

is an ℓ^e -isogeny.

And

 $\ker(F) = \{ ([a_1]R - [a_2]S, [a_2]R + [a_1]S, \sigma(R), \sigma(S)) \mid R, S \in E_A[\ell^e] \}.$

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Application of Kani's lemma to SQISignHD

Embedding σ in higher dimension:

• Then

$$F := \begin{pmatrix} \alpha_1 & \widetilde{\Sigma} \\ -\Sigma & \widetilde{\alpha}_A \end{pmatrix} \in \mathsf{End}(E_A^2 \times E_2^2).$$

is an $\ell^e\text{-}\text{isogeny.}$

And

 $\ker(F) = \{ ([a_1]R - [a_2]S, [a_2]R + [a_1]S, \sigma(R), \sigma(S)) \mid R, S \in E_A[\ell^e] \}.$

• *F* can be computed in polynomial time [LR12; LR15; LR23; DLRW23].

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Algorithm for higher dimensional isogeny computations

• The ℓ^e -isogeny F can be computed as a chain of ℓ -isogenies:

$$\mathcal{A}_{0} \xrightarrow{F_{0}} \mathcal{A}_{1} \xrightarrow{F_{2}} \mathcal{A}_{2} \quad \cdots \quad \mathcal{A}_{e-1} \xrightarrow{F_{e}} \mathcal{A}_{e}$$

- Each *l*-isogeny can be computed in O(*l^g*) efficiently in the Θ-model [LR12; LR15; LR23; DLRW23].
- The whole chain can be computed in time $O(\ell^g e \log(e))$ [JD11; DLRW23].
- This method is valid in any dimension g.
Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Concrete implementation in dimension 4

• We provide a sagemath implementation when $\ell = 2$ with Θ -coordinates of level 2 (16 coordinates).

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Concrete implementation in dimension 4

- We provide a sagemath implementation when $\ell = 2$ with Θ -coordinates of level 2 (16 coordinates).
- Concrete test with $q = 3^{79}$ and e = 128.
- Runs in 600 ms on a 13th Gen Intel(R) Core(TM) i5-1335U (4600MHz) CPU.

Precomputation time: 0.049009084701538086 s Computation time: 0.6163668632507324 s Did we recover the product theta-structure? True Does the isogeny chain represent phi well? True

Another approach to effective Deuring correspondence Embedding isogenies in higher dimension Computing isogenies in dimension 4

Concrete implementation in dimension 4

- We provide a sagemath implementation when $\ell = 2$ with Θ -coordinates of level 2 (16 coordinates).
- Concrete test with $q = 3^{79}$ and e = 128.
- Runs in 600 ms on a 13th Gen Intel(R) Core(TM) i5-1335U (4600MHz) CPU.

Precomputation time: 0.049009084701538086 s Computation time: 0.6163668632507324 s Did we recover the product theta-structure? True Does the isogeny chain represent phi well? True

• Target after optimizations: gain a factor 10-50.

The protocol Security Performance

SQISignHD: signing with higher dimensional isogenies

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

Secret key: τ Commitment: E_1

Challenge: φ

- —— public —— Prover's secret
- _____ published by Verifier
- —— published by Prover

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

Secret key: τ Commitment: E_1

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

public
Prover's secret
published by Verifier

— published by Prover

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

public
Prover's secret
published by Verifier
published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

• Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- public
- Prover's secret
- published by Verifier
- —— published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.
- Compute a canonical basis (P₁, P₂) of E_A[ℓ^e].

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- public
- Prover's secret

— published by Verifier

— published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.
- Compute a canonical basis (P₁, P₂) of E_A[ℓ^e].
- Evaluate $\sigma = \varphi_I$ on (P_1, P_2) .

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- public
- Prover's secret
- published by Verifier
- published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.
- Compute a canonical basis (P₁, P₂) of E_A[ℓ^e].
- Evaluate $\sigma = \varphi_I$ on (P_1, P_2) .
- Send $(q, \sigma(P_1), \sigma(P_2))$.

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- public
- Prover's secret

— published by Verifier

— published by Prover

Secret key: τ

Commitment: E₁

Challenge: φ

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Compute $I \sim \overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ random of norm $q \simeq \sqrt{p}$.
- Compute a canonical basis (P₁, P₂) of E_A[ℓ^e].
- Evaluate $\sigma = \varphi_I$ on (P_1, P_2) .

• Send
$$(q, \sigma(P_1), \sigma(P_2))$$
.

Very fast !

The protocol Security Performance

Response: $(q, \sigma(P_1), \sigma(P_2))$

SQISignHD identification scheme [DLRW23]

—— public

Prover's secret

— published by Verifier

— published by Prover

Pierrick Dartois SQISignHD

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

Response: $(q, \sigma(P_1), \sigma(P_2))$

- —— public
- Prover's secret
- published by Verifier
 - published by Prover

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

Response: $(q, \sigma(P_1), \sigma(P_2))$

• Find
$$a_1, a_2 \in \mathbb{Z}$$
 such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).

- —— public
- Prover's secret
- published by Verifier
 - published by Prover

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P_1, P_2) of $E_A[\ell^e]$.

- —— public
- Prover's secret
- published by Verifier
 - published by Prover

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- —— public
 - Prover's secret
- published by Verifier
 - published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P_1, P_2) of $E_A[\ell^e]$.
- Compute ker(F), knowing a₁, a₂, P₁, P₂, σ(P₁), σ(P₂).

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- —— public
- Prover's secret
- published by Verifier
 - published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P₁, P₂) of E_A[l^e].
- Compute ker(F), knowing a₁, a₂, P₁, P₂, σ(P₁), σ(P₂).
- Compute F.

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- —— public
 - Prover's secret
 - published by Verifier
 - published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2))$

- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P₁, P₂) of E_A[l^e].
- Compute ker(F), knowing a₁, a₂, P₁, P₂, σ(P₁), σ(P₂).
- Compute F.
- Accept if $F \in \operatorname{End}(E_A^2 \times E_2^2)$ and
 - $F(Q, 0, 0, 0) = ([a_1]Q, -[a_2]Q, *, 0).$

The protocol Security Performance

SQISignHD identification scheme [DLRW23]

- —— public
 - Prover's secret
 - published by Verifier
 - published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2))$

Verification: Compute the embedding $F \in \operatorname{End}(E_A^2 \times E_2^2)$ of σ .

- Find $a_1, a_2 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + q = \ell^e$ (Cornacchia).
- Compute the canonical basis (P₁, P₂) of E_A[l^e].
- Compute ker(F), knowing a₁, a₂, P₁, P₂, σ(P₁), σ(P₂).
- Compute F.
- Accept if $F \in \operatorname{End}(E_A^2 \times E_2^2)$ and
 - $F(Q,0,0,0) = ([a_1]\hat{Q}, -[a_2]\hat{Q}, *, 0).$

Implementation in progress.

SQISignHD

The protocol Security Performance

Fiat-Shamir transform [FS87] of SQISignHD

Signature: message *m*, public key E_A , secret key τ .

- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature $(E_1, q, \sigma(P_1), \sigma(P_2))$ to the verifier.

- —— public
- ——— Signer's secret
 - published by Signer

The protocol Security Performance

Fiat-Shamir transform [FS87] of SQISignHD

- —— public
 - Signer's secret
 - published by Signer

Signature: message *m*, public key E_A , secret key τ .

- Commitment $\psi : E_0 \longrightarrow E_1$.
- Challenge φ := H(E₁, m) (where H is a hash function).
- Compute and send signature $(E_1, q, \sigma(P_1), \sigma(P_2))$ to the verifier.

Verification: E_A , m, $(E_1, q, \sigma(P_1), \sigma(P_2))$.

- Recompute $\varphi := H(E_1, m)$.
- Use φ , q, $\sigma(P_1)$, $\sigma(P_2)$ to compute the embedding F of σ .
- Check that $F \in \text{End}(E_A^2 \times E_2^2)$ and $F(Q, 0, 0, 0) = ([a_1]Q, -[a_2]Q, *, 0).$

The protocol Security Performance

Outline of the security analysis

Theorem (Fiat-Shamir, 1986)

Let ID be an identification protocol that is:

- Complete: a honest execution is always accepted by the verifier.
- **Sound:** an attacker cannot "guess" a response.
- **Zero-knowledge:** the response does not leak any information on the secret key.

Then the Fiat-Shamir transform of ID is a universally unforgeable signature under chosen message attacks in the random oracle model.

Soundness

The protocol Security Performance

Similar to SQISign

Proposition (Special soundness)

Given two transcripts $(E_1, \varphi, q, \sigma(P_1), \sigma(P_2)), (E_1, \varphi', q', \sigma'(P_1'), \sigma'(P_2'))$ with the same commitment E_1 and $\varphi \neq \varphi'$, we can extract $\alpha \in \text{End}(E_A)$ non-scalar.

Soundness

Similar to SQISign

Proposition (Special soundness)

Given two transcripts $(E_1, \varphi, q, \sigma(P_1), \sigma(P_2)), (E_1, \varphi', q', \sigma'(P_1'), \sigma'(P_2'))$ with the same commitment E_1 and $\varphi \neq \varphi'$, we can extract $\alpha \in \text{End}(E_A)$ non-scalar.

The protocol Security

Performance

Proof.

- Exctract σ from $(q, \sigma(P_1), \sigma(P_2))$ and σ' from $(q', \sigma'(P'_1), \sigma'(P'_2))$.
- Then $\alpha := \widehat{\varphi'} \circ \widehat{\sigma'} \circ \sigma \circ \varphi \in \text{End}(E_A)$ is non-scalar.

Zero-knowledge

The protocol Security Performance

Definition (Recall)

We say that an integer q is **good** if $\ell^e - q$ is a prime $\equiv 1 \mod 4$.

The protocol Security Performance

Zero-knowledge

Definition (Recall)

We say that an integer q is **good** if $\ell^e - q$ is a prime $\equiv 1 \mod 4$.

Definition (RUGDIO)

A random uniform good degree isogeny oracle (RUGDIO): **Input:** A supersingular elliptic curve E/\mathbb{F}_{p^2} . **Output:** An isogeny $\sigma : E \longrightarrow E'$ of good degree q s.t.

- E' is uniform among supersingular elliptic curves.
- Given E', σ is uniform among isogenies of good degree $E \longrightarrow E'$.

The protocol Security Performance

Zero-knowledge

Theorem

Assume that:

- *E*₁ is computationally close to uniform.
- We have access to a RUGDIO.

Then SQISignHD is computationally honest-verifier zero-knowledge.

The protocol Security Performance

Zero-knowledge

Theorem

Assume that:

- *E*₁ is computationally close to uniform.
- We have access to a RUGDIO.

Then SQISignHD is computationally honest-verifier zero-knowledge.

Proof.

We build a simulator $\mathcal S$ of protocol transcripts:

- S calls the RUGDIO to generate $(q, \sigma(P_1), \sigma(P_2))$.
- S generates a random challenge $\widehat{\varphi}: E_2 \longrightarrow E_1$.
- S outputs $(E_1, \varphi, q, \sigma(P_1), \sigma(P_2))$.

The protocol Security Performance

Zero-knowledge: comparison with SQISign

Heuristic assumptions to prove the zero-knowledge property

In SQISign:

• $\sigma: E_A \longrightarrow E_2$ is computationally indistinguishable from a random isogeny of degree ℓ^e .

In SQISignHD:

- *E*₁ is computationally close to uniform.
- We have access to a RUGDIO.

The protocol Security Performance

Compact signatures

Signature size comparison

	In SQISign	In SQISignHD
Asymptotic (in bits)	$\sim 23/4\log_2(p)$	$\sim 13/4\log_2(p)$
NIST-1 security level (in bytes)	204	116

Conclusion

Comparison of SQISignHD with SQISign

	SQISign	SQISignHD
Security	X Ad-hoc heuristic:	✓ Simpler heuristics:
	• Distribution of σ .	RUGDIO;
		• Distribution of E_1 .
Signing time	✗ 400 ms for NIST-1	\checkmark < 60 ms for NIST-1
Signature size	\checkmark 204 bytes for NIST-1	\checkmark 116 bytes for NIST-1
Verification	✓ Fast (6 ms for NIST-1)	× 600 ms for NIST-1
		in sagemath

Thank you for listening.

Find our pre-print here: https://eprint.iacr.org/2023/436