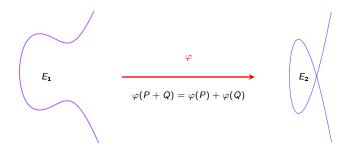
Signing with higher dimensional isogenies

Pierrick Dartois

Joint work with Antonin Leroux, Damien Robert and Benjamin Wesolowski Acknowledgements to Luca De Feo

16 October 2023

The Deuring correspondence


Effective Deuring correspondence and higher dimensional isogenies

SQIsignHD

- The Deuring correspondence
- 2 Effective Deuring correspondence and higher dimensional isogenies
- SQIsignHD

The Deuring correspondence

Isogenies

The Deuring correspondence

Supersingular elliptic curves	Quaternions
$j(E)$ or $j(E)^p$ supersingular	$\mathcal{O}\congEnd(E)$ maximal order in $\mathcal{B}_{p,\infty}$
$\varphi: E \longrightarrow E'$	left ${\mathcal O}$ -ideal and right ${\mathcal O}'$ -ideal I_{arphi}
$\varphi, \psi : E \longrightarrow E'$	$I_{arphi} \sim I_{\psi} \; (I_{\psi} = I_{arphi} lpha)$
\widehat{arphi}	$\overline{I_{arphi}}$
$\varphi \circ \psi$	$I_{\psi}\cdot I_{arphi}$
$\theta \in End(E)$	Principal ideal $\mathcal{O} heta$
$deg(\varphi)$	$nrd(\mathit{I}_{arphi})$

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_J: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.

- Let E_1 and E_2 of known endomorphism rings $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$.
- Compute a connecting ideal I between \mathcal{O}_1 and \mathcal{O}_2 .
- Compute $J \sim I$ of smooth norm via [KLPT14].
- Translate J into an isogeny $\varphi_I: E_1 \longrightarrow E_2$.
- √ Takes polynomial time.
- ✓ Becomes hard when $End(E_1)$ or $End(E_2)$ is unknown.
- X Slow because of the red steps.

The Deuring correspondence Effective Deuring correspondence and higher dimensional isogenies SQIsignHD

Effective Deuring correspondence and higher dimensional isogenies

Kani's embedding lemma

Theorem (Robert, 2022)

Let $\sigma: E_1 \longrightarrow E_2$ such that $\deg(\sigma) + a_1^2 + a_2^2 = \ell^e$. Then:

• $\sigma: E_1 \longrightarrow E_2$ can be represented in dimension 4 by the ℓ^e -isogeny:

$$F := \begin{pmatrix} a_1 & a_2 & \widehat{\sigma} & 0 \\ -a_2 & a_1 & 0 & \widehat{\sigma} \\ -\sigma & 0 & a_1 & -a_2 \\ 0 & -\sigma & a_2 & a_1 \end{pmatrix} \in \operatorname{End}(E_1^2 \times E_2^2).$$

• F can be computed by evaluating σ on $E_1[\ell^e]$.

Pierrick Dartois

SQIsignHD

Kani's embedding lemma

Corollary (Robert, 2022)

Let $\sigma: E_1 \longrightarrow E_2$ of degree $q < \ell^e$ such that $\ell^e - q$ is a prime $\equiv 1 \mod 4$. There exists a polynomial time algorithm with:

- Input: $(\sigma(P_1), \sigma(P_2))$, where (P_1, P_2) is a basis of $E_1[\ell^e]$ and $Q \in E_1(\mathbb{F}_{p^2})$.
- Output: $\sigma(Q)$.

Kani's embedding lemma

Corollary (Robert, 2022)

Let $\sigma: E_1 \longrightarrow E_2$ of degree $q < \ell^e$ such that $\ell^e - q$ is a prime $\equiv 1 \mod 4$. There exists a polynomial time algorithm with:

- Input: $(\sigma(P_1), \sigma(P_2))$, where (P_1, P_2) is a basis of $E_1[\ell^e]$ and $Q \in E_1(\mathbb{F}_{p^2})$.
- Output: $\sigma(Q)$.

Context: This idea comes from the attacks against SIDH [CD23; MM22; Rob23].

Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

The SQIsign way [DKLPW20]

• Compute $I \sim I_{\phi}$ random of smooth norm $\simeq p^{15/4}$ via [KLPT14].

Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

The SQIsign way [DKLPW20]

- Compute $I \sim I_{\phi}$ random of smooth norm $\simeq p^{15/4}$ via [KLPT14].
- Translate I into $\sigma: E_1 \longrightarrow E_2$.

Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

The SQIsign way [DKLPW20]

- Compute $I \sim I_{\phi}$ random of smooth norm $\simeq p^{15/4}$ via [KLPT14].
- Translate I into $\sigma: E_1 \longrightarrow E_2$.

The SQIsignHD way [DLRW23]

• Compute $I \sim I_\phi$ of norm $q \simeq \sqrt{p}$ such that $\ell^e - q$ is a prime $\equiv 1$ mod 4

Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

The SQIsign way [DKLPW20]

- Compute $I \sim I_{\phi}$ random of smooth norm $\simeq p^{15/4}$ via [KLPT14].
- Translate I into $\sigma: E_1 \longrightarrow E_2$.

The SQIsignHD way [DLRW23]

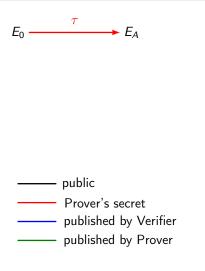
- Compute $I \sim I_{\phi}$ of norm $q \simeq \sqrt{p}$ such that $\ell^e q$ is a prime $\equiv 1$ mod 4.
- Evaluate $\sigma: E_1 \longrightarrow E_2$ associated to I on $E_1[\ell^e]$, using ϕ .

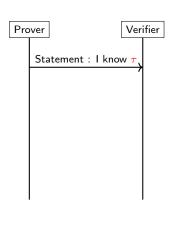
Problem: Given $\phi: E_1 \longrightarrow E_2$, I_{ϕ} , $\mathcal{O}_1 \cong \operatorname{End}(E_1)$ and $\mathcal{O}_2 \cong \operatorname{End}(E_2)$ (secret), find another path $\sigma: E_1 \longrightarrow E_2$.

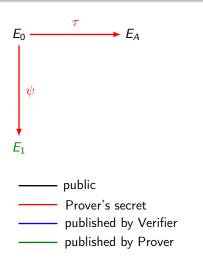
The SQIsign way [DKLPW20]

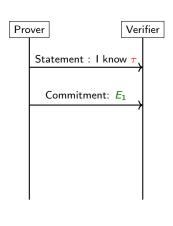
- Compute $I \sim I_{\phi}$ random of smooth norm $\simeq p^{15/4}$ via [KLPT14].
- Translate I into $\sigma: E_1 \longrightarrow E_2$.

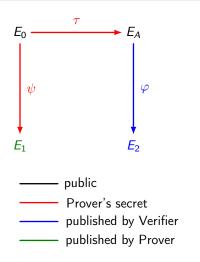
The SQIsignHD way [DLRW23]

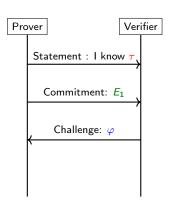

- Compute $I \sim I_{\phi}$ of norm $q \simeq \sqrt{p}$ such that $\ell^e q$ is a prime $\equiv 1$ mod 4.
- Evaluate $\sigma: E_1 \longrightarrow E_2$ associated to I on $E_1[\ell^e]$, using ϕ .
- $(q, \sigma(E_1[\ell^e]))$, is sufficient to represent σ .
- We can then compute $F \in \operatorname{End}(E_1^2 \times E_2^2)$ embedding σ .

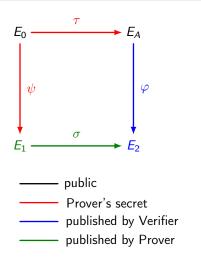

Pierrick Dartois

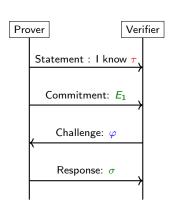

SQIsignHD

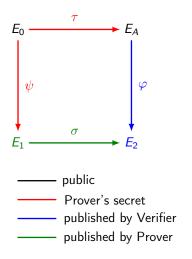

The protocol Performance and security

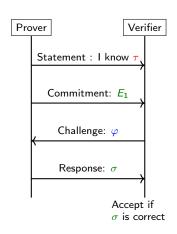

SQlsignHD

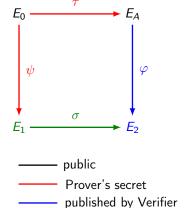


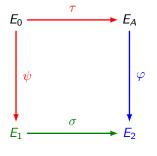












Response: $(q, \sigma(P_1), \sigma(P_2)),$ where:

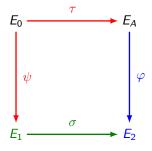
- (P_1, P_2) is a basis of $E_1[\ell^e]$;
- $q := \deg(\sigma)$.

published by Prover

public

Prover's secret

published by Verifier


published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2)),$

where:

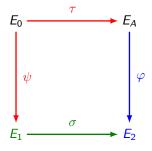
- (P_1, P_2) is a basis of $E_1[\ell^e]$;
- $q := \deg(\sigma)$.

Very fast ! 28 ms in C.

public

Prover's secret

published by Verifier


published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2)),$ where:

- (P_1, P_2) is a basis of $E_1[\ell^e]$;
- $q := deg(\sigma)$.

Very fast ! 28 ms in C.

Verification: Compute the embedding $F \in \text{End}(E_1^2 \times E_2^2)$ of σ .

public

Prover's secret published by Verifier

published by Prover

Response: $(q, \sigma(P_1), \sigma(P_2)),$ where:

- (P_1, P_2) is a basis of $E_1[\ell^e]$;
- $q := deg(\sigma)$.

Very fast ! 28 ms in C.

Verification: Compute the embedding $F \in \text{End}(E_1^2 \times E_2^2)$ of σ .

Proof of concept. 850 ms in sagemath.

Comparison of SQIsignHD with SQIsign

	SQIsign	SQIsignHD
Security	X Ad-hoc heuristic:	✓ Simpler heuristics:
	• Distribution of σ .	Oracle (RUGDIO);
		• Distribution of E_1 .
Signing time	✗ 400 ms for NIST-1	✓ 28 ms for NIST-1
Signature size	✓ 204 bytes for NIST-1	✓ 109 bytes for NIST-1
Verification	✓ Fast (6 ms for NIST-1)	× 850 ms for NIST-1
		in sagemath

Thank you for listening.

Find our pre-print here: https://eprint.iacr.org/2023/436