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An Introduction to Abelian Varieties

Pierrick Dartois

Abstract: The goal of this seminar is to understand abelian varieties and to see some generalizations

of the results I have already studied on elliptic curves (regarding torsion subgroups and the Z-module

of homomorphisms Hom(A,B) in particular). The study of abelian varieties in plain generality requires

a significant amount of knowledge in algebraic geometry, a field I started to study with the lectures of

Florian Ivorra this year, during the course of this seminar. That is why a first chapter with geometric

prerequisites was necessary. Of course, all the results used here are not proved (it would require an entire

book), but we emphasized on some topics (invertible sheaves and divisors in particular). The emphasis

might have been influenced by the subjectivity of the author.

In chapter 2, we introduce abelian varieties (and group schemes). We prove some basic properties of

these objects (mainly that they are smooth and that their group structure is commutative) and present

some deep consequences of the theorem of the cube: the projectiveness of abelian varieties and the

structure their torsion subgroups. We mainly followed the lectures given by Milne [1] but unlike him, we

preferred a scheme theoretic approach like Mumford [2] and the Stack Project [3, chapter 39].

Our objective is reached in chapter 3 presenting Tate modules and constructing an embedding Z`⊗Z
Hom(A,B) ↪→ HomZ`

(T`(A), T`(B)). Then, we present further refinements and applications of this

result (without proof) in the case of finite fields, namely, the fact that this map becomes essentially an

isomorphism1 and a characterization of isogenous abelian varieties. Those theorems are due to John

Tate [4] and presented in the conference proceeding of Waterhouse and Milne [5] initially set as a main

reference document for this seminar.

1This is not exactly true because we need to take into account a Galois invariance property.
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3.3 Simple isogenies and Poincaré’s decomposition . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Towards Tate’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Further developments and applications . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



Chapter 1

Geometric preliminaries

Throughout the document, k is a field and k is an algebraic closure of k.

1.1 Preliminaries of general scheme theory

1.1.1 Separatedness, finiteness, varieties

Definition 1.1. Let X be a k-scheme. One says that X is separated if the structural morphism π :

X −→ Spec(k) is separated, i.e. if the diagonal morphism ∆X/k : X −→ X ×k X induced by the

universal property of the fiber product as follows:

X

idX

��

∆X/k

##

idX

**X ×k X //

��

X

π

��
X

π // Spec(k)

is a closed immersion.

Lemma 1.2. Let ϕ,ψ : X −→ Y two morphisms of k-schemes. Suppose that Y is separated. Then the

set:

{x ∈ X | ϕ(x) = ψ(x)}

is closed in X.

Proof. Consider the morphism θ : X
∆X/k−→ X ×k X

ϕ×kψ−→ Y ×k Y , x 7−→ (ϕ(x), ψ(x)). Then, we have:

{x ∈ X | ϕ(x) = ψ(x)} = θ−1(∆Y/k(Y ×k Y ))

And Y is separated so ∆Y/k is closed, which completes the proof.

Definition 1.3. One says that a morphism f : X −→ Y is of finitr type if it is:

(i) Locally of finite type: for all open affines U ⊆ X and V ⊆ Y such that f(U) ⊆ V , the morphism

Γ(V,OY ) −→ Γ(U,OX) is of finite type.

(ii) Quasi compact: for all quasi compact open subset V ⊆ Y , f−1(V ) is quasi-compact.

Definition 1.4. One says that a k-scheme X is of finite type when the structural morphism π : X −→
Spec(k) is. Equivalently, X is of finite type when it is:
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(i) Locally of finite type, i.e. Γ(U,OX) is a finite-type k-algebra for all open subset U ⊆ X.

(ii) Quasi compact (as a topological space).

Definition 1.5. A k-variety is a separated k-scheme of finite type.

1.1.2 Geometric properties and extension of scalars

Definition 1.6. One says that a k-scheme X is geometrically reduced, irreducible or integral (i.e. both)

if Xk = X ×Spec(k) Spec(k) is respectively reduced, irreducible or integral.

Proposition 1.7. A k-scheme X is geometrically reduced, irreducible or integral if and only if XK is

respectively reduced, irreducible or integral for every field extension K/k. In that case, X is integral.

Proof. See [6, propositions 5.49, 5.51 and corollary 5.54].

1.1.3 Completeness and properness

Definition 1.8. A morphism of schemes f : X −→ Y is said to be universally closed if for every

morphism of schemes g : Z −→ Y , the base change of f , f ′ : X ×Y Z −→ Z provided by the definition

of the fiber product is closed:

X ×Y Z
f ′ //

��

Z

g

��
X

f // Y

Such a morphism is proper if it is separated, of finite type and universally closed.

Definition 1.9. A k-scheme X is complete if the structural morphism π : X −→ Spec(k) is universally

closed, or equivalently, if the right projection map q : X ×k Y −→ Y is closed for every k-scheme Y .

A k-scheme X is said to be proper if it is complete and a k-variety (i.e. separated and of finite type),

or equivalently, if the structural morphism π : X −→ Spec(k) is proper.

Lemma 1.10. (i) Let f : X −→ Y and g : Y −→ Z be morphisms of schemes. If g ◦ f is proper and g

is separated, then f is proper.

(ii) Proper morphisms are stable under base change.

Proof. See [7, corollary II.4.8, points c and e].

Lemma 1.11. Let f : X −→ Y be a morphism of k-schemes. Assume that X is proper and Y is

separated. Then f is proper.

Proof. Since πY/k ◦f = πX/k, it is an immediate consequence of the point (i) of the preceding lemma.

Lemma 1.12. Let X be a proper and geometrically integral k-scheme. Then, every morphism from X

to an affine k-variety is constant.

Proof. See [6, corollary 12.67].

Theorem 1.13 (rigidity lemma). Let ϕ : X×k Y −→ Z be a morphism of k-schemes. Assume that X is

proper and geometrically integral, that X ×k Y is geometrically irreducible, that Z is separated and that

there exist k-valued points x0 ∈ X(k), y0 ∈ Y (k) and z0 ∈ Z(k) such that:

ϕ(X × {y0}) = {z0} = ϕ({x0} × Y )

Then, ϕ(X × Y ) = {z0}.
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Proof. One can easily see that the properties of the theorem are invariant under base change, so we can

assume that k is algebraically closed. Let U0 be an open affine neighborhood of z0, q : X ×k Y −→ Y the

right projection map and F := q(ϕ−1(Z \ U0)). Note that F is closed in Y because q is closed (since X

is complete), so U := Y \ F is open in Y . Moreover, we have:

U = {y ∈ Y | ϕ(X × {y}) ⊆ U0}

so in particular, y0 ∈ U and U 6= ∅. Since U0 is affine and that X is proper and geometrically integral,

for all y ∈ U , ϕ|X×{y} : X × {y} ' X −→ U0 is constant by lemma 1.12. Then, for all y ∈ U ,

ϕ(X × {y}) = {ϕ(x0, y)} = {z0}. Then, ϕ is constant on X × U .

Since X×Y is irreducible and X×U is a non-empty open subset, X×U is dense. Since Z is separated,

the set on which ϕ agrees with the constant map is closed (by lemma 1.2), so it contains X × U = X×Y ,

which completes the proof.

1.1.4 Smooth, regular and normal schemes

Definition 1.14. Let f : X −→ Y be a morphism of schemes.

(i) One says that f is smooth (of relative dimension d) at x ∈ X, if there exist affine open neighborhoods

U of x and V = Spec(R) of f(x) such that f(U) ⊆ V , and an open immersion

j : U ↪→ Spec(R[T1, · · · , Tn]/(f1, · · · , fn−d))

of R-schemes where n ≥ d and f1, · · · , fn−d ∈ R[T1, · · · , Tn], such that the Jacobian matrix

Jac(f1, · · · , fn−d)(x) :=

Å
∂fi
∂Tj

(x)

ã
1≤i≤n−d

1≤j≤n

∈Mn−d,n(κ(x))

has rank n− d (x being seen as a κ(x)-valued point).

(ii) One says that f : X −→ Y is smooth (of relative dimension d), if it is smooth (of relative dimension

d) at all points x ∈ X.

(iii) A k-variety X is smooth (respectively x ∈ X is smooth) if its structural morphism πX/k : X −→
Spec(k) is smooth (respectively smooth at x).

Lemma 1.15. Let X be a geometrically reduced k-scheme. Then, the smooth locus (i.e. the set of smooth

points of X) is open and dense in X.

Proof. See [6, proposition 6.19 and remark 6.20].

Definition 1.16. A Noetherian local ring R is regular if its maximal ideal can be generated by dim(R)

elements.

A scheme X is regular if for all x ∈ X, OX,x is regular.

Theorem 1.17 (Auslander and Buchsbaum). A regular local ring is a unique factorization domain.

Proof. See [8, theorem 20.3].

Definition 1.18. A ring R is normal if the localization Rp is an integrally closed domain for every prime

ideal p of R.

A scheme X is normal if for all x ∈ X, OX,x is normal.

Lemma 1.19. Let X be a k-variety.

(i) If X is smooth, then X is regular.
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(ii) If X is regular, then X is normal.

Proof. See [6, Lemma 6.26] for (i) and [6, Lemma 6.39] for (ii).

1.2 More results on morphisms of schemes

1.2.1 Finite locally free morphisms

Definition 1.20. (i) A morphism of schemes is affine when the preimage of every open affine is affine.

(ii) A morphism of schemes f : X −→ Y is finite if it is affine and for every open affine V ⊆ Y , the

induced morphism f bU : Γ(V,OY ) −→ Γ(f−1(V ),OX) is of finite type (meaning that Γ(f−1(V ),OX)

is a finite type Γ(V,OY )-module).

Let f : X −→ Y be a morphism of schemes. In general, the topological fibers of f do not have a

structure of scheme. That is why we consider the scheme theoretic fibers of f defined as follows. Let

y ∈ Y . Then, we have a morphism ŷ : Spec(κ(y)) −→ Y mapping the point to y. The scheme theoretic

fiber of f at y is the fiber product:

Xy := X ×Y Spec(κ(y))

induced by f : X −→ Y and ŷ : Spec(κ(y)) −→ Y .

Lemma 1.21. Let f : X −→ Y . Assume that Y is locally Noetherian. Then f is finite if and only if it

is proper with finite (scheme theoretic) fibers.

Proof. See [3, lemma 30.21.1].

Definition 1.22. (i) Let R be a ring and M be a R-module. One says that M is flat if the functor

M ⊗A is exact.

(ii) Let (X,OX) be a ringed space. An OX -moduleM is flat if for all x ∈ X,Mx is a flat OX,x-module.

(iii) A morphism of schemes f : X −→ Y is flat (respectively coherent) when f∗OX is a flat (respectively

coherent) OY -module.

Definition 1.23. (i) Let (X,OX) be a ringed space. Let M be an OX -module. One says that M is

locally free if for all x ∈ X, there exists an open neighborhood U of x such thatM|U ' O
(Ix)
X |U for

a given set Ix.

(ii) One says that M is locally free of finite type if Ix is additionally finite for all x ∈ X.

(iii) One says that M is locally free of rank n if |Ix| = n for all x ∈ X.

Proposition 1.24. Let f : X −→ Y be a morphism of locally Noetherian schemes. Then, the following

conditions are equivalent:

(i) f is affine and f∗OX is a locally free of finite type OY -module.

(ii) f is finite, flat and coherent.

Proof. See [6, proposition 12.19] and [6, proposition 7.45], the latter ensuring that coherent modules and

modules of finite presentation1 are the same on locally Noetherian schemes.

Definition 1.25. A morphism of locally Noetherian schemes is said to be finite locally free when it

satisfies the equivalent conditions above.

Lemma 1.26. Let f : X −→ Y be an affine morphism of schemes over a base scheme S. Let M be a

quasi-coherent OX-module. Then M is flat over S if and only if f∗M is flat over S.

Proof. See [3, lemma 29.25.4].
1This notion is useless here, so we do not introduce it and we prefer the notion of coherence. There are already too

many definitions in this document.
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1.2.2 Degree of finite morphisms

Definition 1.27. A morphism of schemes f : X −→ Y is dominant when f(X) is dense in Y .

Lemma 1.28. Let f : X −→ Y be a dominant morphism of irreducible schemes, then f sends the generic

point of f to the generic point of Y .

Proof. Let η be the generic point of X. Then, {η} = X, so {f(η)} = f({η}) = f(X) = Y and f(η) is the

generic point of Y .

Let f : X −→ Y be a dominant morphism of integral schemes. Then f maps the generic point η of

X to the generic point ξ of Y , so it yields a field homomorphism k(X) = OX,η −→ k(Y ) = OY,ξ. Then,

k(Y )/k(X) is a field extension. When f is finite, f∗OX is a finite type OY module so this field extension

is finite.

Definition 1.29. When f is finite the degree of f is:

deg(f) := [k(Y ) : k(X)]

Finite morphisms have finite (scheme theoretic) fibers. Actually, there is a formula relating deg(f) to

is fibers when f is finite locally free. First, we need to study how the finite fibers look like.

Lemma 1.30. Let X be a finite k-scheme of finite-type. Then:

(i) All points of X are closed (hence X is discrete and zero dimensional).

(ii) X is affine.

(iii) Γ(X,OX) =
∏
x∈X OX,x.

(iv) Γ(X,OX) is a finite dimensional k-vector space and:

dimkΓ(X,OX) =
∑
x∈X

exfx

where for all x ∈ X:

ex = ex(X) := lgOX,x
(OX,x) and fx = fx(X) := [κ(x) : k]

are respectively ramification index and the inertia index of X at x.

Proof. Let U be the set of non-closed points of X. Then, X \ U is a finite union of closed sets so it is

closed and U is open. But closed points are (very) dense in X by [6, proposition 3.35] so U is either

empty or contains a closed point which is a contradiction. We conclude that all points of X are closed.

Then, every irreducible subset of X is a singleton and therefore dim(X) = 0. Every singleton {x} ⊆ X is

a finite intersection of open subsets {x} =
⋂
y∈X\{x}X \ {y} so {x} is open and X is discrete. Hence (i).

Open affines form a basis of the topology of X so for all x ∈ X, {x} = Spec(Rx) for a certain k-algebra

of finite type Rx. Obviously, Rx = lim
{x}⊆U

Γ(U,OX) = OX,x for all x ∈ X. We conclude that:

X =
⊔
x∈X

Spec(OX,x) = Spec

(∏
x∈X
OX,x

)

Hence (ii) and (iii).

Since dim(X) = 0, Γ(X,OX) is a k-algebra of finite type and Krull dimension zero so the Noether’s

normalization theorem ensures that Γ(X,OX) is finite dimensional over k. By (iii), we have:

dimkΓ(X,OX) =
∑
x∈X

dimk(OX,x)
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Let x ∈ X. Consider the chain of ideals · · · ⊆ mi+1 ⊆ mi ⊆ · · · ⊆ m ⊆ OX,x, where m := mX,x. OX,x is

finite dimensional so it is a Noetherian and Artin local ring and there exists n ∈ N∗ such that mi = {0}
for all i ≥ n (by [9, proposition 8.6]) and the chain is finite. Considering the exact sequence:

{0} −→ mi+1 −→ mi −→ mi/mi+1 −→ {0}

we get that dimk(mi) = dimk(mi+1) + dim(mi/mi+1) and lgOX,x
(mi) = lgOX,x

(mi+1) + lgOX,x
(mi/mi+1),

so that :

dimk(OX,x) =
n−1∑
i=0

dimk(mi/mi+1) and lgOX,x
(OX,x) =

n−1∑
i=0

lgOX,x
(mi/mi+1)

But for all i ∈ N, mi/mi+1 is a κ(x) := OX,x/m-vector space and lgOX,x
(mi/mi+1) = dimκ(x)(m

i/mi+1),

so that dimk(mi/mi+1) = [κ(x) : k]lgOX,x
(mi/mi+1) = fxlgOX,x

(mi/mi+1) and dimk(OX,x) = fxex.

Hence (iv).

Lemma 1.31. Let f : X −→ Y be a finite locally free morphism of integral schemes. Then:

(i) f is dominant (so deg(f) is well defined).

(ii) For all y ∈ Y , we have:

deg(f) = dimκ(y)Γ(Xy,OXy ) =
∑
x∈Xy

ex/yfx/y

where ex/y and fx/y are respectively the ramification and inertia indices of Xy at x for all x ∈ Xy.

Proof. Since f is affine we may assume that X and Y are affine, write X := Spec(R) and Y := Spec(S).

Let θ : S −→ R be the ring homomorphism induced by f . Then, we have (by usual properties of the

Zariski topology):

f(X) = V

Ñ ⋂
q∈f(X)

q

é
= V

Ñ ⋂
p∈Spec(R)

θ−1(p)

é
= V

Ñ
θ−1

Ñ ⋂
p∈Spec(R)

p

éé
= V (θ−1(

»
{0})) = V (

»
ker(θ)) = V (ker(θ))

But f is locally free so θ induces a structure of free S-module over R and ker(θ) = {0} and f(X) is dense

in Y . Hence (i).

(ii) The second equality was already proved in 1.30.(iv) (it makes sense because Xy is finite since f

is finite), so we prove the first. R is a free S-module and by localizing at the generic point, we see that

it is of rank r := deg(f). Let y ∈ Y . Then y corresponds to a prime ideal p ⊂ S and we have:

Xy = X ×Y Spec(κ(y)) = Spec(R⊗S Sp/pSp) = Spec((R⊗S S/p)p) = Spec((R/p)p) = Spec(Rp/pRp)

Since R is a free S-module of rank r = deg(f), we get that Rp/pRp is a κ(y) = Sp/pSp-vector space of

dimension r, so that deg(f) = dimκ(y)Γ(Xy,OXy ) and the proof is complete.

1.2.3 Unramified and étale morphisms

Definition 1.32. Let R and S be Noetherian local rings. A local homomorphism R −→ S is said to be

unramified if:

(i) mRS = mS .

(ii) κ(mS) (residue field of S) is a finite separable extension of κ(mR) (residue field of R).
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(iii) S is essentially of finite type over R (this means that S is the localization of a finite type R-algebra

at a prime ideal).

Definition 1.33. Let Y be a locally Noetherian scheme and f : X −→ Y be a morphism locally of finite

type.

(i) One says that f is unramified at x ∈ X if f#
x : OY,f(x) −→ OX,x is unramified.

(ii) On says that f is unramified if it is unramified at every point x ∈ X.

Remark 1.34. Actually, [3, definition 29.35.1] provides a more general equivalent definition of this notion

involving differential modules but we will not use it. We follow [3, definition 41.3.5] here.

Lemma 1.35. Let f : X −→ Y be a morphism of k-schemes locally of finite type. Let x ∈ X be a point.

Set y = f(x) and assume that κ(y) = κ(x). Then the following are equivalent:

(i) The differential map dfx : Tx(X) −→ Ty(Y ) is injective.

(ii) f is unramified at x.

Proof. See [3, lemma 33.16.8].

Definition 1.36. Let Y be a locally Noetherian scheme and f : X −→ Y be a morphism locally of finite

type. One says that f is étale if it is flat and unramified.

Proposition 1.37. Assume k algebraically closed and let f : X −→ Y be a finite locally free and

unramified (i.e. étale) morphism of integral schemes. Then, for all k-valued point y ∈ Y (k), we have

deg(f) = |Xy|.

Proof. Let y ∈ Y (k). By lemma 1.31, we only have to prove that ramification and inertia indices are

trivial ex/y = fx/y = 1 for all x ∈ Xy. For all x ∈ Xy, κ(x)/κ(y) = k is finite because f is unramified so

that κ(x) = k because k is algebraically closed and fx/y = [κ(x) : k] = 1.

As we saw in the proof of lemma 1.31, we may assume that X = Spec(R), Y = Spec(S) and that f

is given by a ring homomorphism θ : S −→ R which is free and of finite type. x ∈ Xy and y correspond

to prime ideals p ⊆ R and q ⊆ S respectively and we have seen that Xy = Spec(Rq/qRq). Then,

OXy,x = (Rq/qRq)p = (Rq)p/q(Rq)p = Rp/qRp, but Sq −→ Rp is unramified so qRp = pRp and finally

OXy,x = Rp/pRp = κ(x) is a field so it is of length 1 and we have ex/y = 1. This completes the proof.

1.3 Invertible sheaves and divisors

1.3.1 Invertible sheaves

Throughout this paragraph, (X,OX) will be a ringed space.

Definition 1.38. An invertible OX-module also called invertible sheaf on X is a locally free OX -module

of rank 1.

Example 1.39. Let R be a graded ring. Take X := Proj(R), and for n ∈ N, R(n) :=
⊕

d≥nRd the ideal

of R formed of elements of degree ≥ n and OX(n) := flR(n), the sheaf associated to the R-module R(n)

as defined in [7, p. 116]. Then, OX(n) is an invertible sheaf on X. OX(1) is called the twisted sheaf of

Serre on X.

Let M and N be OX -modules. We define HomOX
(M,N ) as the presheaf on X whose sections on a

given open subset U ⊆ X are morphisms of OX |U -modules f :M|U −→ N|U i.e. morphisms of sheaves

such that the induced morphisms fV : M(V ) −→ N (V ) are OX(V )-linear for all open subset V ⊆ U .

Actually, HomOX
(M,N ) is a sheaf.

The sheaf HomOX
(M,OX) is called the dual of M and denoted by M∨.
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Lemma 1.40. (i) For all invertible OX-modules L, L′, L ⊗OX
L′ is an invertible OX-module.

(ii) For all invertible OX-module L, L∨ is an invertible OX-module.

(iii) For all invertible OX-module L, L∨ ⊗OX
L ' OX .

Proof. (i) For x ∈ X, there exist open neighborhoods U, V ⊆ X of x such that L|U ' OX |U and

L′|V ' OX |V . Then, W = U ∩ V is an open neighborhood of x such that:

(L ⊗OX
L′)|W = L|W ⊗OX |W L

′
|W ' OX |W ⊗OX |W OX |W ' OX |W

by functoriality of the tensor product.

(ii) For x ∈ X, there exists an open neighborhood U ⊆ X of x such that L|U ' OX |U . Then:

L|U = HomOX
(L,OX)|U = HomOX |U (L|U ,OX |U ) ' HomOX |U (OX |U ,OX |U )

Then, we may assume that X = U and we only have to prove that HomOX
(OX ,OX) ' OX . The

morphism HomOX
(OX ,OX) −→ OX given by:

f ∈ HomOX
(OX ,OX)(U) 7−→ f(1) ∈ OX(U)

for all open subset U ⊆ X is an isomorphism whose inverse is given by:

a ∈ OX(U) 7−→ (λ 7−→ aλ) ∈ HomOX
(OX ,OX)(U)

for all open subset U ⊆ X. This completes the proof of (ii).

(iii) We define an isomorphism on the presheaf U 7−→ L∨(U)⊗OX(U) L(U) to OX by the formula:

f ⊗ x ∈ L∨(U)⊗OX(U) L(U) 7−→ f(x) ∈ OX(U)

for all open subset U ⊆ X. This morphism induces a morphism L∨ ⊗OX
L −→ OX by the universal

property of the associated sheaf [6, proposition 2.24]. It suffices to prove that this morphism is isomorphic

on the stalks (by [7, Proposition II.1.1]), but the induced morphism of the stalk at x ∈ X is:

fx ⊗ λx ∈ L∨x ⊗OX,x
Lx 7−→ fx(λx) ∈ OX,x

which is an isomorphism because Lx ' L∨x ' OX,x.

This lemma ensures that the tensor product defines a group law on the isomorphism classes of invertible

sheaves on X and that the inverse of [L] is [L∨] for all invertible sheaf L. That is why L∨ will often be

denoted by L−1 or L⊗−1. In the same spirit, we will denote L⊗n the n-th exponentiation of L (given

n ∈ Z). The group of these isomorphism classes is called the Picard group of X and denoted by Pic(X).

On says that an invertible sheaf L is trivial if it corresponds to the neutral element of Pic(X) i.e. if

L ' OX .

Lemma 1.41. Let X,Y be two locally ringed spaces, L be an invertible sheaf on Y and f : X −→ Y a

morphism of locally ringed spaces. Then:

(i) f∗L = OX ⊗f−1OY
f−1L is an invertible sheaf on X.

(ii) If f is constant, then f∗L is trivial.

Proof. (i) Let x ∈ X. Then, there exists an open neighborhood V ⊆ Y of f(x) such that L|V ' OY |V .

Let U := f−1(V ). Then, the restriction to U of the presheaves f+L : W 7−→ lim
f(W )⊆T⊆Y

L(T ) and

10



f+OY : W 7−→ lim
f(W )⊆T⊆Y

OY (T ) are isomorphic. It is the same for their associated sheaves f−1L|U and

f−1OY |U (by [6, proposition 2,24]) and we conclude immediately that:

f∗L|U = OX |U ⊗f−1OY |U
f−1L|U ' OX |U ⊗f−1OY |U

f−1OY |U ' OX |U

Which completes the proof.

(ii) If f is constant equal to y ∈ Y , we may choose an open neighborhood V ⊆ Y of y on which L is

trivial. Then, f−1(V ) = X and as we have seen in the proof of (i), f−1L ' f−1OY on the whole of X

and f∗L ' OX ⊗f−1OY
f−1OY ' OX .

Now, we state a theorem on invertible sheaves with deep consequences for the theory of abelian

varieties. As its proof is long and not at the center of this seminar, we will not prove it here.

Theorem 1.42 (theorem of the cube). Let X,Y, Z be three geometrically irreducible k-varieties. We

assume that X and Y are complete. Let L be an invertible sheaf on X × Y × Z, x0 ∈ X(k), y0 ∈ Y (k)

and z0 ∈ Z(k) such that L is trivial on X×Y ×{z0}, X×{y0}×Z and {x0}×Y ×Z. Then, L is trivial

on X × Y × Z.

Proof. See [2, p.55 or p.91].

1.3.2 Divisors on a normal variety

Throughout this paragraph, X is a fixed normal k-variety. The group of divisors on X, denoted by

Div(X) is the free abelian group generated by irreducible closed subvarieties of codimension 1 in X. A

prime divisor is a closed subvariety of codimension 1 in X. A divisor on X is an element D ∈ Div(X).

It can be written as a finite sum of prime divisors:

D =
∑

Z∈P (X)

nZ [Z]

where P (X) is the set of prime divisors of X and (nZ)Z∈I1(X) ∈ Z(I1(X)) is a family of integers with

finitely many nonzero elements. The support of D denoted by Supp(D) is the reunion:

Supp(D) :=
⋃

Z∈P (X)
nZ 6=0

Z

D is said positive and we denote D ≥ 0 when nZ ≥ 0 for all Z ∈ P (X). There is a (partial) order relation

≤ on Div(X) induced by comparison of the coefficients: if D and D′ are divisors on X, then D ≤ D′ if

and only if the difference D′ −D is positive.

X being normal, it is integral, so it is irreducible. Then, we can consider the function field k(X). We

will now explain how to associate divisors to rational functions of k(X). As a complex analysis analogue,

irreducible closed subvarieties of codimension 1 will play the roles of zeros or poles and the coefficients

will correspond the orders of these zeros and poles.

Then, for all Z ∈ P (X), we need to define a discrete valuation ordZ : k(X) −→ Z ∪ {∞}. Let us fix

Z ∈ P (X) and η the generic point of Z. Let U be an open affine U = Spec(R) of X intersecting Z, then

η ∈ U . Z ∩U is a maximal proper and closed subset of U and {η} = Z ∩U so η corresponds to a minimal

nonzero prime ideal of R, so OX,η = Rη is a normal ring of dimension 1, so [9, proposition 9.2] ensures

that is a discrete valuation ring. This defines the valuation ordZ we sought, which does not depend on

the choice of U . If D :=
∑
Z∈P (X) nZ [Z] ∈ Div(X), we will sometimes denote ordZ(D) := nZ by abuse

of notations.
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For all f ∈ k(X)∗, we associate a divisor to f as follows:

div(f) =
∑

Z∈P (X)

ordZ(f)[Z]

It is well defined according to the following lemma.

Lemma 1.43. For f ∈ k(X)∗, ordZ(f) 6= 0 for finitely many prime divisors Z ∈ P (X).

Proof. X is a k-variety so it is quasi-compact, so it can be covered by finitely many open subsets, so we

can suppose X affine X = Spec(R). Then, f ∈ Frac(R) and we can write f = g
h with g, h ∈ R \ {0}, so

that for all prime divisor Z, ordZ(f) = ordZ(g)− ordZ(h) and we can therefore assume that f ∈ R \ {0}.
For any prime divisor Z, ordZ(f) 6= 0 if and only if f is in the maximal ideal ηRη of the local ring

OX,η = Rη, where η is the generic point of Z. Then:

ordZ(f) 6= 0⇐⇒ f ∈ η ⇐⇒ η ∈ V (f)⇐⇒ Z = {η} ⊆ V (f)

Since f ∈ R \ {0} and R is an integral domain, V (f) is either empty (when f is invertible) or of

codimension 1 so every prime divisor Z ⊆ V (f) is an irreducible component of V (f). But there are

finitely many because R is Noetherian (as a finite-type k-algebra), so X = Spec(R) is a Noetherian

topological space and V (f) as well (since it is closed).

A divisor of the form div(f) for f ∈ k(X)∗ is called principal. Principal divisors form a subgroup of

Div(X) denoted by Princ(X). When X is smooth, will see later that the quotient Div(X)/Princ(X) is

isomorphic to the Picard group of X. We say that two divisors D and D′ are linearly equivalent and

denote D ∼ D′ when their difference D −D′ is principal.

If U is an open subset of X, then for every prime divisor Z ∈ P (X) intersecting U (U ∩Z 6= ∅), U ∩Z
is of codimension 1 in U so U ∩ Z ∈ P (U). Therefore, if D =

∑
Z∈P (X) nZ [Z] is a divisor on X, we can

define the restriction of D to U as follows:

D|U :=
∑

Z∈P (X)
U∩Z 6=∅

nZ [Z ∩ U ]

We say that D is locally principal if every point x ∈ X admits an open neighborhood U ⊆ X such that

D|U is principal. If f ∈ k(X)∗ is such that D|U = div(f), f is called a local equation of D on U .

Proposition 1.44. If X is regular, then every divisor on X is locally principal. It is in particular true

when X is smooth.

Proof. By linearity, we only have to prove this for principal divisors on X. Let Z be a principal divisor

and x ∈ X. If x 6∈ Z, then U = X \ Z is an open neighborhood of x and [Z]|U = 0 = div(1), so we can

assume that x ∈ Z.

Let U = Spec(R) be an open affine neighborhood of x. Then, Z ∩ U is a maximal proper irreducible

closed subset of U , so there exists a minimal nonzero prime ideal q of R such that Z ∩ U = V (q). Let p

be the prime ideal corresponding to x. Then, p ∈ V (q) (because x ∈ Z) i.e. q ⊆ p so qRp is a minimal

nonzero prime ideal of the local ring Rp = OX,x.

By hypothesis, Rp is regular so it is a unique factorization domain by theorem 1.17. Since q 6= 0, there

exists a ∈ qRp \ {0}. We can decompose it in irreducible factors and we get that one of these factors π is

in qRq (as it is a prime ideal). Since πRp is prime and nonzero, we must have qRp = πRp (by minimality

of qRp). π remains irreducible and a generator of q when we multiply it by an element of R \ p, so we

can assume π ∈ R. Hence, πR = πRp ∩R = qRp ∩R = q.

Since q is the generic point of Z and π is a generator of q (and therefore, a uniformizer in Rq = OX,q),

we must have ordZ(π) = 1. If Z ′ is another prime divisor of X intersecting U , then we may write
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Z ′ ∩ U = V (r) where r is a prime ideal of height 1 of R. If ordZ′(π) > 0, then π ∈ r so q = πA ⊆ r and

q = r since ht(q) = ht(r) = 1 and finally Z ′ = Z. Then, div(π) = [Z ∩ U ] = [Z]|U , which completes the

proof.

1.3.3 Correspondence between divisors and invertible sheaves

Let X be an integral smooth k-variety. Let D be a divisor on X. We define the vector space associated

to D as follows:

L(D) := {f ∈ k(X)∗ | div(f) +D ≥ 0} ∪ {0}

Generalizing this definition, we can furthermore associate to D a sheaf L(D) defined on X. For all open

subset U ⊆ X:

Γ(U,L(D)) := {f ∈ k(X)∗ | div(f)|U +D|U ≥ 0} ∪ {0}

If V ⊆ U is an open subset, then we have the trivial inclusion Γ(V,L(D)) ⊂ Γ(U,L(D)), so we have

natural restriction maps and we have built a presheaf structure for L(D) (for now, in the category of

k-vector spaces). Actually, L(D) is a sheaf. Furthermore, if f ∈ Γ(U,L(D)), multiplying f by an element

of Γ(U,OX) only increases ordZ(f) for every prime divisor Z of U , so Γ(U,L(D)) is stable by scalar

multiplication by elements of Γ(U,OX). As a consequence, L(D) is an OX -module.

Lemma 1.45. L(D) is an invertible sheaf on X.

Proof. Let x ∈ X. Since X is smooth, by proposition 1.44, there exists an open neighborhood U of x

and a local equation g ∈ k(X)∗ for D on U : D|U = div(g). Then, for all open subset V ⊆ U :

Γ(V,L(D)) = {f ∈ k(X)∗ | div(fg)|V ≥ 0} ∪ {0}

and we have an injective homomorphism:

ϕV : f ∈ Γ(V,L(D)) 7−→ fg ∈ k(X)

To conclude, we just have to prove that im(ϕV ) ⊆ Γ(V,OX), because it will ensure that the above map

is an isomorphism Γ(V,L(D)) ' Γ(V,OX) and L(D)|U ' OX |U , as desired.

For f ∈ k(X)∗, it suffices to prove that f ∈ Γ(V,OX) whenever div(f)|V ≥ 0. Let f be such a

function. We only have to show that V is covered by open subsets Ui such that f|Ui
∈ Γ(Ui,OX). Let

y ∈ V . Then, there exists an open affine neighborhood W ⊆ V of y. y corresponds to a prime ideal p of

R := Γ(W,OX). If p = {0}, then y is the generic point of X (an W ) which intersects every open subset

of X, so we can assume p 6= {0}. In that case, there exists a minimal nonzero prime ideal q ⊆ p, so that

Z = V (q) is a prime divisor of W and we have ordZ(f) ≥ 0 so f ∈ Rq so we can write f := a
b with a ∈ R

and b ∈ R \ q, so that f ∈ R[1/b] = Γ(D(b),OX). But b 6∈ q ⊆ p so y = p ∈ D(b). This completes the

proof.

Remark 1.46. With the ideas of the preceding proof, we obtain that L(D) is trivial when D is principal.

Actually, the converse is true. More precisely, we will construct a group isomorphism between the

quotient Div(X)/Princ(X) and Pic(X).

Lemma 1.47. For D,D′ ∈ Div(X), L(D)⊗ L(D′) ' L(D +D′).

Proof. For every open subset U ⊆ X, we have a Γ(U,OX)-bilinear map:

(f, g) ∈ Γ(U,L(D))× Γ(U,L(D′)) 7−→ fg ∈ Γ(U,L(D +D′))

which factors into ϕU : Γ(U,L(D)) ⊗ Γ(U,L(D′)) −→ Γ(U,L(D + D′)). This defines a morphism of

OX -modules ϕ : L(D)⊗ L(D′) −→ L(D +D′).
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If U is small enough, then there exist local equations h, h′ ∈ k(X)∗ on U for D and D′: D|U = div(h)|U

and D′|U = div(h′)|U . Then, for all k ∈ Γ(U,L(D +D′)) \ {0}, we have:

0 ≤ D|U +D′|U + div(k)|U = div(kh′) +D|U

so kh′ ∈ Γ(U,L(D)) and div(1/h′)|U + D′|U = div(1/h′ · h′) = div(1) = 0 so 1/h′ ∈ Γ(U,L(D′)) and we

have ϕU (kh′ ⊗ 1/h′) = k. Whence, ϕU is surjective.

Moreover, as we saw in the proof of the lemma 1.45, Γ(U,L(D)), Γ(U,L(D′)) and Γ(U,L(D+D′)) are

Γ(U,OX)-modules of rank 1, so Γ(U,L(D))⊗Γ(U,L(D′)) ' Γ(U,OX) as modules. It follows that ker(ϕU )

is of rank 0. Since Γ(U,OX) is integral, it is torsion free so ker(ϕU ) = {0} and ϕU is an isomorphism.

Since D and D′ are locally principal, those open subsets U ’s cover X and we conclude that ϕ is an

isomorphism.

By the preceding lemma, we have a group homomorphism Div(X) −→ Pic(X) sending D to [L(D)].

Actually, it induces a homomorphism Div(X)/Princ(X) −→ Pic(X).

Proposition 1.48. The preceding homorphism Div(X)/Princ(X) −→ Pic(X) is an isomorphism.

Proof. Injectivity: Let D ∈ Div(X) such that L(D) is trivial and ϕ : OX −→ L(D) an isomorphism of

sheaves. Let g := ϕX(1). Then, g ∈ L(D) so div(g) + D ≥ 0. Moreover, if U ⊆ X is an open subset on

which D is principal, we write D|U = div(f)|U , so that 1/f ∈ Γ(U,L(D)) because div(1/f)|U +D|U = 0.

Since ϕU is surjective, there exists h ∈ Γ(U,OX) such that 1/f = ϕU (h) = hϕU (1) = hg|U . We conclude

that:

−D|U = div(1/f)|U = div(h)|U + div(g)|U ≥ div(g)|U

where we used the fact that div(h)|U is positive because h ∈ Γ(U,OX). Then, D|U + div(g)|U ≤ 0 and

the open subsets U on which D is principal cover X (by proposition 1.44), so D + div(g) ≤ 0. Hence,

D + div(g) = 0 and D is principal.

Surjectivity: Let L be an invertible sheaf on X and K be the constant sheaf on X given by Γ(U,K) :=

k(X) for every nonempty open subset U ⊆ X. Let η be the generic point of X (it does exist because

X is irreducible). Then, we have a natural morphism L −→ K sending a section s ∈ L(U) (for a given

non-empty open subset U ⊆ X) to the germ sη ∈ Lη ' OX,η = k(X) = K(U).

This map is injective. Indeed, let s ∈ L(U) such that sη = 0. Then, we can cover U with a family

of open affines (Ui)i∈I such that L|Ui
' OX |Ui

for all i ∈ I. Let i ∈ I and Ai := Γ(Ui,OX). Since X is

integral, Ai is an integral domain, we have η ∈ Ui = Spec(Ai) and η corresponds to the zero prime ideal,

so that s|Ui
is zero in OX,η = Frac(Ai) so s|Ui

= 0. Since the Ui cover U , we have s = 0.

Then, we have an embedding L ↪→ K and we can suppose that L is a subsheaf of K. But X is covered

by open subsets (Vi)i∈I such that L|Vi
' OX |Vi

for all i ∈ I. Let i ∈ I and ϕi : OX |Vi
−→ L|Vi

be

an isomorphism and let gi := ϕi,Vi(1). Then, L(Vi) = giΓ(Vi,OX), gi ∈ K(Vi) = k(X) and gi 6= 0.

Furthermore, for all i, j ∈ I, L(Vi ∩Vj) = giΓ(Vi ∩Vj ,OX) = gjΓ(Vi ∩Vj ,OX). It follows that gi = ui,jgj

for a certain ui,j ∈ Γ(Vi ∩ Vj ,OX)× and that ordZ∩Vi∩Vj (gi) = ordZ∩Vi∩Vj (gj) for every prime divisor Z

of X, so there exists a divisor D ∈ Div(X) such that D|Vi
:= div(gi)|Vi

for all i ∈ I. We conclude that

L = L(D).

1.3.4 Projective embeddings

Definition 1.49. Let X be a scheme andM be an OX -module. One says that a family of global sections

(si)i∈I ∈ Γ(X,M)I generates M if for all x ∈ X, ((si)x)i∈I generates Mx as an OX,x-module.

Example 1.50. Let R be a ring. On X := PnR = Proj(R[T0, · · · , Tn]), recall that we have the twisted

sheaf of Serre O(1) := M̃ , where M :=
∑n
i=0 TiR[T0, · · · , Tn] (see example 1.39). Then, the global

sections T0, · · · , Tn ∈ Γ(X,O(1)) generate O(1).
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We will now study the link between invertible sheaves and projective embeddings. Consider a mor-

phism of R-schemes ϕ : X −→ PnR and the OX -module L := ϕ∗O(1), which is an invertible sheaf (by

lemma 1.41.(i)).

Let us explain how to pull-back sections. Let X1 be a scheme andM anOX1 -module. One notices that

every global section s ∈ Γ(X1,M) induces a morphism of sheaves ŝ : OX1 −→M given by ŝU (λ) := λ·s|U
for all open subset U ⊆ X1 and all section λ ∈ Γ(U,OX1). Conversely, every morphism φ : OX1 −→M
is of the form φ = ŝ where s := φX(1). If f : X2 −→ X1, we can apply the pull-back functor to obtain

f∗ŝ : f∗OX1 = OX2 −→ f∗M and take f∗(s) := f∗ŝ(1).

Taking X1 := PnR and X2 := X, we get a morphism of Γ(PnR,OPn
R

)-modules between the global

sections ϕ∗ : Γ(PnR,O(1)) −→ Γ(X,L). It is easy to see that the global sections si := ϕ∗(Ti) (i ∈ J0 ; nK)
generate L. Conversely, one can reconstruct ϕ knowing L and the global sections si.

Theorem 1.51. Let R be a ring and X be a R-scheme. Let L be an invertible sheaf on X generated by

global sections s0, · · · , sn. Then, there exists a unique morphism of R-schemes ϕ : X −→ PnR such that

L ' ϕ∗O(1) and si = ϕ∗(Ti) for all i ∈ J0 ; nK.

Proof. For each i ∈ J0 ; nK, let Xi := {x ∈ X | (si)x 6∈ mX,xLx}. Then, Xi is an open subset. Indeed,

if x ∈ Xi, then x admits an open affine neighborhood U := Spec(R) in X such that L|U ' OX |U ,

so that for every point p ∈ U (which corresponds to a prime ideal of R), Lp ' Rp (as R-modules) and

mX,pLp ' mX,p = pRp, so that Xi∩U = {p ∈ U | (si)|U 6∈ p} = D((si)|U ), which is an open neighborhood

of x.

Furthermore, X =
⋃n
i=0Xi. Otherwise, since the si generate L, we would have a point x ∈ X such

that mX,xLx = Lx so that Lx = {0} by Nakayama’s lemma [9, proposition 2.6], which is impossible

because Lx ' OX,x and OX,x is a local ring (so is not zero).

For all i ∈ J0 ; nK, let Ui := D(Ti) = {p ∈ PnR | Ti 6∈ p}. Since Ui = Spec(R[T0/Ti, · · · , Tn/Ti]), by [6,

proposition 3.4] it suffices to define a homomorphism φi : R[T0/Ti, · · · , Tn/Ti] −→ Γ(Xi,OX) to define a

morphism of scheme ϕi : Xi −→ Ui. The idea here is to set φi(Tj/Ti) := sj/si for all j ∈ J0 ; nK but the

quotient needs to be properly defined in Γ(Xi,OX).

Since L is an invertible sheaf, Xi admits an open covering (Ve)e∈E such that for all e ∈ E , there exists

an isomorphism of OX |Ve
-modules θe : L|Ve

−→ OX |Ve
. For all e ∈ E and x ∈ Ve, (si)x 6∈ mX,xLx, so

θe,Ve((si)|Ve
)x 6∈ mX,x and this section is locally invertible and local inverses coincide (by unicity) so we

can lift local inverses by the sheaf properties of OX so that θe,Ve((si)|Ve
) is invertible. Furthermore, for

all e, f ∈ E , we have θe,Ve∩Vf
= θe,Ve∩Vf

(θ−1
f,Ve∩Vf

(1))θf,Ve∩Vf
, so that:

∀j ∈ J0 ; nK ,
Å
θe,Ve

(sj)

θe,Ve
(si)

ã
|Ve∩Vf

=

Ç
θf,Vf

(sj)

θf,Vf
(si)

å
|Ve∩Vf

and there exists ti,j ∈ Γ(Xi,OX) such that ti,j |Ve
= θe,Ve

(sj)/θe,Ve
(si) for all e ∈ E and we can set

φi(Tj/Ti) := ti,j . Later, we will denote sj/si instead of ti,j by abuse of notations.

To define a morphism ϕ : X −→ PnR globally, we glue the ϕi. By [6, proposition 3.5] it suffices to

verify that (ϕi)Xi∩Xj
= (ϕj)Xi∩Xj

for all i, j ∈ J0 ; nK. Since:

Ui ∩ Uj = D(TiTj) = Spec(R[T0/Ti, · · · , Tn/Ti][Ti/Tj ]) = Spec(R[T0/Tj , · · · , Tn/Tj ][Tj/Ti])

we only have to verify that the ring homomorphisms R[T0/Ti, · · · , Tn/Ti][Ti/Tj ] −→ Γ(Xi ∩ Xj ,OX)

induced by ϕi and ϕj coincide, which is true by construction.

It remains to identify ϕ∗O(1) with L. Let ψ : ϕ∗O(1) −→ L mapping ϕ∗(Ti)|U to (si)|U for all

i ∈ J0 ; nK and for all open subset U ⊆ X. It suffices to prove that φ induces an isomorphism on the stalks.

Let x ∈ X and i ∈ J0 ; nK such that x ∈ Xi. Then p := ϕ(x) is a prime ideal of S := R[T0/Ti, · · · , Tn/Ti]
and we have:

ϕ∗O(1)x ' OX,x ⊗Sp
TiSp
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Clearly ψx maps ϕ∗(Tj)x = 1⊕ Tj to sj for all j ∈ J0 ; nK, so φx is surjective because the sj generate L.

In addition, every element of ϕ∗O(1) is a sum of elements the form:

λ⊗ Tif(T0/Ti, · · · , Tn/Ti) = λf((s0)x/(si)x, · · · , (sn)x/(si)x)⊗ Ti

where λ ∈ OX,x and f ∈ Sp is a rational fraction whose denominator is not in p, so every element of

ϕ∗O(1) is of the form λ ⊗ Ti (where λ ∈ OX,x). Let λ ∈ OX,x such that λ ⊗ Ti is sent to zero via ψx.

Then λ(si)x = 0. But the (sj)x generate Lx and any linear combination of such elements can be factored

by (si)x, so that Lx = OX,x(si)x. Since L is invertible, there is an isomorphism θx : Lx −→ OX,x. Let

µ ∈ OX,x such that θ−1
x (1) = µ(si)x. Then, θ−1

x (λ) = λθ−1
x (1) = λµ(si)x = 0, so that λ = 0. Hence the

injectivity of φx. Then, ϕ∗O(1) ' L
The unicity of ϕ is a consequence of the relations ϕ∗(Ti) = si for all i ∈ J0 ; nK. This completes the

proof.

We would like to know when the morphism defined by the above theorem is in fact an embedding i.e.

a closed immersion. We first need to make the link with divisors using the correspondence we have seen

in 1.3.3. For that purpose, we need to introduce the notion of linear system. From now on and until the

end of the paragraph, X will be a complete and regular k-variety.

Definition 1.52. A complete linear system on X is an equivalence class of positive divisors of X. In

other words, a complete linear system d is a subset of Div(X) of the form:

d = {div(f) +D0 | f ∈ L(D0) \ {0}}

with D0 ∈ Div(X) and L(D0) = {f ∈ k(X)∗ | div(f) + D0 ≥ 0} ∪ {0}. A linear system on X is of the

form:

d = {div(f) +D0 | f ∈W \ {0}}

where W ⊆ L(D0) is a k-vector subspace.

Definition 1.53. Let d be a linear system on X. One says that x ∈ X is a base point of d if for all

D ∈ d, x ∈ Supp(D).

Lemma 1.54. Let d be a linear system defined by D0 ∈ Div(X) and V ⊆ L(D0). We set L := L(D0).

Then:

(i) x ∈ X is a base point of d if and only if sx ∈ mX,xLx for all s ∈ V .

(ii) d is base point free if and only if L is generated by the global sections of V .

Proof. (ii) is an immediate consequence of (i). Indeed, if L is generated by the global sections of V , then

for every x ∈ X, Lx is generated by the sx for s ∈ V and Lx 6= mX,xLx (by Nakayama’s lemma) so there

exists s ∈ V such that sx 6∈ mX,xLx. Conversely, if the global sections of V do not generate L, then there

exists x ∈ X such that Vx 6= Lx but Lx ' OX,x so Vx corresponds to a proper ideal in OX,x which is

necessarily included in mX,x, so that Vx ⊆ mX,xLx.

Now we prove (i). It suffices to prove that for x ∈ X, s ∈ V \ {0} and D := div(s) +D0 ∈ d, we have

x ∈ Supp(D) if and only if sx ∈ mX,xLx.

⇐= Suppose that sx ∈ mX,xLx. Then there exist an open affine neighborhood U := Spec(R) of

x, f ∈ Γ(U,OX) = R and g ∈ Γ(U,L) such that s|U = fg and fx ∈ mX,x. Let p be the prime ideal

corresponding to x. Then f ∈ pRp = mX,x so that f = a
b , with a ∈ p and b ∈ R \ p. Let q ⊆ p be the

prime ideal minimal among the prime ideals containing a. Then, ht(q) = 1 by the Hauptidealsatz [9,

corollary 11.7] so that V (q) = Z ∩ U for a given prime divisor Z ∈ P (X) and x = p ∈ V (q) ⊆ Z. And

f ∈ qRq so that ordZ(f) > 0 and :

ordZ(D) = ordZ(s) + ordZ(D0) = ordZ(f) + ordZ(g) + ordZ(D0) > 0
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Since ordZ(g) + ordZ(D0) ≥ 0 because g ∈ Γ(U,L). Then, x ∈ Z ⊆ Supp(D).

=⇒ Suppose that x ∈ Supp(D). Then there exists a prime divisor Z of X such that x ∈ Z and

ordZ(D) > 0. Let U := Spec(R) be an open affine neighborhood of X on which D0 is principal. We may

write D0|U = div(g)|U for a certain g ∈ k(X)∗. Then, ordZ(D) = ordZ(s|Ug) > 0 so that s|Ug ∈ qRq,

where q ∈ Spec(R) is the generic point of Z ∩ U (Z ∩ U = V (q)). But D|U = div(s|Ug) ≥ 0 so

ordZ′(s|Ug) ≥ 0 for all prime divisor Z ′ ∈ P (X) intersecting U and s|Ug ∈ Rr for all prime ideal r of

height 1. But X is regular so it is normal (by lemma 1.19), then R is normal by [6, lemma 6.38.(1)] and

R is a finite type k-algebra so it is Noetherian and we have :

R =
⋂

r∈Spec(R)

ht(r)=1

Rr

by [8, theorem 12.3]. We conclude that s|Ug ∈ qRq ∩ R = q ⊆ p. But 1/g ∈ Γ(U,L) because div(1/g) +

div(g) = 0, so that sx ∈ mX,xLx. This completes the proof.

Let D ∈ Div(X) be a positive divisor. Since X is regular, D is locally principal by proposition

1.44. Thus, there exists an open covering (Ui)i∈I of X and sections gi ∈ K(Ui)
∗ = K(X)∗ such that

D|Ui
= div(gi) for all i ∈ I. Since D ≥ 0, the gi are sections of Γ(Ui,OX) (as we saw in the proof of

lemma 1.45). For all i, j ∈ I, div(gig
−1
j )|Ui∩Uj

= div(gjg
−1
i )|Ui∩Uj

= 0 so gig
−1
j , gjg

−1
i ∈ Γ(Ui ∩ Uj ,OX)

and gig
−1
j ∈ Γ(Ui∩Uj ,OX)×, so gi and gj generate the same ideal in Γ(Ui∩Uj ,OX). Then, the gi define

a sheaf of ideals on Ui for all i ∈ I an we can glue these sheaves to define a sheaf of ideals ID on X. ID
is coherent so it defines a closed subscheme XD := (SD, (OX/ID)|SD

) of X, where SD := Supp(OX/ID)

(by [6, proposition 7.32]).

Then, for all x ∈ SD, the tangent space of D at x: Tx(D) := Tx(XD) is naturally a subspace of the

tangent space Tx(X). Indeed, the maximal ideal of XD at x ∈ SD is mD,x := mX,x/(ID)x so a any

tangent vector t : mD,x/m
2
D,x −→ k can be seen as a tangent vector mX,x/m

2
X,x −→ k vanishing on Ix.

Definition 1.55. (i) A linear system d is said to separate points when for all distinct closed points

x, y ∈ X, there exists D ∈ d such that x ∈ Supp(D) and y 6∈ Supp(D).

(ii) A linear system d is said to separate tangent directions when for all closed point x ∈ X and for all

tangent vector t ∈ Tx(X) \ {0}, there exists D ∈ d such that t 6∈ Tx(D).

Given a divisor D0 ∈ Div(X), we consider the invertible sheaf L := L(D0). L remains unchanged

(up to isomorphism) when D0 is translated by a principal divisor (by proposition 1.48). Then, L only

depends on the complete linear system d defined by D0.

Assume that d is base point free. Then, by lemma 1.54, L is generated by the global sections Γ(X,L).

Since X is complete, Γ(OX ,L) is a finite k-vector space by [6, proposition 12.65]. Then, by theorem 1.51,

a basis s0, · · · , sn of Γ(X,L) defines a morphism ϕ : X −→ Pnk .

Theorem 1.56. Assume that k is algebraically closed. Let X be a complete regular k-variety. Let d be a

base point free complete linear system on X, L an invertible sheaf on X and ϕ : X −→ Pnk the morphism

determined by s0, · · · , sn generating Γ(X,L), as above. Then ϕ is a closed immersion if and only if d

separates points and tangent directions.

Proof. See [7, proposition II.7.3 and remark II.7.87.2]. Hartshorne assumes that X is projective (what

we actually want to prove for abelian varieties) but the hypothesis made here (X complete and regular)

are in fact sufficient.

Definition 1.57. An invertible sheaf L on X is very ample if there exists a closed immersion ϕ : X ↪→ Pnk

such that L ' ϕ∗O(1) (as defined in theorem 1.51). L is ample if there exists n ∈ N∗ such that L⊗n is

very ample.
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Similarly, a divisor D ∈ Div(X) is very ample (respectively ample) if L(D) is very ample (respectively

ample). In other words, D is ample when there exists n ∈ N∗ such that nD is very ample.

Theorem 1.58. Let L be an invertible sheaf on X. Then L is ample if and only if for all coherent

OX-module M, there exists n0 ∈ N such that for all n ≥ n0, M⊗OX
L⊗n is generated by global sections.

Proof. This theorem is actually quite difficult. See [7, theorem II.7.6].

The theorem 1.56 gives conditions of ampleness for divisors (or invertible sheaves) when k is alge-

braically closed. Now we explain why this hypothesis is unnecessary. Let K/k be a field extension and

XK := X ×k K the K/k-extension of scalars. We assume that XK remains regular. Then, we can still

consider divisors on XK and get the usual results of paragraphs 2.8 and 1.3.3.

Furthermore, we have a natural embedding k(X) ↪→ K(XK) = K⊗k k(X) so every function f ∈ k(X)

may be seen as an element of K(XK). Then, we can associate to a divisor D on X a divisor DK on XK

by embedding its local equations in K(XK). Conversely, if k′/k is a subextension of K/k (k ⊆ k′ ⊆ K),

and if D ∈ Div(XK), we say that D is defined over k′ if its local equations are elements of k′(Xk′) =

k′ ⊗ k(X) ⊆ K(XK). In that case, D can indeed be seen as an element of Div(Xk′).

Since the group GK/k := Aut(K/k) acts naturally on any K-algebra, it acts on the local equations

on any divisor and respects the compatibility of these local equations so GK/k acts on Div(XK).

Proposition 1.59. (i) If D and D′ are ample divisors on X, then D +D′ is ample.

(ii) If Y is a subscheme of X, and D is an ample divisor, then D|Y is ample.

(iii) If D is a divisor on X such that DK is ample on XK , then D is ample on X.

(iv) Suppose that K/k is algebraic and that there exists an ample divisor on XK . Then, there exists an

ample divisor on X.

Proof. (i) and (ii) are immediate consequence of theorem 1.58.

(iii) Suppose that DK is ample and let n ∈ N∗ such that nDK is very ample. By the construction

of theorem 1.51 if ϕ : X −→ Pnk is defined by nD, then the base change ϕK : XK −→ PnK is defined by

nDK . So ϕK is a closed immersion and ϕ is a closed immersion as well by [10, Exercise 1.7.10], so that

nD is very ample and D is ample.

(iv) Let D be an ample divisor over K. Since K/k is an algebraic extension and XK is quasi-compact,

D admits local equations on a finite open covering of X and they are all defined over a finite normal

extension k′/k, so D is defined over k′. Let G := Aut(k′/k) ⊆ GK/k and:

D′ :=
∑
σ∈G

σ ·D

where for all σ ∈ G, σ ·D is given by the group action described above. D′ is invariant under the action

of G, and consequently, D′ admits G-invariant local equations, so D′ is defined over k′G. Assume that k

is perfect, then k′G = k and D′ is defined over k.

Moreover, if φ : XK −→ PnK is defined by D, then for all σ ∈ G, the morphism defined by σ ·D is still

a closed immersion, as the composite of φ with the isomorphism idX × Spec(σ) : X ×k K −→ X ×k K,

where Spec(σ) : Spec(K) −→ Spec(K) is induced by σ : K −→ K. It follows that D′ is ample by (i). We

conclude by (ii) that D′ is in fact an ample divisor on X.

If k is not perfect, then k′G/k is radical by [11, proposition 5.6.11], so there exists m ∈ N∗ such that

k′p
m

= k (where p is the characteristic of k), and we conclude that pmD′ is defined over k. But pmD′ is

still ample (by (i)) so we conclude as previously.
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1.4 Intersection theory

In this section, we present useful and advanced tools of intersection theory which are crucial to study

the multiplication by n map of abelian varieties. Since some invoked results may be long and difficult

to prove and intersection theory is not at the center of this seminar, the following results are presented

without proofs. The reader may refer to [3, chapters I.12, I.13, II.33.43 and II.33.44] and [7, III.1 and

III.2] for further details.

1.4.1 Cohomology of sheaves

Let A be an abelian category (for instance the category of abelian groups, R-modules over a given ring R

or sheaves of R-modules). One says that an object I of A is injective if Hom(·, I) is an exact functor. One

says that A has enough injectives if every object of A is isomorphic to a subobject of an injective object.

An injective resolution of an object A ∈ Obj(A) is a complex of injectives I• defined in nonnegative

degrees only together with a map A −→ I0 such that the following sequence is exact:

0 −→ A −→ I0 −→ I1 −→ · · ·

If A has enough injectives, it is easy to prove by induction that every object of A admits an injective

resolution [3, lemma 13.18.3]. Two injective resolutions of the same object are homotopic [3, lemma

13.18.4].

Let F : A −→ B be a covariant left exact functor. Let B• denote the category of complex of B. Then,

we define the right derived functor of F , RF : A −→ B• as follows: given A ∈ Obj(A) and I• an injective

resolution of A, RiF (A) := Hi(F (I•)) (cohomology group of the complex F (I•)). This is well defined

because I• is defined up to homotopy. Defining the derived functor on morphisms is much more complex

(see [3, lemma 13.14.3]). We get easily that R0F is naturally isomorphic to F , that RiF is additive for

all i ∈ N and that RiF (I) = 0 for all i ∈ N∗ if I is injective [7, theorem 1.1A].

Let (X,OX) be a ringed space. Then, the category Mod(OX) of OX -modules has enough injectives

[7, proposition III.2.2] and the functor Γ(X, ·) is left exact so we can define its right derived functor

H•(X, ·). If M is an OX -module, for all i ∈ N, we call Hi(X,M) the i-th cohomology group of M.

If X is Noetherian of dimension n, then a theorem due to Grothendieck ensures that Hi(X,M) = 0

for all i > n and all OX -module M [7, theorem III.2.7]. Now, if X is a complete k-variety and M is a

coherent OX -module, then the homology groups of M are finite dimensional k-vector spaces [3, lemma

30.19.3] (in the case i = 0, we have H0(X,M) = Γ(X,M) and we already have seen this result [6,

proposition 12.65]). In that case, we can define the Euler characteristic of M as follows:

χ(X,M) :=
∑
i∈N

(−1)idimkH
i(X,M)

1.4.2 Intersection numbers

Throughout this paragraph, we fix X a complete k-variety.

Lemma 1.60. Let M be a coherent OX-module and L1, · · · ,Lr be invertible sheaves on X. Then, the

function:

(n1, · · · , nr) ∈ Zr 7−→ χ(X,M⊗L⊗n1
1 ⊗ · · · ⊗ L⊗nr

r ) ∈ Z

is a numerical polynomial function (polynomial function with rational coefficients mapping Z to Z) of

total degree ≤ dim(Supp(M)).

Proof. See [3, lemma 33.44.1].
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Definition 1.61. Let i : Z ↪→ X be a closed immersion, d := dim(Z) and L1, · · · ,Ld be invertible

OX -modules. Then, we define the intersection number (L1 · · · Ld ·Z) as the coefficient of n1 · · ·nd of the

polynomial function:

(n1, · · · , nd) ∈ Zd 7−→ χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ · · · ⊗ L⊗nd

d ) = χ(Z,OZ ⊗ L1
⊗n1

|Z ⊗ · · · ⊗ Ld⊗nd

|Z ) ∈ Z

Lemma 1.62. Let i : Z ↪→ X be a closed immersion, d := dim(Z) and L1, · · · ,Ld be invertible OX-

modules. Then:

(i) (L1 · · · Ld · Z) ∈ Z.

(ii) If L1, · · · ,Ld are ample, then (L1 · · · Ld · Z) > 0.

(iii) Intersection numbers are additive: for i ∈ J1 ; dK, and L′i is an invertible sheaf on X, then:

(L1 · · · Li ⊗ L′i · · · Ld · Z) = (L1 · · · Li · · · Ld · Z) + (L1 · · · L′i · · · Ld · Z)

Proof. See [3, lemma 33.44.4] for (i), [3, lemma 33.44.9] for (ii) and [3, lemma 33.44.5] for (iii).

Lemma 1.63. Let f : X −→ Y be a finite dominant morphism of complete and integral k-varieties. Let

d := dim(Y ) and L1, · · · ,Ld be invertible sheaves on Y . Then, we have:

(f∗L1 · · · f∗Ld ·X) = deg(f)(L1 · · · Ld · Y )

Proof. Since k(Y )/k(X) is finite k(X) and k(Y ) have the same transcendence degree so dim(X) = dim(Y )

by [7, Exercise II.3.20.b] so the formula makes sense. For the proof see [3, lemma 33.44.7].
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Chapter 2

Abelian varieties

2.1 Group schemes and abelian varieties

Definition 2.1. Let S be a scheme. A group scheme G over S is a quadruple (G,m, i, e) where G is a

S-scheme, m : G ×S G −→ G, i : G −→ G two morphisms of S-schemes and e ∈ G(S) a S-valued point

such that for all S-scheme T , G(T ) has a group structure given by m as the multiplication map, i as the

inversion map and e as the neutral element. Namely, for all g1, g2, g3 ∈ G(T ):

(i) m ◦ (g1 ×S e ◦ πT/S) = m ◦ (e ◦ πT/S ×S g1) = g1 (neutral element).

(ii) m ◦ (g1 ×S m ◦ (g2 ×S g3)) = m(m ◦ (g1 ×S g2)×S g3) (associativity).

(iii) m ◦ (g1 ×S i ◦ g1) = m ◦ (i ◦ g1 ×S g1) = e ◦ πT/S (inversion).

Where πT/S : T −→ S is the structural morphism of T .

To simplify the notations, we will often denote (G,m) or even G instead of (G,m, i, e) for a group

scheme and m(g, h) or simply gh instead of m ◦ (g ×S h) for the multiplication of two elements.

Definition 2.2. A morphism of group shemes over S, ϕ : (G,m) −→ (G′,m′) is a morphism of S-schemes

which induces a group homomorphism G(T ) −→ G′(T ) for all S-scheme T . Namely, for all g, h ∈ G(T ):

ϕ(m(g, h)) = m′(ϕ(g), ϕ(h))

Lemma 2.3. Let (G,m) be a group scheme over S and S′ be a S-scheme. Then, the pullback (GS′ ,mS′)

is a group scheme over S′.

Proof. First of all, we remark that:

(G×S G)×S S′ ' G×S (G×S S′) = G×S GS′ ' G×S (S′ ×S′ GS′) ' (G×S S′)×S′ GS′

= GS′ ×S′ GS′

And we set mS′ := m×S idS′ : (G×SG)×SS′ ' GS′×S′GS′ −→ GS′ , iS′ := i×S idS′ and eS′ := e×S idS′ .

With this definition, we have the following commutative diagrams for m and mS′ :

(G×S G)×S S′ mS′
//

q1

��

GS′

p1

��
G×S G

m // G

(1) (G×S G)×S S′ q2
//

mS′ ((

S′

GS′ = G×S S′

p2

OO (2)

where the maps pi, qi of index 1 (resp. 2) are left (resp. right) projections (we will keep using this

convention later). We also have similar diagrams for iS′ and eS′ .
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Let T be an S′-scheme and g′ ∈ GS′(T ). Then, we have:

p1 ◦mS′ ◦ (g′ ×S′ e′) = m ◦ q1 ◦ (g′ ×S′ e′) (see diagram (1))

= m ◦ q1 ◦ ((p1 ◦ g′ ×S p1 ◦ e′)×S idS′)

(with the identification (G×S G)×S S′ ' GS′ ×S′ GS′

and the unicity in the universal property of the fiber product)

= m ◦ (p1 ◦ g′ ×S p1 ◦ e′)

= p1 ◦ g′ (by the axiom (i) of group schemes)

One proves as well that p2 ◦mS′ ◦ (g′ ×S′ e′) = p2 ◦ g using (2), so we get that mS′ ◦ (g′ ×S′ e′) = g′ and

we can obtain that mS′ ◦ (e′ ×S′ g′) = g′ with the same arguments. Axioms (ii) and (iii) can be proved

with similar techniques so we will omit them.

Definition 2.4. An abelian variety A over k is a group scheme over Spec(k) which is proper (i.e.

complete, separated, of finite type) and geometrically integral. In particular, an abelian variety over k is

a k-variety.

A morphism of abelian varieties is a morphism of group schemes between abelian varieties.

Proposition 2.5. Let A be an abelian variety over k. For every field extension K/k, AK is an abelian

variety.

Proof. AK is still a group variety by lemma 2.3 and is still geometrically integral by proposition 1.7.

Moreover, A is proper so its structural morphism πA/k : A −→ Spec(k) is proper and πAK/K : AK −→
Spec(K) is only the base change of πA/k with Spec(K) −→ Spec(k) so it is proper by lemma 1.10.(ii)

and AK is proper.

Lemma 2.6. Le ϕ : A −→ B be a morphism of abelian varieties. Then, ϕ(A) is an abelian subvariety

of B.

Proof. A is proper and B is seperated so ϕ is proper (hence closed) by lemma 1.11 so ϕ(A) is closed and

may be seen as a closed subscheme of B with the reduced induced structure. ϕ(A) is clearly a subgroup

scheme of B (because the restricted multiplication map mB |ϕ(A)×ϕ(A) factors through ϕ(A)). By [3,

lemma 30.26.3], we get that ϕ(A) is proper (as a closed subscheme of a proper scheme). It remains to

prove that ϕ(A) is geometrically integral. First, we notice that ϕ(A)k = ϕk(Ak) and that ϕ remains

a morphism after extension of sclars (it would require a justification) so we may assume k = k and we

simply have to prove that ϕ(A) is integral, which is obviously true because A is integral (so ϕ(A) is

irreducible) and ϕ(A) has reduced induced structure.

Let A be an abelian variety over k. Any k-valued point x ∈ A(k), is by definition a morphism of

schemes x : Spec(k) −→ A so we can define the right translation by x on A as the composition:

tx : A
∆A/k−→ A×k A

idA×x◦πA/k−→ A×k A
m−→ A

where πA/k is the structural morphism A −→ Spec(k). tx defines an automorphism and its inverse is

tι(x).

Proposition 2.7. Let A be an abelian variety. Then A is smooth.

Proof. It suffices to prove that Ak is smooth (by [6, remark 6.30]). By proposition 2.5 we may assume

that k is algebraically closed.
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The smooth locus Asm of A is open and dense in A (by [6, theorem 6.19]). Moreover, Asm is stable

by translation. Indeed, if x ∈ Asm, then there exists an open affine neighborhood U of x and an

immersion j : U ↪→ Spec(R) where R is a finite-type k-algebra R = k[X1, · · · , Xn]/(f1, · · · , fn−d) such

that rank Jac(f1, · · · , fn−d)(x) = n− d. And for any k-valued point, y ∈ A(k):

j ◦ tι(y) : t−1
ι(y)(U) = ty(U) −→ Spec(R)

is still an open immersion and ty(U) is an open neighborhood of ty(x) so ty(x) is smooth.

Besides, the set of k-valued points A(k) can be identified to the set of closed points of A and is very

dense (by [6, corollary 3.36]). Then, A(k)∩Asm 6= ∅ so there exists x0 ∈ A(k)∩Asm and for all y ∈ A(k),

tι(x0)y(x0) = y ∈ Asm by the stability property of Asm. Then, Asm is as very dense as well.

Suppose by contradiction that there exists x ∈ A \Asm. Then, {x} ⊆ A \Asm, as A \Asm is closed.

Then, {x} = Asm ∩ {x} = ∅ = ∅ because Asm is very dense. Contradiction. Then, A is smooth.

Proposition 2.8. Let A and B be two abelian varieties over k. Then every morphism of k-schemes

ϕ : A −→ B is the composition of a translation and a morphism of abelian varieties.

Proof. Let e and e′, m and m′, i and i′ be the respective neutral elements, multiplication maps and

inversion maps of A and B. We have ti(e) ◦ϕ(e) = e′, so after translating, we may assume that ϕ(e) = e′.

We now consider the morphism of k-schemes:

ψ := m′ ◦ ([ϕ ◦m]×k [i ◦m′ ◦ (ϕ×k ϕ)]) : A×k A −→ B

which corresponds to (x, y) ∈ A(T ) × A(T ) 7−→ ϕ(xy)ϕ(y)−1ϕ(x)−1 ∈ B(T ) on T -valued points for all

k-scheme T . Since ϕ(e) = e′, we have ψ(A× {e}) = {e′} = ψ({e} ×A). By the rigidity lemma (theorem

1.13), we have ψ(A×A) = {e′}, which completes the proof.

Corollary 2.9. Let A be an abelian variety. Then A(T ) is an abelian group for all k-scheme T .

Proof. We apply proposition 2.8 on the inversion morphism i : A −→ A. Since i(e) = e, we get that i is

a morphism of abelian variety. Then, it induces a group endomorphism on A(T ), so A(T ) is abelian.

As a consequence of this corollary, we may denote the the group law additively and denote 0 instead

of e the neutral element of an abelian variety.

2.2 Morphisms and isogenies

Let φ : A −→ B be a morphism of abelian varieties over k. The kernel of φ, is the scheme theoretic fiber

of 0B :

ker(φ) := A0B
= A×B Spec(k)

Where the fiber product is given by φ and the map 0B : Spec(k) −→ B. This is a closed subscheme of A

and a group scheme (because of the group homomorphism structure of φ).

Definition 2.10. A morphism of abelian varieties is an isogeny if it is surjective of finite kernel.

Proposition 2.11. Let φ : A −→ B be a morphism of abelian varieties. Then, φ is an isogeny if and

only if one of the following conditions stands:

(i) dim(A) = dim(B) and ker(φ) is finite.

(ii) dim(A) = dim(B) and φ is surjective.

(iii) φ is finte locally free.
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Proof. A and B are both complete k-varieties so lemma 1.11 ensures that φ is proper. It follows that φ is

closed and that φ(A) is an integral subscheme of A (with the reduced induced structure). Then, φ factors

through the closed immersion φ(A) ↪→ B and we may see φ as a surjective (hence dominant) morphism

of integral schemes of finite type A −→ φ(A). By [7, Exercise II.3.22], there exists a non-empty open

subset U ⊆ A such that for all b ∈ φ(U):

dim(Ab) = dim(A)− dim(φ(A)) (?)

Besides, for all b ∈ B (viewed as a k(b)-valued point), the translation tb : B×k k(b) −→ B×k k(b) induces

an isomorphism between the fibers ker(φ) ×k k(b) = A0 × k(b) −→ Ab up to extension of scalars, and

under the hypothesis we have made (integrality and finite-typeness), the dimension is unchanged after

extension of scalars (by [7, Exercise II.3.20.f]) so all fibers have the same dimension and (?) holds for

every b ∈ B. In particular:

dim(ker(φ)) = dim(A)− dim(φ(A)) (??)

If (i) holds, then ker(φ) is finite so its dimension is zero and dim(φ(A)) = dim(A) = dim(B) so that B =

φ(A) because B is irreducible and φ(A) is closed so φ is an isogeny. If (ii) holds, then dim(ker(φ)) = 0 and

we conclude by the following lemma. Conversely, if φ is an isogeny, then dim(B) = dim(φ(A)) = dim(A)

by (??) so (i) and (ii) hold.

Lemma 2.12. Let X be a finite type k-scheme. If Y is a closed subscheme of dimension zero, then Y is

finite.

Proof. Let U := Spec(R) be an open affine subset of X intersecting Y , and let I ⊆ R a reduced ideal

such that Y ∩ U = V (I). Then every prime ideal p ∈ V (I) is maximal so V (I) is finite because R is

Noetherian. Since X is quasi-compact, it can be covered by finitely many open affines so Y is finite.

Now we prove that φ is an isogeny if and only if it is finite locally free. If φ is finite locally free then its

fibers are finte by lemma 1.21 so ker(φ) is finite and φ∗OA is a locally free of finite type OB-module. It

follows that for a given non-empty open affine V ⊆ B, OA(φ−1(V )) is a finitely generated OB(V )-module

so that both rings have the same dimension and dim(A) = dim(OA(φ−1(V ))) = dim(OB(V )) = dim(B)

by [7, Exercise II.3.20.e]. So (ii) holds and φ is an isogeny.

Conversely, if φ is an isogeny then ker(φ) is finite so all the fibers are finite (as we have seen with the

isomorphism induced by the translations) and φ is proper by lemma 1.11 so φ is finite by lemma 1.21.

Then, φ∗OA is a coherent OB-module as the direct image of a coherent module by a finite morphism

[7, exercise 5.5]. Since OA,a is a k-vector space for all a ∈ A, it is flat over k so OA is flat and OA is

(quasi)-coherent so φ∗OA is flat by lemma 1.26. Consequently, φ is finite locally free.

2.3 The theorem of the cube and its consequences

Let us recall the:

Theorem 2.13 (theorem of the cube). Let X,Y, Z be three geometrically irreducible k-varieties. We

assume that X and Y are complete. Let L be an invertible sheaf on X × Y × Z, x0 ∈ X(k), y0 ∈ Y (k)

and z0 ∈ Z(k) such that L is trivial on X×Y ×{z0}, X×{y0}×Z and {x0}×Y ×Z. Then, L is trivial

on X × Y × Z.

Proof. See [2, p.55 or p.91].

Let A be an abelian variety over k. For i ∈ {1, 2, 3}, let pi : A3 −→ A be the projection of the i-th

coordinate. For i, j, k ∈ {1, 2, 3}, we denote:

pi,j := m ◦ (pi × pj) : A3 −→ A
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(the sum pi + pj) and

pi,j,k := m ◦ (pi,j × pk) : A3 −→ A

(the sum pi + pj + pk).

Corollary 2.14. For any invertible sheaf L on A, the invertible sheaf:

p∗1,2,3L ⊗ p∗1,2L−1 ⊗ p∗1,3L−1 ⊗ p∗2,3L−1 ⊗ p∗1L ⊗ p∗2L ⊗ p∗3L

on A3 is trivial.

Proof. LetM be the invertible sheaf of the corollary. Then, the restriction of p1,2,3, p1,2, p1,3, p2,3, p1, p2, p3

on A × A × {0} ' A × A are respectively m, p,m, q, p, q, 0 where p : A × A −→ A is the left projection,

q : A×A −→ A is the right projection and 0 is the constant map 0A × πA/k. Then:

MA×A×{0} ' m∗L ⊗ p∗L−1 ⊗m∗L−1 ⊗ q∗L−1 ⊗ p∗L ⊗ q∗L ⊗OA×A ' OA×A

where we used lemma 1.41.(ii) to identify 0∗L with OA×A. By similar arguments, we obtain that the

restriction of M to A× {0} × A and {0} × A× A are trivial. Then, M is trivial by the theorem of the

cube 2.13.

Corollary 2.15. Let X be a k-scheme and f1, f2, f3 : X −→ A be three morphisms of k-schemes. For

i, j, k ∈ {1, 2, 3}, let us denote by fi + fj and fi + fj + fk respectively the composites pi,j ◦ (f1 × f2 × f3)

and pi,j,k ◦ (f1 × f2 × f3). Then, for all inverible sheaf L on A, the invertible sheaf:

(f1 + f2 + f3)∗L ⊗ (f1 + f2)∗L−1 ⊗ (f1 + f3)∗L−1 ⊗ (f2 + f3)∗L−1 ⊗ f∗1L ⊗ f∗2L ⊗ f∗3L

is trivial.

Proof. We only have to apply the functor (f1×f2×f3)∗ on the invertible sheaf of the preceding corollary.

For n ∈ Z, we define the multiplication by n map [n] : A −→ A as follows: [0] := 0A ◦ πA/k is the zero

map, for all n ∈ N∗, [n + 1] = m ◦ ([n] × idA) ◦∆A/k (by induction) and [−n] := i ◦ [n]. For all n ∈ Z,

[n] is an endomorphism in the category of abelian varieties as it is a group homomorphism.

Corollary 2.16. Let L be an invertible sheaf on A. Then, for all n ∈ N:

[n]∗L ' L⊗
n(n+1)

2 ⊗ [−1]∗L⊗
n(n−1)

2

where the exponents are iterations of the tensor products.

Proof. We proceed by induction on n ∈ N. For n = 0, the equation is OA ' OA so the result is trivial.

For n ∈ N, the preceding corollary with f1 := [n], f2 := [1] and f3 := [−1] ensures that:

[n]∗L ⊗ [n+ 1]∗L⊗−1 ⊗ [n− 1]∗L⊗−1 ⊗ [0]∗L⊗−1 ⊗ [n]∗L ⊗ [1]∗L ⊗ [−1]∗L ' OA

i.e. [n+ 1]∗L ' [n]∗L⊗2 ⊗ [n− 1]∗L⊗−1 ⊗ L⊗ [−1]∗L (?)

with the use of lemma 1.41.(ii) to simplify the trivial term [0]∗L⊗−1. Taking n = 0 in (?), we get the

desired result for n = 1. Now, we assume that the result holds for n and n− 1. Then, by (?) and by the
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induction hypothesis, we get:

[n+ 1]∗L ' [n]∗L⊗2 ⊗ [n− 1]∗L⊗−1 ⊗ L⊗ [−1]∗L

'
(
L⊗

n(n+1)
2 ⊗ [−1]∗L⊗

n(n−1)
2

)2

⊗ L⊗−
(n−1)n

2 ⊗ [−1]∗L⊗−
(n−1)(n−2)

2 ⊗ L⊗ [−1]∗L

' L⊗n(n+1)−n(n−1)
2 +1 ⊗ [−1]∗L⊗n(n−1)− (n−1)(n−2)

2 +1 = L⊗
(n+1)(n+2)

2 ⊗ [−1]∗L⊗
n(n+1)

2

This completes the proof.

Corollary 2.17 (theorem of the square). Let L be an invertible sheaf on A and a, b ∈ A(k) two k-valued

points. Then:

t∗a+bL ⊗ L ' t∗aL ⊗ t∗bL

Proof. We only have to apply corollary 2.15 to f1 := idA, f2 := a ◦ πA/k and f3 := b ◦ πB/k and use

lemma 1.41.(ii) to simplify trivial terms.

Let a ∈ A(k). For all prime Z divisor of A, the translation ta(Z) is still closed irreducible and of

codimension 1 so it is a prime divisor. By linearity, one defines the translation of any divisor on A.

Lemma 2.18. For all a ∈ A(k) and D ∈ Div(A), we have t∗aL(D) ' L(t−a(D)).

Proof. The translation ta : A −→ A induces a sheaf isomorphism t#a : t−1
a OA −→ OA, so that:

t∗aL(D) = OA ⊗t−1
a OA

t−1
a L(D) ' t−1

a L(D)

But for all open subset U ⊆ A :

Γ(U, t−1
a L(D)) = Γ(ta(U),L(D)) = {f ∈ k(X)∗ | div(f)|ta(U) +D|ta(U) ≥ 0}

and we get easily that D|ta(U) = t−a(D), so that Γ(U, t−1
a L(D)) ' Γ(U,L(t−a(D))) and finally t∗aL(D) '

L(t−a(D)).

With the formula above and proposition 1.48, the theorem of the square could be reformulated in

terms of divisors as follows:

Corollary 2.19. For all a, b ∈ A(k) and divisor D ∈ Div(A), we have ta+b(D) +D ∼ ta(D) + tb(D).

2.3.1 Abelian varieties are projective

Theorem 2.20. Abelian varieties are projective.

Proof. Let A be an abelian variety over k. By proposition 1.59.(iv), we may assume that k algebraically

closed.

Step 1: We construct a divisor D :=
∑r
i=1[Zi] where the Z1, · · · , Zr are prime divisors on A such

that:

(i)
⋂r
i=1 Zi = {0A}, where 0A is the neutral element of A.

(ii)
⋂r
i=1 T0A

(Zi) = {0}, where 0 is the zero vector in the tangent space T0A
(A).

Let U := Spec(R) be an open neighborhood of 0A. Then, 0A corresponds to a maximal ideal m0 ⊆ R
because 0A is a closed point by [6, corollary 3.36] (since 0A ∈ A(k)). As we have seen in chapter 1,

the prime divisors Z passing through 0A are determined by prime ideals p of height 1 of R such that

m0 ∈ V (p) i.e. p ⊆ m0. Therefore, we may see these ideals as prime ideals of height 1 in Rm0
. But A is

smooth so Rm0
= OA,0A

is regular by 1.19. By theorem 1.17, we get that Rm0
is a unique factorization

domain. Since the elements of m0Rm0
are non-invertible, they all have irreducible factors. Besides, the
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principal ideals generated by irreducible elements are prime of height 1. It follows that m0 is generated

by the prime ideals of height 1 contained in m0, so that:

⋂
p⊆m0

ht(p)=1

V (p) = V

( ∑
p⊆m0

ht(p)=1

p

)
= V (m0) = {m0}

Then, the intersection of U and all the prime divisors of A containing 0A is reduced to 0A, and this is

true for all open affine neighborhood U of 0A. Then, to prove that the intersection of all prime divisors

containing 0A is reduced to 0A, it suffices to prove that open affine neighborhoods of 0A cover A.

Let x ∈ A be a closed point (automatically k-valued) and U be an open affine neighborhood of 0A.

Then tx(U)∩U 6= ∅ because A is irreducible and the closed points are very dense so there exists a closed

point y ∈ tx(U) ∩ U . Therefore, 0A ∈ tx−y(U) and x = y + x − y ∈ tx−y(U). Furthermore, tx−y(U)

is still affine because tx−y is an isomorphism. We conclude that the open subset V formed of all open

affine neighborhoods of 0A contains the set of closed points A(k), so it is very dense. Suppose that there

exists x ∈ A \ V . Then, {x} ⊆ A \ V because A \ V is closed and therefore {x} = V ∩ {x} = ∅ because

V is very dense. Then V = A and we conclude that the intersection of all prime divisors containing 0A

is reduced to 0A, as announced before. Since A is Noetherian, by the descending chain condition, there

exists finitely many prime divisors Z1, · · · , Zs such that
⋂s
i=1 Zi = {0A}.

Let U := Spec(R) be an open affine neighborhood of 0A and m0 the maximal ideal corresponding

to 0 ∗ A. Then, as we have seen above, mA,0A
= m0Rm0 is generated by all the prime ideals of height

1 in Rm0 = OA,0A
i.e. by the localized ideals IZ,0A

for every prime divisor Z containing 0A (IZ being

the coherent ideal associated to Z, as we saw in paragraph 1.3.4, on page 17). It follows that every

vector t in the intersection of the tangent spaces at 0A of the prime divisors Z containing 0A vanishes

on the IZ,0A
s, so on the whole of mA,0A

so it is zero. But T0A
(A) is finite dimensional so it verifies the

descending chain condition and there are finitely many prime divisors containing 0A : Zs+1, · · · , Zr such

that
⋂r
i=s+1 T0A

(Zi) = {0}. Finally, Z1, · · · , Zr verify (i) and (ii) and we set D :=
∑r
i=1[Zi].

Step 2: We prove that 3D is very ample i.e. that the complete linear system d(3D) it defines is base

point free, separates points and tangent directions, which is necessary and sufficient by theorem 1.56.

Let a, b ∈ A(k) be two distinct closed points. We prove that there exists a positive divisor linearly

equivalent to 3D whose support contains a but not b. By the theorem of the square 2.19, we have for all

c, d ∈ A(k) and all divisor D′ ∈ Div(A), tc(D
′) + td(D

′) + t−c−d(D
′) ∼ 3D′, so that :

3D =
r∑
i=1

3[Zi] ∼
r∑
i=1

([tai(Zi)] + [tbi(Zi)] + [t−ai−bi(Zi)])

for all a1, · · · , ar, b1, · · · , br ∈ A(k). Since b− a 6= 0A, by (i) there exists i ∈ J1 ; rK such that b− a 6∈ Zi,
so that b 6∈ ta(Zi). But a ∈ ta(Zi). Then, we may chose ai := b − a. Now we chose bi such that

b 6∈ tbi(Zi) ∪ t−ai−bi(Zi) i.e. bi 6∈ (b − Zi) ∪ t−ai−b(Zi). But b − Zi and t−ai−b(Zi) are closed and

proper subsets and A is irreducible so they do not cover the whole of A. Since A(k) is dense, there

exists a convenient bi ∈ A(k). For 1 ≤ j 6= i ≤ r, we take aj ∈ A(k) \ t−b(Zj) so that b 6∈ taj (Zj) and

bj ∈ A(k)\ (b−Zj)∪ t−aj−b(Zj) so that b 6∈ tbj (Zj) and b 6∈ t−aj−bj (Zj). We conclude that a ∈ Supp(D′)

but b 6∈ Supp(D′) for a certain positive divisor D′ ∼ 3D (given by the ai and bi), so that d(3D) separates

points.

Given a ∈ A, we can use the same ideas to find the ai and bi such that a avoids tai(Zi), tbi(Zi) and

t−ai−bi(Zi) for all i ∈ J1 ; nK, so that a 6∈ Supp(D′) for a certain D′ ∈ d(3D) and d(3D) has no base

point.

Let a ∈ A(k) and t ∈ Ta(A) \ {0}. Since ta is an isomorphism its differential at 0A is an isomorphism

between T0A
(A) and Ta(A) and we have

⋂r
i=1 Ta(ta(Zi)) = {0A} by (ii). Then, there exists i ∈ J1 ; rK

such that t 6∈ Ta(ta(Zi)) and we may chose ai := a. As previously, we may chose bi such that a 6∈
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tbi(Zi) ∪ t−ai−bi(Zi) and aj , bj for 1 ≤ j 6= i ≤ r such that b 6∈ taj (Zj) ∪ tbj (Zi) ∪ t−aj−bj (Zj). Let:

D′ :=
r∑
i=1

([tai(Zi)] + [tbi(Zi)] + [t−ai−bi(Zi)])

Then, the stalk at b of the sheaf of ideals associated to D′ (see the definition on page 17) is:

ID′,b =
r∏
j=1

Itaj
(Zj),b · Itbj (Zj),b · It−aj−bj

(Zj),b

And a ∈ tai(Zi) only so these ideals are locally trivial (i.e. contain 1) on an open neighborhood of a,

Itai
(Zi) excepted, so that ID′,b = Itai

(Zi),b = Ita(Zi),b and Ta(D′) = Ta(ta(Zi)). Finally, t 6∈ Ta(D′) and

b ∈ Supp(D′) so d(3D) separates tangent directions. This completes the proof.

2.3.2 Study of the multiplication by n map and torsions subgroups

Proposition 2.21. Let g := dim(A). The multiplication by n map [n] : A −→ A is an isogeny of degree

n2g.

Proof. Let L be an ample invertible sheaf on A (it does exist by theorem 2.20). Let L′ := L ⊗ [−1]∗L.

Then [−1]∗L′ ' L′ because [−1] is an involutory isomorphism. Then by corollary 2.16, we have [n]∗L′ '
L′⊗

n(n+1)
2 ⊗ [−1]∗L′⊗

n(n−1)
2 ' L⊗n2

.

By proposition 2.11 and lemma 2.12, to prove that [n] is an isogeny, it suffices to prove that dim(ker([n])) =

0. By contradiction, if dim(ker([n])) > 0, then there exists Z ⊆ dim(ker([n]), a closed irreducible sub-

variety of dimension 1. But [n]|Z is constant so [n]∗L′|Z ' L
′⊗n2

|Z is trivial by lemma 1.41.(ii). As a

consequence, the numerical polynomial function:

m ∈ Z 7−→ χ(Z,L′⊗n
2m

|Z )

is constant, so (L′⊗n2 ·Z) = 0 (as the dominant coefficient of this polynomial). Besides, L′ = L⊗ [−1]∗L
and L is ample so [−1]∗L is ample since [−1] is an isomorphism1, so that L′ is ample and L′⊗n

2

|Z as well

(by proposition 1.59.(i) and (ii)). It follows that (L′⊗n2 · Z) > 0 by lemma 1.62.(ii). Contradiction. So

[n] is indeed an isogeny.

By lemma 1.63, we have:

([n]∗L′g ·A) = deg([n])(L′g ·A)

Where L′g denotes L′ · · · L′ (g times) and the same for [n]∗L′. But by lemma 1.62.(iii), we also have:

([n]∗L′g ·A) =
ÄÄ
L′⊗n

2
äg
·A
ä

= n2g(L′g ·A)

Since (L′g ·A) > 0 by lemma 1.62.(ii), we conclude that deg([n]) = n2g.

Lemma 2.22. Let m : A ×k A −→ A be the addition map of A and 0A ∈ A(k) the neutral element.

Then, the differential:

dm(0A,0A) : T(0A,0A)(A×k A) ' T0A
(A)× T0A

(A) −→ T0A
(A)

is the additive map of the k-vector space T0A
(A).

Proof. Let k[ε] := k(T )/(T 2) (where ε is the image of the indeterminate T in the quotient). The reader

may refer to [6, 6.4, p.149] for a presentation of the following invoked results. We know that T0A
(A) =

(mA,0A
/m2

A,0A
)∗ can be identified with the set A(k[ε])0A

of homomorphisms Spec(k[ε]) −→ A with image

1It is an easy consequence of theorem 1.58.
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0A. 0A ◦ πk[ε]/k : Spec(k[ε]) −→ A corresponds to 0A in T0A
(A), where πk[ε]/k : Spec(k[ε]) −→ Spec(k) is

the structural map. We also have a k-vector space isomorphism T0A
(A)× T0A

(A) −→ T(0A,0A)(A×k A)

induced by:

θ : (φ1, φ2) ∈ A(k[ε])0A
×A(k[ε])0A

7−→ φ1 × φ2 ∈ (A×k A)(k[ε])(0A,0A)

and dm(0A,0A) corresponds to the map:

φ ∈ (A×k A)(k[ε])(0A,0A) 7−→ m ◦ φ ∈ A(k[ε])0A

If ϕ1 ∈ T0A
(A) corresponds to φ1 ∈ A(k[ε])0A

, then (ϕ1, 0A) corresponds to (φ1, 0A ◦πk[ε]/k) and we have:

dm(0A,0A) ◦ θ(φ1, 0A ◦ πk[ε]/k) = m ◦ (φ1 × 0A ◦ πk[ε]/k) = φ1

which corresponds to ϕ1, so that dm(0A,0A) sends (ϕ1, 0) to ϕ1. By similar arguments, we get that the

image of (0, ϕ2) is ϕ2 for all ϕ2 ∈ T0A
(A). By linearity of dm(0A,0A) we conclude that (ϕ1, ϕ2) maps to

ϕ1 + ϕ2.

Proposition 2.23. [n] : A −→ A is étale if and only if p := char(k) does not divide n.

Proof. By proposition 2.21, [n] is an isogeny so it is finite locally free by 2.11, so [n] is flat and we only

have to determine when it is unramified.

By lemma 2.22, we get that d[n]0A
: T0A

(A) −→ T0A
(A) is the multiplication by n map which is

injective when p does not divide n and zero otherwise. With the use of translation automorphisms of A,

we get that the differential of [n] is either injective on the whole of A when p does not divide n or zero

otherwise. Therefore, by lemma 1.35, [n] is étale if and only if p does not divide n.

Theorem 2.24 (structure of torsion subgroups). Assume that k is algebraically closed. Let p := char(k)

and g := dim(A).

(i) If p does not divide n, then A[n] := ker([n] : A −→ A) ' (Z/nZ)2g.

(ii) If p > 0, then there exists f ∈ J0 ; gK such that A[pm] ' (Z/pmZ)f for all m ∈ N.

Proof. (i) We already know that [n] is finite locally free and unramified of degree n2g. By proposition

1.37, we get that |A[n]| = n2g. Since we also have |A[m]| = m2g for all divisor m of n, we conclude by

the following lemma.

(ii) is much more difficult. See [3, lemma 39.9.10]. The idea is to factor [p] locally by a homeomorphism

of degree pg.

Lemma 2.25. Let (G,+) be a finite abelian group of order nr (for n, r ∈ N∗) such that for all divisor

m of n, the order of the m-torsion subgroup is |G[m]| = mr. Then, G ' (Z/nZ)r.

Proof. By the structure theorem of finite abelian groups, there exists s ∈ N∗ and d1, · · · , ds ∈ N∗ such

that G '
∏s
i=1Z/diZ and 2 ≤ d1| · · · |ds. Then, we immediately get that:

G[d1] '
s∏
i=1

(Z/diZ)[d1] '
s∏
i=1

Z/d1Z

so that |G[d1]| = ds1 = dr1, so that s = r. Besides, |G| =
∏r
i=1 di = nr and G = G[n], so di|n for all

i ∈ J1 ; rK and necessarily d1 = · · · = dr = n. This completes the proof.
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Chapter 3

The Z-module Hom(A,B)

Throughout this chapter, k will be assumed algebraically closed (unless otherwise stated) and we will

denote p := char(k).

3.1 The Tate module

Throughout this paragraph, ` will be a prime number. Let A be an abelian variety. Then, the family of

torsion subgroups (A[`n])n∈N∗ , together with the maps A[`m] −→ A[`n] induced by the `m−n multiplica-

tion for all positive integers n ≤ m form a projective system. Then, we can consider the Tate module of

A as the projective limit:

T`(A) = lim
←−

A[`m]

T`(A) has a natural structure of Z`-module. Indeed, we have the following descriptions:

Z` =

{
(λn)n∈N ∈

∏
n∈N

Z/`nZ

∣∣∣∣ ∀m ≥ n ≥ 1, λn ≡ λm [`n]

}

T`(A) =

{
(xn)n∈N∗ ∈

∏
n∈N

A[`n]

∣∣∣∣ ∀m ≥ n ≥ 1, xn ≡ `m−nxm

}
And we can define the external law as follows:

∀λ := (λn)n∈N∗ ∈ Z`, x := (xn)n∈N∗ ∈ T`(A), λ · x := (λnxn)n∈N∗

This law is well defined because we have for all positive integers m ≥ n, `m−nλmxm = λnxn (since

λn ≡ λm [`n] and xn is of order `n).

Proposition 3.1. T`(A) is a free Z`-module. Let us denote g := dim(A). Then:

rankZ`
T`(A) =

{
2g if ` 6= p

f if ` = p

for a certain f ∈ J0 ; gK.

Proof. It is a direct consequence of 2.23: there exists r ∈ N∗ such that for all n ∈ N∗, A[`n] ' (Z/`nZ)r

and r = 2g if ` 6= char(k) and r ∈ J0 ; gK otherwise.

We will recursively construct a basis for T`(A). Let e
(1)
1 , · · · , e(r)

1 ∈ A[`] be a Z/`Z basis for A[`]. For

all, i ∈ J0 ; rK, we easily construct recursively e(r) := (e
(i)
n )n∈N∗ such that [`]e

(i)
n+1 = e

(i)
n because [`] is

surjective as any isogeny (by 2.21). (e(1), · · · , e(r)) is actually a Z`-basis of T`(A).
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To prove the linear independence of the e(i)s, it suffices to prove that the e
(i)
n are linearly independent

over Z/`nZ for all n ∈ N∗. We proceed by induction. For n = 1 this is trivial by hypothesis. Let n ≥ 2

and suppose that the e
(i)
n−1 are linearly independent over Z/`n−1Z. Let λ1, · · · , λr ∈ Z/`nZ such that∑r

i=1 λie
(i)
n = 0. Then, we multiply this equality by ` to obtain 0 =

∑r
i=1 λi[`]e

(i)
n =

∑r
i=1 λie

(i)
n−1 and

we get λi ≡ 0 [`n−1] so that λi = µi`
n−1 for a certain µi ∈ Z for all i ∈ J1 ; rK. Then, we have:

0 =
r∑
i=1

λie
(i)
n =

r∑
i=1

µi[`
n−1]e(i)

n =
r∑
i=1

µie
(i)
1

and we conclude that the µi are zero by linear independence of the e
(i)
1 s, so that λ1 = · · · = λr = 0, which

completes the induction.

Let x ∈ T`(A). Then, for all n ∈ N∗, (e
(i)
n )n∈N∗ is a basis of A[`n] so there exist λ

(1)
n , · · · , λ(r)

n ∈ Z/`nZ
such that xn =

∑r
i=1 λ

(i)
n e

(i)
n . Then, for all positive integers m ≥ n, [`m−n]xm = xn so:

r∑
i=1

λ(i)
m [`m−n]e(i)

m =
r∑
i=1

λ(i)
m e(i)

n =
r∑
i=1

λ(i)
n e(i)

n

So that λ
(i)
m ≡ λ

(i)
n [`n] for all i ∈ J1 ; nK by linear independence of the e

(i)
n s. Then, we get that

λ(i) := (λ
(i)
n )n∈N∗ ∈ Z` for all i ∈ J1 ; nK and that x =

∑r
i=1 λ

(i)e(i), which completes the proof.

Taking the Tate module T` is actually functorial. Indeed, if A and B are abelian varieties, and if

ϕ ∈ Hom(A,B), then ϕ induces a Z/`nZ-linear map A[`n] −→ B[`n] for all n ∈ N∗ (as ϕ is a group

homomorphism) and we can define a Z`-linear map:

T`(ϕ) : T`(A) −→ T`(B)

(xn)n∈N∗ 7−→ (ϕ(xn))n∈N∗

This defines a Z-linear map Hom(A,B) −→ HomZ`
(T`(A), T`(B)). Mapping (λ, ϕ) ∈ Z`×Hom(A,B) to

λ · T`(ϕ) defines a Z-bilinear map which induces a Z`-linear map:

ρ` : Z` ⊗Z Hom(A,B) −→ HomZ`
(T`(A), T`(B))

by the universal property of the tensor product. The purpose of this chapter is to study this map. The

climax will be reached with theorem 3.11.

3.2 More results on morphisms and isogenies

3.2.1 Factorization

Lemma 3.2. Let α : A −→ B be an étale isogeny and β : A −→ C a morphism of abelian varieties.

Suppose that ker(α) ⊆ ker(β). Then, there exists a (unique) morphism of abelian avrieties γ : B −→ C

such that β = γ ◦ α.

Proof. We only give a sketch for the proof of this very subtle result. For more details, the reader may

refer to [2, chapter II.7]. If G is a finite subgroup (variety) of A, then G acts freely by translation on

A. Therefore, we can define the quotient A/G which is topologically and schematically what we expect

for a group quotient (see [2, theorem p.66]). In addition, A/G is an abelian variety, the projection

π : A −→ A/G is an étale isogeny and A/G satisfies the following universal property: every morphism of

abelian varieties A −→ A′ whose kernel contains G factors through π.

Taking G := ker(α), it follows immediately that α and β factor through π : A −→ A/G. But π and

α are essentially the same. Indeed, if we write α = h ◦ π with a given morphism h : A/G −→ B, we
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get that h is bijective and étale so it is an isomorphism (as a consequence of Zariski’s main theorem [3,

lemma 37.39.1]).

Lemma 3.3. Let A and B be abelian varieties. If there is an isogeny A −→ B, then there exists an

isogeny B −→ A.

Proof. Let α : A −→ B be an isogeny. We can assume that α is étale because otherwise, we can factor

it by an étale isogeny (this is a difficult result proved in [12, corollary 5.8]). Since ker(α) is a finite

subgroup (scheme) of A, we have an inclusion ker(α) ⊆ A[n] for some n ∈ N∗ and 3.2 ensures that there

is a morphism β : B −→ A such that [n] = β ◦ α. This morphism is surjective because [n] is an isogeny

(by proposition 2.21) and has finite kernel (because α is surjective and [n] has finite kernel) so it is an

isogeny.

The preceding lemma ensures that the existence of isogenies between abelian varieties is a symmetric

relation. We say that two abelian varieties A and B are isogenous if there exists an isogeny between A

and B.

3.2.2 The degree map

Lemma 3.4. Let A and B be abelian varieties. Then Hom(A,B) is a torsion-free Z-module. As a

consequence, there is an embedding Hom(A,B) ↪→ Hom0(A,B) where Hom0(A,B) := R ⊗Z Hom(A,B)

(R may be replaced by Q).

Proof. Let ϕ ∈ Hom(A,B). Suppose that there exists n ∈ N∗ such that [n]ϕ = 0. Then, ϕ(A) ⊆ B[n].

But A is connected then so does ϕ(A) (because ϕ is a continuous map). Furthermore, B[n] is a finite set

(by 2.23) compound of closed points (by 1.30) so ϕ(A) must be a singleton, and then ϕ = 0.

Consider ϕ ∈ Hom(A,B) 7−→ 1 ⊗ ϕ ∈ Hom0(A,B). We prove that this map is injective. Indeed,

if ϕ 6= 0, then M := Zϕ is a free Z-module so we have a bilinear map (λ, [n] ◦ ϕ)R ×M 7−→ λn ∈ R
factoring through the tensor product R⊗ZM ⊆ Hom0(A,B) and 1⊗ ϕ is the image of (1, [1] ◦ ϕ) in the

tensor product whose image is 1 6= 0, so that 1⊗ ϕ 6= 0.

Lemma 3.5. Set g := dim(A). Given ϕ1, · · · , ϕr ∈ End(A), the map:

(n1, · · · , nr) ∈ Zr 7−→ deg

(
r∑
i=1

niϕi

)
∈ Z

is a numerical polynomial which is homogenous and of degree 2g (with the convention deg(ϕ) = 0 if

ϕ ∈ End(A) is not an isogeny).

Proof. By multiplicativity of the degree of field extensions, the degree map is also multiplicative and, we

have for all ϕ ∈ End(A) and n ∈ N, deg([n] ◦ ϕ) = deg([n])deg(ϕ) = n2gdeg(ϕ) by proposition 2.21. If

the degree map is a polynomial, it is immediate that it is homogeneous of degree 2g.

First, we prove that given ϕ,ψ ∈ End(A), the map n 7−→ deg(nϕ+ψ) is a numerical polynomial. Let

L be an ample invertible sheaf on A (it does exist by theorem 2.20). Then, we have by lemma 1.63:

((nϕ+ ψ)∗Lg ·A) = deg(nϕ+ ψ)(Lg ·A)

(where the exponent g means that terms are repeated g times). By 1.62.(ii), (Lg · A) > 0 because L is

ample, so it suffices to prove that the left term is polynomial of degree ≤ 2g. Set Ln := (nϕ + ψ)∗L.

Applying 2.19 with f1 := nϕ+ ψ and f2 = f3 := ϕ, we get that:

Ln+2 ⊗ L⊗−2
n+1 ⊗ Ln ⊗ (2ϕ)∗L⊗−1 ⊗ ϕ∗L⊗2 ' OA

32



Let L′ := (2ϕ)∗L ⊗ ϕ∗L⊗−2. Then, we get easily by induction on n that for all n ≥ 2:

Ln = L′⊗
n(n−1)

2 ⊗ L⊗n1 ⊗ L⊗(n−1)
0

By lemma 1.62.(iii), we get that for all n ∈ N∗:

(Lgn ·A) =

Å
n(n− 1)

2

ãg
(L′g ·A) + ng(Lg1 ·A) + (n− 1)g(Lg0 ·A)

It follows that n 7−→ deg(nϕ+ ψ) is a numerical polynomial.

We conclude by induction on r ∈ N∗. For ϕ1, · · · , ϕr, ψ ∈ End(A), we prove that f : (n1, · · · , nr) 7−→
deg (

∑r
i=1 niϕi + ψ) is polynomial. For r = 1, we already proved the result. Let r ≥ 2 and assume the

result for r − 1. Then, by the case n = 1, we may write f as follows:

∀n1, · · · , nr ∈ Zr, f(n1, · · · , nr) :=
d∑
j=1

aj(n1, · · · , nr−1)njr (?)

where a0, · · · , aj are functions defined on Zr−1. Fixing nr in a finite set of d + 1 distinct values

c0, · · · , cr ∈ Z, (?) becomes a Vandermonde linear system for the variables aj , so we obtain that the

aj(n1, · · · , nr−1) are linear combinations of the f(n1, · · · , cj) (independent of the cj) so they are polyno-

mial by the induction hypothesis. This completes the proof.

Remark 3.6. One can extend the definition of the degree map to End0(A) = R ⊗Z End(A) by homo-

geneity. It becomes a homogenous polynomial function of degree 2g.

3.3 Simple isogenies and Poincaré’s decomposition

Definition 3.7. An abelian variety A is simple if it is non trivial and the only abelian subvarieties of A

are {0} and A.

Lemma 3.8. Let A and B be simple abelian varieties and let ϕ : A −→ B be a morphism. Then ϕ is

either zero or an isogeny.

Proof. By lemma 2.6, ϕ(A) is an abelian subvariety of B so it is either zero or the whole of B. It remains

to prove that ker(ϕ) is finite i.e. that it is of dimension 0 by lemma 2.12. If not, ker(ϕ) the irreducible

component of 0A in ker(ϕ) is a proper non-trivial abelian subvariety of A (a justification of this fact is

needed and may be found in [13, theorem 1]), contradicting the simpleness of A.

Theorem 3.9 (Poincaré’s decomposition). Let A be an abelian variety. Then, there exist simple abelian

subvarieties A1, · · · , An ⊆ A and an isogeny
∏n
i=1Ai −→ A mapping (a1, · · · , an) ∈

∏n
i=1Ai(k) to∑n

i=1 ai. This decomposition is unique, meaning that the Ai are determined up to isogney.

Proof. The proof uses dual abelian varieties, a notion we did not study in the course of this seminar so

we will admit the theorem. The reader may refer to [2, p. 173].

3.4 Towards Tate’s theorem

3.4.1 The main theorem

Lemma 3.10. Let A and B be abelian varieties over k and M a finitely generated subgroup of Hom(A,B).

Then the subgroup:

Mdiv := {ϕ ∈ Hom(A,B) | ∃n ∈ N∗, [n] ◦ ϕ ∈M}

is finitely generated.
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Proof. By Poincaré’s decomposition (theorem 3.9) and the symmetry of isogenous relation (remark 3.6),

there exists two isogenies ϕ :
∏r
i=1Ai −→ A and ψ : B −→

∏s
j=1Bi where the Ai and Bj are simple

abelian varieties. The map:

α ∈ Hom(A,B) 7−→
Ä
ψ ◦ α ◦ ϕ|Bj

|Ai

ä
1≤i≤r
1≤j≤s

∈
r∏
i=1

s∏
j=1

Hom(Ai, Bj)

is injective. Indeed, given α ∈ Hom(A,B), if we have ψ ◦ α ◦ ψ|Bj

|Ai
= 0 for all 1 ≤ i ≤ r, 1 ≤ j ≤ s, then

by surjectivity of ϕ, we get α(A) ⊆ ker(ψ) so the image of α is connected and finite and we conclude

that α = 0 as in the proof of lemma 3.4. Hence we can assume that A and B are simple. If A and B are

not isogenous, we get that Hom(A,B) = {0} by lemma 3.8 and the result is trivial so we assume that A

and B are isogenous and get an injection Hom(A,B) ↪→ End(A) mapping α ∈ Hom(A,B) to ϕ ◦α where

ϕ : B −→ A is an isogeny. Hence, we can assume A = B.

With the natural inclusions End(A) ⊆ End0(A) = R⊗Z End(A) (see lemma 3.5) and Q ⊆ R, we get

easily that Mdiv = Q ⊗Z M ∩ End(A). As a consequence, Mdiv ⊂ Q ⊗Z M ⊂ R ⊗Z M . Since M is

finitely generated, R⊗ZM is a finite dimensional R-vector space. Moreover, lemma 3.5 and the following

remark ensure that the degree function α ∈ R ⊗Z M 7−→ deg(α) ∈ R is a polynomial function so it is

continuous, whence the subset U := {α ∈ R ⊗Z M | deg(α) < 1} is open. But A is simple so every

nonzero endomorphism of A is an isogeny, so is finite locally free by proposition 2.11 and its degree is

therefore a positive integer. Since deg maps End(A) to N, it follows that Mdiv ∩ U = {0}. We have

proved that Mdiv is a discrete submodule of a finite dimensional R-vector space. Therefore Mdiv is a

Euclidean lattice, hence it is finitely generated.

Theorem 3.11. Let A and B be abelian varieties defined over k. If ` is a prime number distinct from

p := char(k), then the map:

ρ` : Z` ⊗Z Hom(A,B) −→ HomZ`
(T`(A), T`(B))

defined at the end of section 3.1 is injective.

Proof. Let α ∈ Z` ⊗Z Hom(A,B) such that ρ`(α) = 0. Then, we may write α :=
∑r
i=1 λi ⊗ ϕi with

λ1, · · · , λr ∈ Z` and ϕ1, · · · , ϕr ∈ Hom(A,B). Let M be the subgroup of Hom(A,B) generated by the

ϕis. It is finitely generated so by lemma 3.10 Mdiv = {ϕ ∈ Hom(A,B) | ∃n ∈ N∗, [n] ◦ ϕ ∈ M} is

finitely generated. By lemma 3.4, Hom(A,B) is torsion free and Mdiv as well. Since Mdiv is finitely

generated, it is a free Z-module of finite type and it admits a Z-basis. Since M ⊆ Mdiv, rewriting α if

necessary, we may assume that the ϕi are a Z-basis of Mdiv.

Let n ∈ N∗ and c1, · · · , cr ∈ Z such that ci ≡ λi [`n] for all i ∈ J1 ; rK. If we look the equality

ρ`(α) = 0 modulo `n, we get that
∑r
i=1[ci] ◦ϕi vanishes on A[`n]. Since [`n] is an étale isogeny (by 2.23),

the lemma 3.2 implies the existence of a morphism ψ : A −→ B such that
∑r
i=1[ci]◦ϕi = ψ◦[`n] = [`n]◦ψ.

But ψ ∈ Mdiv, so there exists d1, · · · , dr ∈ Z such that ψ =
∑r
i=1[di] ◦ ϕi. Since the ϕi are free over Z,

ci = `ndi, so that λi ≡ 0 [`n] for all i ∈ J1 ; rK. These congruences hold for all n ∈ N∗. Therefore, the

λi are all zero so α = 0. This completes the proof.

Corollary 3.12. Let A and B be abelian varieties over k. Then Hom(A,B) is a free Z-module of rank

≤ 4dim(A)dim(B).

Proof. Let ` be a prime number distinct fro p := cahr(k). By proposition 3.1, T`(A) and T`(B) are free Z`-

modules of rank 2dim(A) and 2dim(B) respectively so HomZ`
(T`(A), T`(B)) is a free Z`-module of rank

4dim(A)dim(B). Since Hom(A,B) is torsion free, it follows by the preceding discussion and theorem

3.11 that Hom(A,B) is of finite type and we get that rankZHom(A,B) = rankZ`
Z` ⊗ Hom(A,B) ≤

4dim(A)dim(B).

34



3.4.2 Further developments and applications

In this paragraph, k is not algebraically closed. If A and B are abelian varieties defined over k, we have

a natural embedding Hom(A,B) ↪→ Hom(Ak, Bk) (defined by extension of scalars). By theorem 3.11,

we still get an embedding Z` ⊗Z Hom(A,B) ↪→ HomZ`
(T`(Ak), T`(Bk)). It would be interesting to know

when this map is surjective. This way, we would be able to understand morphisms between abelian

varieties as Z`-linear maps between Tate modules, which are much simpler objects.

Actually, the map is not surjective because the image of Z` ⊗Z Hom(A,B) is invariant under the

action of the Galois group G := Gal(k/k). Let us explain how this action works. Given a k-scheme

X, and σ ∈ G, we have a morphism of schemes Spec(σ) : Spec(k) −→ Spec(k) and an automorphism

idX × Spec(σ) : Xk := X ×k Spec(k) −→ Xk induced by σ. When X = A, the G-action commutes with

the multiplication map so it stabilizes Ak[`n] for all n ∈ N∗. It follows that G acts on T`(Ak), T`(Bk)

and Hom(T`(Ak), T`(Bk)). We denote HomG(T`(Ak), T`(Bk)), the submodule of G-stable elements. It is

easy to see that Z` ⊗Z Hom(A,B) maps to HomG(T`(Ak), T`(Bk)).

Theorem 3.13 (Tate 1966). We assume that k is a finite field. Then, the map

Z` ⊗Z Hom(A,B) −→ HomG(T`(Ak), T`(Bk))

is bijective for all prime ` (including when ` = p).

Proof. See [4] for the original proof and [5] for the conference proceeding of Waterhouse and Milne.

This theorem has a very interesting application: characterizing isogenous abelian varieties over finite

fields. Before going any further, we need to introduce some notions and notations. Let A be an abelian

variety defined over a finite field k := Fq and A := A
Fq

.

1. We denote V`(A) := Q` ⊗Z`
T`(A) for all prime `.

2. We define the Frobenius endomorphism πA : A −→ A given by idA topologically and for all open

subset U ⊆ A by s ∈ Γ(U,OA) 7−→ sq ∈ Γ(U,OA). Since the Frobenius x ∈ Fq 7−→ xq ∈
Fq stabilizes Fq, the multiplication map commutes with the Frobenius πA so it is actually an

endomorphism of abelian varieties.

3. Every endomorphism of End(A) can be seen as Z`-linear endomorphism in T`(A) so we can associate

a characteristic polynomial to it. We will denote fA the characteristic polynomial of πA.

4. We associate to A a Zeta function defined as the formal series:

Z(A, T ) := exp

(
+∞∑
n=1

|A(Fqn)|T
n

n

)

Theorem 3.14 (Tate 1966). Let A and B be two abelian varieties defined over Fq. Then, the following

statements are equivalent:

(i) A and B are isogenous (over Fq).

(ii) There exists a prime ` such that V`(A) and V`(B) are G-isomorphic (there is an isomorphism com-

muting with the G-action).

(iii) fA = fB.

(iv) Z(A, T ) = Z(B, T ).

(v) For all n ∈ N∗, |A(Fqn)| = |B(Fqn)|.

Proof. See [4] or [5].
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