On the security of OSIDH

Pierrick Dartois and Luca De Feo

IBM Research Zurich, Corps des Mines, Université de Rennes 1

March 15 2022

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- 2 Mathematical framework of OSIDH
- 3 The OSIDH protocol
- Cryptanalysis of OSIDH

ELE SQA

Introduction: cryptographic group actions

< ロト < 同ト < ヨト < ヨ

- G: an abelian group.
- X: a set (|X| = |G|).

¹Brassard and Yung (1991), Couveignes (2006).

Pierrick Dartois and Luca De Feo

On the security of OSIDH

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- G: an abelian group.
- X: a set (|X| = |G|).
- $\cdot : G \times X \longrightarrow X$ a group action that is:
 - Transitive : $\forall x, \in X$, $G \cdot x = X$.
 - Faithful : $g \cdot x = x \Longrightarrow g = e$.

¹Brassard and Yung (1991), Couveignes (2006).

Pierrick Dartois and Luca De Feo

On the security of OSIDH

- G: an abelian group.
- X: a set (|X| = |G|).
- $\cdot : G \times X \longrightarrow X$ a group action that is:
 - Transitive : $\forall x, \in X$, $G \cdot x = X$.
 - Faithful : $g \cdot x = x \Longrightarrow g = e$.
- Easy to compute $g \cdot x$.

¹Brassard and Yung (1991), Couveignes (2006).

Pierrick Dartois and Luca De Feo

On the security of OSIDH

- G: an abelian group.
- X: a set (|X| = |G|).
- $\cdot : G \times X \longrightarrow X$ a group action that is:
 - Transitive : $\forall x, \in X$, $G \cdot x = X$.
 - Faithful : $g \cdot x = x \Longrightarrow g = e$.
- Easy to compute $g \cdot x$.
- One way group action:

 $y = g \cdot x$ known ? known

Finding g is hard.

¹Brassard and Yung (1991), Couveignes (2006).

Pierrick Dartois and Luca De Feo

On the security of OSIDH

Diffie-Hellman key exchange

- Public parameter: $x_0 \in X$.
- Alice's secret: $g \in G$.
- Bob's secret: $h \in G$.

Diffie-Hellman key exchange

- Public parameter: $x_0 \in X$.
- Alice's secret: $g \in G$.
- Bob's secret: $h \in G$.

Photo credits: Gallery Yopriceville and Michael Ochs.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Mathematical framework of OSIDH

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 6 / 45

과동

・ロト ・回ト ・ヨト ・

The ideal class group action on oriented supersingular elliptic curves

- Group: ideal class group $CI(\mathcal{O})$.
- Space: primitively *O*-oriented supersingular elliptic curves².
- Group action: isogenies representing ideal classes².

²up to oriented isomorphism.

Pierrick Dartois and Luca De Feo

4 D N 4 B N 4 B N 4

Oriented elliptic curves

- K: quadratic imaginary field.
- \mathcal{O} : order of K.
- E/\mathbb{F}_q : elliptic curve.

Definition (Colò and Kohel)

A K-orientation of E is an embedding:

$$\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

 (E, ι) is an \mathcal{O} -<u>orientation</u> if $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$. It is primitive if $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Oriented elliptic curves

- K: quadratic imaginary field.
- \mathcal{O} : order of K.
- E/\mathbb{F}_q : elliptic curve.

Definition (Colò and Kohel)

A K-orientation of E is an embedding:

$$\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

 (E, ι) is an \mathcal{O} -<u>orientation</u> if $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$. It is primitive if $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$.

• If E is ordinary, then $\iota(K) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. Not very interesting.

(日) (四) (日) (日) (日)

Oriented elliptic curves

- K: quadratic imaginary field.
- \mathcal{O} : order of K.
- E/\mathbb{F}_q : elliptic curve.

Definition (Colò and Kohel)

A K-orientation of E is an embedding:

$$\iota: K \hookrightarrow \mathsf{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

 (E, ι) is an \mathcal{O} -<u>orientation</u> if $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$. It is primitive if $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$.

- If E is ordinary, then $\iota(K) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. Not very interesting.
- If *E* is supersingular, End(*E*) is a maximal order in a quaternion algebra: infinitely many possible orientations.

(日) (周) (王) (王) (王)

K-oriented isogenies

- (E, ι) is a K-oriented elliptic curve.
- $\varphi: E \longrightarrow F$ is an isogeny.
- We define a K-orientation $\varphi_*(\iota)$ on F by:

$$orall lpha \in {\mathcal K}, \quad arphi_*(\iota)(lpha) = rac{1}{{\sf deg}(arphi)} arphi \circ \iota(lpha) \circ \widehat{arphi}.$$

Definition (Colò and Kohel)

Let (E, ι_E) and (F, ι_F) be two K-oriented elliptic curves. An isogeny $\varphi : E \longrightarrow F$ is K-oriented if $\varphi_*(\iota_E) = \iota_F$. We denote this by $\varphi : (E, \iota_E) \longrightarrow (F, \iota_F)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ascending, horizontal, descending K-oriented isogenies

- $\varphi : (E, \iota_E) \longrightarrow (F, \iota_F)$, a *K*-oriented isogeny.
- $\mathcal{O} := \iota_E^{-1}(\operatorname{End}(E)).$
- $\mathcal{O}' := \iota_F^{-1}(\operatorname{End}(F)).$

(日) (同) (三) (三) (三) (○) (○)

Ascending, horizontal, descending K-oriented isogenies

- $\varphi : (E, \iota_E) \longrightarrow (F, \iota_F)$, a *K*-oriented isogeny.
- $\mathcal{O} := \iota_E^{-1}(\operatorname{End}(E)).$
- $\mathcal{O}' := \iota_F^{-1}(\operatorname{End}(F)).$
- If $\mathcal{O} \subseteq \mathcal{O}'$, then φ is <u>ascending</u>.
- If $\mathcal{O} = \mathcal{O}'$, then φ is <u>horizontal</u>.
- If $\mathcal{O} \supseteq \mathcal{O}'$, then φ is <u>descending</u>.

(日) (四) (日) (日) (日)

Orientations

Ascending, horizontal, descending K-oriented isogenies

- $\varphi: (E, \iota_E) \longrightarrow (F, \iota_F)$, a K-oriented isogeny.
- $\mathcal{O} := \iota_{\mathsf{F}}^{-1}(\operatorname{End}(E)).$
- $\mathcal{O}' := \iota_F^{-1}(\operatorname{End}(F)).$
- If $\mathcal{O} \subseteq \mathcal{O}'$, then φ is ascending.
- If $\mathcal{O} = \mathcal{O}'$, then φ is horizontal.
- If $\mathcal{O} \supset \mathcal{O}'$, then φ is descending.

Proposition (Kohel)

If $\ell := \deg(\varphi)$ is prime, then:

(i) φ is always ascending, horizontal or descending. (ii) If φ is ascending, then $[\mathcal{O}' : \mathcal{O}] = \ell$. (iii) If φ is descending, then $[\mathcal{O} : \mathcal{O}'] = \ell$.

K-oriented supersingular *l*-isogeny graphs

Example: $\mathcal{K} = \mathbb{Q}(i), \ \ell = 2, \ p = 79, \ \mathbb{F}_{79^2} = \mathbb{F}_{79}[a] \text{ with } a^2 - a + 3 = 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example: $K = \mathbb{Q}(i)$, $\ell = 2$, p = 79, $\mathbb{F}_{79^2} = \mathbb{F}_{79}[a]$ with $a^2 - a + 3 = 0$. The graph refolds!

Figure: Supersingular 2-isogeny graph over \mathbb{F}_{79^2} .

Representing K-oriented elliptic curves by *j*-invariants

- $SS_{K}(p)$: set of *K*-oriented supersingular elliptic curves over $\mathbb{F}_{p^{2}}$ up to *K*-oriented isomomorphism.
- SS(*p*): set of supersingular elliptic curves over \mathbb{F}_{p^2} up to isomomorphism (supersingular *j*-invariants).
- Unfortunately, the forgetful map:

$$(E,\iota) \in SS_{\mathcal{K}}(p) \longmapsto E \in SS(p)$$

is not injective.

Representing K-oriented elliptic curves by *j*-invariants

- But we can restrict to \mathcal{O} -orientations with disc(\mathcal{O}) bounded.
- $SS_{\mathcal{O}}(p)$: set of \mathcal{O} -oriented supersingular elliptic curves over \mathbb{F}_{p^2} up to K-oriented isomomorphism.

Theorem (Colò and Kohel)

If $p > |\operatorname{disc}(\mathcal{O})|$, then the forgetful map:

$$(E,\iota) \in SS_{\mathcal{O}}(p) \longmapsto E \in SS(p)$$

is injective.

(日) (同) (三) (三) (三) (○) (○)

- SS^{pr}_O(p): set of **primitively** O-oriented supersingular elliptic curves over 𝔽_{p²} up to K-oriented isomorphism.
- We define a group action:

$$\mathsf{Cl}(\mathcal{O}) \times \mathsf{SS}^{\mathsf{pr}}_{\mathcal{O}}(p) \longrightarrow \mathsf{SS}^{\mathsf{pr}}_{\mathcal{O}}(p).$$

• If $(E, \iota) \in SS_{\mathcal{O}}^{pr}(p)$ and $\mathfrak{a} \subseteq \mathcal{O}$ has norm prime to p, we consider:

$$\varphi_{\mathfrak{a}}: E \longrightarrow E/E[\mathfrak{a}]$$

with:

$$\ker(\varphi_{\mathfrak{a}}) = E[\mathfrak{a}] := \bigcap_{\alpha \in \mathfrak{a}} \ker(\iota(\alpha)).$$

• We set:

$$[\mathfrak{a}] \cdot (E, \iota) := (E/E[\mathfrak{a}], (\varphi_{\mathfrak{a}})_*(\iota)).$$

Order ${\cal O}$	Primitively \mathcal{O} -oriented elliptic curves	
$\mathcal{O} ext{-ideal}\ \mathfrak{a}\subseteq \mathcal{O}$	Horizontal <i>K</i> -oriented isogeny $(E, \iota) \longrightarrow \mathfrak{a} \cdot (E, \iota)$	
Conjugate ideal $\overline{\mathfrak{a}} \equiv \mathfrak{a}^{-1}$	Dual isogeny $\mathfrak{a} \cdot (E, \iota) \longrightarrow (E, \iota)$	
Principal ideal	K-oriented endomorphism	
$\mathfrak{a}\equiv\mathfrak{b}\text{ in }Cl(\mathcal{O})$	$\mathfrak{a} \cdot (E, \iota) \simeq \mathfrak{b} \cdot (E, \iota)$	
Ideal multiplication	Composition of isogenies	

◆□> < □> < □> < □> < □> < □> < □</p>

Theorem (Onuki)

The ideal class group action $CI(\mathcal{O}) \times SS_{\mathcal{O}}^{pr}(p) \longrightarrow SS_{\mathcal{O}}^{pr}(p)$ is well-defined, **faithful** but **not transitive**. Actually, there are two orbits.

Theorem (Onuki)

The ideal class group action $Cl(\mathcal{O}) \times SS_{\mathcal{O}}^{pr}(p) \longrightarrow SS_{\mathcal{O}}^{pr}(p)$ is well-defined, **faithful** but **not transitive**. Actually, there are two orbits.

To make it transitive: restrict to the orbit of elliptic curves obtained by reduction mod p of elliptic curves defined over a number field with complex multiplication by O.

(日) (四) (日) (日) (日)

l-isogeny chains and ladders

Definition

A K-oriented ℓ -isogeny chain of length n is a sequence of K-oriented ℓ -isogenies:

$$E_0 \xrightarrow{\varphi_0} E_1 \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_{n-2}} E_{n-1} \xrightarrow{\varphi_{n-1}} E_n .$$

It is descending, horizontal or ascending if all the φ_i are.

< 口 > < 同 > < 三 > < 三

l-isogeny chains and ladders

Definition

A K-oriented $\underline{\ell}$ -isogeny chain of length n is a sequence of K-oriented $\underline{\ell}$ -isogenies:

$$E_0 \xrightarrow{\varphi_0} E_1 \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_{n-2}} E_{n-1} \xrightarrow{\varphi_{n-1}} E_n \; .$$

It is descending, horizontal or ascending if all the φ_i are.

A *K*-oriented ℓ -ladder of length *n* and degree *q* is a commutative diagram of *K*-oriented ℓ -isogeny chains:

such that $\psi_i : E_i \longrightarrow F_i$ is a *K*-oriented *q*-isogeny for all $i \in [0; n]$.

- 不得た 不足た 不足た

Computing the ideal class group action in OSIDH

•
$$\mathcal{O}_i := \mathbb{Z} + \ell^i \mathcal{O}_K$$
 for all $i \in \mathbb{N}$.

- Represent an O_n-oriented elliptic curve (E_n, ι_n) by a descending ℓ-isogeny chain (E_i, ι_i)_{0≤i≤n}.
- Let $\mathfrak{q} \subseteq \mathcal{O}_K$ be a prime ideal.
- We compute the chain $(F_i, \iota'_i)_i := [\mathfrak{q}] \cdot (E_i, \iota_i)_i$:

$$\forall 0 \leq i \leq n, \ F_i := [\mathfrak{q} \cap \mathcal{O}_i] \cdot E_i$$

to get
$$F_n := [\mathfrak{q} \cap \mathcal{O}_n] \cdot E_n$$

< 口 > < 同 > < 三 > < 三

Restricted cryptographic group action

- $q_1, \cdots, q_t \neq \ell$ splitting primes in K.
- q_1, \cdots, q_t primes of \mathcal{O}_K lying above q_1, \cdots, q_t .
- The $[q_j \cap \mathcal{O}_n]$ generate $Cl(\mathcal{O}_n)$.
- We know how to act by q_1, \cdots, q_t .
- The, we can compute

$$\left(\prod_{j=1}^t \mathfrak{q}_j^{e_j}\right) \cdot F_n.$$

What about CSIDH?

Example: $\mathcal{K} = \mathbb{Q}(\sqrt{-83}), \ \ell = 2, \ p = 83, \ \mathcal{O} = \mathbb{Z}[\sqrt{-83}] = \mathbb{Z} + 2\mathcal{O}_{\mathcal{K}}.$

The OSIDH protocol

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 22 / 45

◆□▶ <@▶ < E▶ < E▶ < E|= のQ@</p>

Naive Diffie-Hellman key exchange:

Public parameters:

- Prime ideals q_1, \cdots, q_t .
- $(E_i)_{0 \le i \le n}$ a public descending ℓ -isogeny chain.

Figure: Naive protocol.

On the security of OSIDH

March 15 2022 23 / 45

Attack on the *l*-ladder³

- Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we recover $[\mathfrak{a} \cap \mathcal{O}_n] \in \mathsf{Cl}(\mathcal{O}_n)$
- Knowing $\mathfrak{a}_i \subseteq \mathcal{O}_K$, such that $[\mathfrak{a}_i \cap \mathcal{O}_i] = [\mathfrak{a} \cap \mathcal{O}_i]$, we look for:

$$\mathfrak{a}_{i+1} := \mathfrak{a}_i \cdot \mathfrak{b}$$

with $[\mathfrak{b} \cap \mathcal{O}_{i+1}] \in ker(Cl(\mathcal{O}_{i+1}) \longrightarrow Cl(\mathcal{O}_i))$ such that:

$$[(\mathfrak{a}_i \cdot \mathfrak{b}) \cap \mathcal{O}_{i+1}] \cdot E_{i+1} = F_{i+1}$$

• $|\ker(Cl(\mathcal{O}_{i+1}) \longrightarrow Cl(\mathcal{O}_i))| \le \ell + 1$, so we have a few values of \mathfrak{b} to test.

³Colò and Kohel.

Pierrick Dartois and Luca De Feo

(日) (同) (三) (三)

• Keep the chain $(F_i)_{0 \le i \le n} := \mathfrak{a} \cdot (E_i)_{0 \le i \le n}$ secret, only F_n matters.

ELE SQC

< 日 > < 同 > < 三 > < 三 > < 三 > <

- Keep the chain $(F_i)_{0 \le i \le n} := \mathfrak{a} \cdot (E_i)_{0 \le i \le n}$ secret, only F_n matters.
- Some additional data may be useful: $(\mathfrak{q}_j^k \cdot F_n)_{\substack{1 \leq j \leq t \\ -r \leq k \leq r}}$.

- Keep the chain $(F_i)_{0 \le i \le n} := \mathfrak{a} \cdot (E_i)_{0 \le i \le n}$ secret, only F_n matters.
- Some additional data may be useful: $(\mathfrak{q}_j^k \cdot F_n)_{\substack{1 \leq j \leq t \\ -r < k < r}}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

- Keep the chain $(F_i)_{0 \le i \le n} := \mathfrak{a} \cdot (E_i)_{0 \le i \le n}$ secret, only F_n matters.
- Some additional data may be useful: $(\mathfrak{q}_j^k \cdot F_n)_{\substack{1 \leq j \leq t \\ -r \leq k \leq r}}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

Why does it work? **Example:** Bob computes $H_n = [\mathfrak{b}] \cdot F_n$ with $[\mathfrak{b}] = [\mathfrak{q}_1]^{f_1} [\mathfrak{q}_2]^{f_2}$.

A D M A D M

The protocol⁴

Figure: The OSIDH protocol.

⁴Colò and Kohel.

Pierrick Dartois and Luca De Feo

Cryptanalysis of OSIDH

Cryptanalysis of OSIDH

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 30 / 45

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

• Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we can recover the secret $[\mathfrak{a}] \in Cl(\mathcal{O}_n)$.

⁵Onuki (2020).

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 31 / 45

• Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we can recover the secret $[\mathfrak{a}] \in Cl(\mathcal{O}_n)$.

• **Problem:** recover $(F_i)_i$ with the knowledge of:

$$[\mathfrak{q}_j]^{-r} \cdot F_n \longrightarrow \cdots \longrightarrow [\mathfrak{q}_j]^r \cdot F_n \quad (1 \leq j \leq t)$$

⁵Onuki (2020).

Pierrick Dartois and Luca De Feo

• Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we can recover the secret $[\mathfrak{a}] \in Cl(\mathcal{O}_n)$.

• **Problem:** recover $(F_i)_i$ with the knowledge of:

$$[\mathfrak{q}_j]^{-r}\cdot F_n\longrightarrow \cdots \longrightarrow [\mathfrak{q}_j]^r\cdot F_n \quad (1\leq j\leq t)$$

Assume that we know a K-oriented endomorphism ι'_n(β) ∈ End(F_n) for some known value β ∈ O_n \ O_{n+1}.

⁵Onuki (2020). Pierrick Dartois and Luca De Feo

De Feo On the se

On the security of OSIDH

March 15 2022 31 / 45

• Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we can recover the secret $[\mathfrak{a}] \in Cl(\mathcal{O}_n)$.

• **Problem:** recover $(F_i)_i$ with the knowledge of:

$$[\mathfrak{q}_j]^{-r} \cdot F_n \longrightarrow \cdots \longrightarrow [\mathfrak{q}_j]^r \cdot F_n \quad (1 \leq j \leq t)$$

- Assume that we know a K-oriented endomorphism ι'_n(β) ∈ End(F_n) for some known value β ∈ O_n \ O_{n+1}.
- Set $\mathcal{O}_{\mathcal{K}} := \mathbb{Z}[\theta]$ and $\beta := a + b\ell^n \theta$ with $b \wedge \ell = 1$.
- We know $\iota'_n(a) = [a]$ so we know $\iota'_n(b\ell^n\theta)$.

⁵Onuki (2020).

Pierrick Dartois and Luca De Feo

• Given $(E_i)_i$ and $(F_i)_i := [\mathfrak{a}] \cdot (E_i)_i$, we can recover the secret $[\mathfrak{a}] \in Cl(\mathcal{O}_n)$.

• **Problem:** recover $(F_i)_i$ with the knowledge of:

$$[\mathfrak{q}_j]^{-r} \cdot F_n \longrightarrow \cdots \longrightarrow [\mathfrak{q}_j]^r \cdot F_n \quad (1 \leq j \leq t)$$

- Assume that we know a K-oriented endomorphism ι'_n(β) ∈ End(F_n) for some known value β ∈ O_n \ O_{n+1}.
- Set $\mathcal{O}_{\mathcal{K}} := \mathbb{Z}[\theta]$ and $\beta := a + b\ell^n \theta$ with $b \wedge \ell = 1$.
- We know $\iota'_n(a) = [a]$ so we know $\iota'_n(b\ell^n\theta)$.

Lemma

$$\ker(\iota_n'(b\ell^n\theta))\cap F_n[\ell]=\ker(\widehat{\varphi}_{n-1}'), \text{ with } \varphi_{n-1}':F_{n-1}\longrightarrow F_n.$$

⁵Onuki (2020).

Pierrick Dartois and Luca De Feo

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

◆□> < □> < □> < □> < □> < □> < □</p>

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

◆□> <□> < □> < □> < □> < □> < □</p>

Our contribution: a lattice reduction to find oriented endomorphisms

- We look for $\beta \in \mathcal{O}_n \setminus \mathcal{O}_{n+1}$ such that $\iota'_n(\beta)$ is easy to compute.
- We look for:

$$\beta \mathcal{O}_n = \prod_{j=1}^t (\mathfrak{q}_j \cap \mathcal{O}_n)^{e_j}$$

with $e_1, \cdots, e_t \in \llbracket -2r$; $2r \rrbracket$, so that $\iota'_n(\beta)$ can be inferred from:

$$[\mathfrak{q}_j]^{-r} \cdot F_n \longrightarrow \cdots \longrightarrow [\mathfrak{q}_j]^r \cdot F_n \quad (1 \leq j \leq t)$$

• We look for short vectors (of infinity norm $\leq 2r$) in the relations lattice:

$$L := \left\{ (e_1, \cdots, e_t) \in \mathbb{Z}^t \; \middle| \; \prod_{j=1}^t [\mathfrak{q}_j \cap \mathcal{O}_n]^{e_j} = [1] \quad \text{in } \mathsf{Cl}(\mathcal{O}_n) \right\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目目 のへの

Cryptanalysis of OSIDH endomorphisms

• The relations lattice L can be computed in polynomial time (in n and t) because discrete logarithms are easy to compute in $Cl(\mathcal{O}_n)$.

(日) (同) (三) (三)

Our contribution: a lattice reduction to find oriented endomorphisms

• The relations lattice L can be computed in polynomial time (in n and t) because discrete logarithms are easy to compute in $Cl(\mathcal{O}_n)$.

Cryptanalysis of OSIDH endomorphisms

Lemma

Heuristically, we have:

$$\left(1-rac{\log\log(t)}{t}
ight)rac{|\operatorname{\mathsf{Cl}}({\mathcal O}_n)|^{1/t}}{2}\leq\lambda_1^{(\infty)}(L)\leq \left(1+rac{\log\log(t)}{t}
ight)rac{|\operatorname{\mathsf{Cl}}({\mathcal O}_n)|^{1/t}}{2}$$

Our contribution: a lattice reduction to find oriented endomorphisms

• The relations lattice L can be computed in polynomial time (in n and t) because discrete logarithms are easy to compute in $Cl(\mathcal{O}_n)$.

Cryptanalysis of OSIDH endomorphisms

Lemma

Heuristically, we have:

$$\left(1-rac{\log\log(t)}{t}
ight)rac{|\operatorname{\mathsf{Cl}}({\mathcal O}_n)|^{1/t}}{2}\leq\lambda_1^{(\infty)}({\mathcal L})\leq \left(1+rac{\log\log(t)}{t}
ight)rac{|\operatorname{\mathsf{Cl}}({\mathcal O}_n)|^{1/t}}{2}$$

• If the key space:

$$\left\{\prod_{j=1}^{t} [\mathfrak{q}_{j} \cap \mathcal{O}_{n}]^{e_{j}} \middle| e_{1}, \cdots, e_{t} \in \llbracket -r ; r \rrbracket\right\}$$

covers $Cl(\mathcal{O}_n)$, then $|Cl(\mathcal{O}_n)| \leq (2r+1)^t$ and:

$$\lambda_1^{(\infty)}(L) < 2r$$

• Finding a short vector is exponential but practical with BKZ.

Implementation with toy parameters: $\ell = 2$, n = 28, t = 10, r = 3 and $K = \mathbb{Q}(i)$.

[sage: load("Documents/Codes/OSIDH/OSIDH_attack_tests.py")

Protocol execution:

Alice: Alice's secret key: [2, 1, -3, 3, 3, 3, 3, -1, -3, 1] Alice's action on public chain complete.

Bob: Bob's secret key: [2, 0, -1, 1, 3, -3, 1, 2, 0, 2] Bob's action on public chain complete.

Alice's action on Bob's data complete.

Bob's action on Alice's data complete.

Shared chains coincide: True Protocol execution time: 86.6418662071228 s Attack: part 1 - recovering the chains of Alice and Bob

Alice Alice's chain recovered: True

Bob Bob's chain recovered: True

Timing part 1: 243.38196992874146 s

Attack: part 2 - recovering Alice's secret exponents

Timing part 2: 109.8835232257843 s

Attack: part 3 - recovering the shared secret chain Attack is correct: True Timing part 3: 8.221031904220581 s

Total attack timing : 361.48652505874634 s

(日) (同) (三) (三) (三) (○) (○)

Implementation with toy parameters: $\ell = 2$, n = 28, t = 10, r = 3 and $K = \mathbb{Q}(i)$.

	Protocol	Complete
		attack
Average (in s)	84.83	376.05
Standard deviation (in s)	5.61	18.29
Margin of error (95 %)	1.46	4.76
on the average (in s)		

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0

Can we scale up the attack?

Testing lattice reduction: $\ell = 2$, n = 256, t = 74, r = 5 and $K = \mathbb{Q}(i)$.

- Relations lattice computation: 1h04.
- Finding a short vector with BKZ: 0.5s.
- Shortest vector:

$$\begin{aligned} & u := (-4, 1, 4, 4, -3, 1, 3, 5, 5, 2, 9, 5, 3, 5, -1, 5, -7, 2, -3, 5, 3, -3, 2, \\ & 0, 2, 2, 0, -6, -2, -2, -9, 0, -6, 4, 1, -2, 1, 0, 7, 6, -2, -5, -3, -4, \\ & 6, -1, 0, -3, -2, -3, 2, 6, 0, 6, -8, -3, -2, -3, 4, 4, -3, -5, 1, 0, \\ & 0, 1, -1, 0, 5, -1, -1, 1, -2, -4) \end{aligned}$$

 $\|u\|_{\infty}=9<2r.$

Countermeasures:

- Method 1: increase t (and n) to make it computationally hard to find short vectors.
- Method 2: increase n to make sure that $(2r+1)^t \ll |Cl(\mathcal{O}_n)|$, so that:

$$\lambda_1^{(\infty)}(L) \ge \left(1 - rac{\log\log(t)}{t}
ight) rac{|\operatorname{Cl}(\mathcal{O}_n)|^{1/t}}{2} > 2r$$

Countermeasures:

- Method 1: increase t (and n) to make it computationally hard to find short vectors.
- Method 2: increase *n* to make sure that $(2r+1)^t \ll |\operatorname{Cl}(\mathcal{O}_n)|$, so that:

$$\lambda_1^{(\infty)}(L) \ge \left(1 - \frac{\log\log(t)}{t}\right) \frac{|\operatorname{Cl}(\mathcal{O}_n)|^{1/t}}{2} > 2r$$

- Drawbacks of method 1:
 - Increases the protocol complexity by a lot.
 - Diversity: the security relies on a lattice problem.

Countermeasures:

- Method 1: increase t (and n) to make it computationally hard to find short vectors.
- Method 2: increase n to make sure that $(2r+1)^t \ll |\operatorname{Cl}(\mathcal{O}_n)|$, so that:

$$\lambda_1^{(\infty)}(L) \ge \left(1 - \frac{\log\log(t)}{t}\right) \frac{|\operatorname{Cl}(\mathcal{O}_n)|^{1/t}}{2} > 2r$$

- Drawbacks of method 1:
 - Increases the protocol complexity by a lot.
 - Diversity: the security relies on a lattice problem.
- Drawback of method 2: reduces the key space:

$$\left\{\prod_{j=1}^{t} [\mathfrak{q}_{j} \cap \mathcal{O}_{n}]^{e_{j}} \middle| e_{1}, \cdots, e_{t} \in \llbracket -r ; r \rrbracket\right\}$$

This impedes other cryptographic constructions.

Pierrick Dartois and Luca De Feo

On the security of OSIDH

Conclusion

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 43 / 45

To sum up: Our attack significantly undermines OSIDH:

- Either OSIDH becomes an inefficient protocol based on a lattice reduction problem.
- Or it no longer satisfies the hypothesis of a cryptographic group action (key space too small).

EL= SOG

イロト イポト イヨト イヨト

To sum up: Our attack significantly undermines OSIDH:

- Either OSIDH becomes an inefficient protocol based on a lattice reduction problem.
- Or it no longer satisfies the hypothesis of a cryptographic group action (key space too small).

Future works:

- Improve the protocol implementation to scale up the attack.
- Find a complete cryptanalysis (without countermeasures).
- Or look for other constructions with the OSIDH framework that can work with a small key space.

A D N A R N A R N A R N R R N O O

Questions

Pierrick Dartois and Luca De Feo

On the security of OSIDH

March 15 2022 45 / 45